alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (Curve.java)

This example Java source code file (Curve.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

curve, curves, integer, internalerror, iterator, override, rocsq, util

The Curve.java Java example source code

/*
 * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package sun.java2d.pisces;

import java.util.Iterator;

final class Curve {

    float ax, ay, bx, by, cx, cy, dx, dy;
    float dax, day, dbx, dby;

    Curve() {
    }

    void set(float[] points, int type) {
        switch(type) {
        case 8:
            set(points[0], points[1],
                points[2], points[3],
                points[4], points[5],
                points[6], points[7]);
            break;
        case 6:
            set(points[0], points[1],
                points[2], points[3],
                points[4], points[5]);
            break;
        default:
            throw new InternalError("Curves can only be cubic or quadratic");
        }
    }

    void set(float x1, float y1,
             float x2, float y2,
             float x3, float y3,
             float x4, float y4)
    {
        ax = 3 * (x2 - x3) + x4 - x1;
        ay = 3 * (y2 - y3) + y4 - y1;
        bx = 3 * (x1 - 2 * x2 + x3);
        by = 3 * (y1 - 2 * y2 + y3);
        cx = 3 * (x2 - x1);
        cy = 3 * (y2 - y1);
        dx = x1;
        dy = y1;
        dax = 3 * ax; day = 3 * ay;
        dbx = 2 * bx; dby = 2 * by;
    }

    void set(float x1, float y1,
             float x2, float y2,
             float x3, float y3)
    {
        ax = ay = 0f;

        bx = x1 - 2 * x2 + x3;
        by = y1 - 2 * y2 + y3;
        cx = 2 * (x2 - x1);
        cy = 2 * (y2 - y1);
        dx = x1;
        dy = y1;
        dax = 0; day = 0;
        dbx = 2 * bx; dby = 2 * by;
    }

    float xat(float t) {
        return t * (t * (t * ax + bx) + cx) + dx;
    }
    float yat(float t) {
        return t * (t * (t * ay + by) + cy) + dy;
    }

    float dxat(float t) {
        return t * (t * dax + dbx) + cx;
    }

    float dyat(float t) {
        return t * (t * day + dby) + cy;
    }

    int dxRoots(float[] roots, int off) {
        return Helpers.quadraticRoots(dax, dbx, cx, roots, off);
    }

    int dyRoots(float[] roots, int off) {
        return Helpers.quadraticRoots(day, dby, cy, roots, off);
    }

    int infPoints(float[] pts, int off) {
        // inflection point at t if -f'(t)x*f''(t)y + f'(t)y*f''(t)x == 0
        // Fortunately, this turns out to be quadratic, so there are at
        // most 2 inflection points.
        final float a = dax * dby - dbx * day;
        final float b = 2 * (cy * dax - day * cx);
        final float c = cy * dbx - cx * dby;

        return Helpers.quadraticRoots(a, b, c, pts, off);
    }

    // finds points where the first and second derivative are
    // perpendicular. This happens when g(t) = f'(t)*f''(t) == 0 (where
    // * is a dot product). Unfortunately, we have to solve a cubic.
    private int perpendiculardfddf(float[] pts, int off) {
        assert pts.length >= off + 4;

        // these are the coefficients of some multiple of g(t) (not g(t),
        // because the roots of a polynomial are not changed after multiplication
        // by a constant, and this way we save a few multiplications).
        final float a = 2*(dax*dax + day*day);
        final float b = 3*(dax*dbx + day*dby);
        final float c = 2*(dax*cx + day*cy) + dbx*dbx + dby*dby;
        final float d = dbx*cx + dby*cy;
        return Helpers.cubicRootsInAB(a, b, c, d, pts, off, 0f, 1f);
    }

    // Tries to find the roots of the function ROC(t)-w in [0, 1). It uses
    // a variant of the false position algorithm to find the roots. False
    // position requires that 2 initial values x0,x1 be given, and that the
    // function must have opposite signs at those values. To find such
    // values, we need the local extrema of the ROC function, for which we
    // need the roots of its derivative; however, it's harder to find the
    // roots of the derivative in this case than it is to find the roots
    // of the original function. So, we find all points where this curve's
    // first and second derivative are perpendicular, and we pretend these
    // are our local extrema. There are at most 3 of these, so we will check
    // at most 4 sub-intervals of (0,1). ROC has asymptotes at inflection
    // points, so roc-w can have at least 6 roots. This shouldn't be a
    // problem for what we're trying to do (draw a nice looking curve).
    int rootsOfROCMinusW(float[] roots, int off, final float w, final float err) {
        // no OOB exception, because by now off<=6, and roots.length >= 10
        assert off <= 6 && roots.length >= 10;
        int ret = off;
        int numPerpdfddf = perpendiculardfddf(roots, off);
        float t0 = 0, ft0 = ROCsq(t0) - w*w;
        roots[off + numPerpdfddf] = 1f; // always check interval end points
        numPerpdfddf++;
        for (int i = off; i < off + numPerpdfddf; i++) {
            float t1 = roots[i], ft1 = ROCsq(t1) - w*w;
            if (ft0 == 0f) {
                roots[ret++] = t0;
            } else if (ft1 * ft0 < 0f) { // have opposite signs
                // (ROC(t)^2 == w^2) == (ROC(t) == w) is true because
                // ROC(t) >= 0 for all t.
                roots[ret++] = falsePositionROCsqMinusX(t0, t1, w*w, err);
            }
            t0 = t1;
            ft0 = ft1;
        }

        return ret - off;
    }

    private static float eliminateInf(float x) {
        return (x == Float.POSITIVE_INFINITY ? Float.MAX_VALUE :
            (x == Float.NEGATIVE_INFINITY ? Float.MIN_VALUE : x));
    }

    // A slight modification of the false position algorithm on wikipedia.
    // This only works for the ROCsq-x functions. It might be nice to have
    // the function as an argument, but that would be awkward in java6.
    // TODO: It is something to consider for java8 (or whenever lambda
    // expressions make it into the language), depending on how closures
    // and turn out. Same goes for the newton's method
    // algorithm in Helpers.java
    private float falsePositionROCsqMinusX(float x0, float x1,
                                           final float x, final float err)
    {
        final int iterLimit = 100;
        int side = 0;
        float t = x1, ft = eliminateInf(ROCsq(t) - x);
        float s = x0, fs = eliminateInf(ROCsq(s) - x);
        float r = s, fr;
        for (int i = 0; i < iterLimit && Math.abs(t - s) > err * Math.abs(t + s); i++) {
            r = (fs * t - ft * s) / (fs - ft);
            fr = ROCsq(r) - x;
            if (sameSign(fr, ft)) {
                ft = fr; t = r;
                if (side < 0) {
                    fs /= (1 << (-side));
                    side--;
                } else {
                    side = -1;
                }
            } else if (fr * fs > 0) {
                fs = fr; s = r;
                if (side > 0) {
                    ft /= (1 << side);
                    side++;
                } else {
                    side = 1;
                }
            } else {
                break;
            }
        }
        return r;
    }

    private static boolean sameSign(double x, double y) {
        // another way is to test if x*y > 0. This is bad for small x, y.
        return (x < 0 && y < 0) || (x > 0 && y > 0);
    }

    // returns the radius of curvature squared at t of this curve
    // see http://en.wikipedia.org/wiki/Radius_of_curvature_(applications)
    private float ROCsq(final float t) {
        // dx=xat(t) and dy=yat(t). These calls have been inlined for efficiency
        final float dx = t * (t * dax + dbx) + cx;
        final float dy = t * (t * day + dby) + cy;
        final float ddx = 2 * dax * t + dbx;
        final float ddy = 2 * day * t + dby;
        final float dx2dy2 = dx*dx + dy*dy;
        final float ddx2ddy2 = ddx*ddx + ddy*ddy;
        final float ddxdxddydy = ddx*dx + ddy*dy;
        return dx2dy2*((dx2dy2*dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy*ddxdxddydy));
    }

    // curve to be broken should be in pts
    // this will change the contents of pts but not Ts
    // TODO: There's no reason for Ts to be an array. All we need is a sequence
    // of t values at which to subdivide. An array statisfies this condition,
    // but is unnecessarily restrictive. Ts should be an Iterator<Float> instead.
    // Doing this will also make dashing easier, since we could easily make
    // LengthIterator an Iterator<Float> and feed it to this function to simplify
    // the loop in Dasher.somethingTo.
    static Iterator<Integer> breakPtsAtTs(final float[] pts, final int type,
                                          final float[] Ts, final int numTs)
    {
        assert pts.length >= 2*type && numTs <= Ts.length;
        return new Iterator<Integer>() {
            // these prevent object creation and destruction during autoboxing.
            // Because of this, the compiler should be able to completely
            // eliminate the boxing costs.
            final Integer i0 = 0;
            final Integer itype = type;
            int nextCurveIdx = 0;
            Integer curCurveOff = i0;
            float prevT = 0;

            @Override public boolean hasNext() {
                return nextCurveIdx < numTs + 1;
            }

            @Override public Integer next() {
                Integer ret;
                if (nextCurveIdx < numTs) {
                    float curT = Ts[nextCurveIdx];
                    float splitT = (curT - prevT) / (1 - prevT);
                    Helpers.subdivideAt(splitT,
                                        pts, curCurveOff,
                                        pts, 0,
                                        pts, type, type);
                    prevT = curT;
                    ret = i0;
                    curCurveOff = itype;
                } else {
                    ret = curCurveOff;
                }
                nextCurveIdx++;
                return ret;
            }

            @Override public void remove() {}
        };
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java Curve.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.