|
The hprof_table.c Java example source code
/*
* Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Oracle nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This source code is provided to illustrate the usage of a given feature
* or technique and has been deliberately simplified. Additional steps
* required for a production-quality application, such as security checks,
* input validation and proper error handling, might not be present in
* this sample code.
*/
/* Lookup Table of generic elements. */
/*
* Each table has a unique lock, all accesses are protected.
*
* Table elements are identified with a 32bit unsigned int.
* (Also see HARE trick below, which makes the TableIndex unique per table).
*
* Each element has a key (N bytes) and possible additional info.
*
* Two elements with the same key should be the same element.
*
* The storage for the Key and Info cannot move, the table itself can.
*
* The hash table will only be allocated if we have keys, and will resize
* when the table needs to resize. The hash buckets just provide the
* reference to the first TableIndex in the hash bucket, the next
* field of the TableElement takes you to the next item in the hash
* bucket. Lookups will drift the looked up item to the head of the
* list.
*
* The full 32bit hashcode and key length is saved for comparisons, the
* last thing done is the actual comparison of the Key contents with
* keys_equal().
*
* Freed elements (not many tables actually free items) are managed with
* a bit vector and a low index where a freed element might be found.
* Bytes are inspected until a non-zero byte indicates a freed bit is
* set. A count of freed elements is also kept.
*
*/
#include "hprof.h"
/* Macros for bit vectors: unsigned char 2^3==8 OR unsigned int 2^5==32 */
#define BV_CHUNK_POWER_2 3 /* 2 to this power == BV_CHUNK_BITSIZE */
#define BV_CHUNK_TYPE unsigned char
#define BV_CHUNK_BITSIZE (((int)sizeof(BV_CHUNK_TYPE))<<3) /* x8 */
#define BV_CHUNK_INDEX_MASK ( (1 << BV_CHUNK_POWER_2) - 1 )
#define BV_ELEMENT_COUNT(nelems) ((((nelems+1)) >> BV_CHUNK_POWER_2) + 1)
#define BV_CHUNK_ROUND(i) ((i) & ~(BV_CHUNK_INDEX_MASK))
#define BV_CHUNK(ptr, i) \
(((BV_CHUNK_TYPE*)(ptr))[(i) >> BV_CHUNK_POWER_2])
#define BV_CHUNK_MASK(i) \
(1 << ((i) & BV_CHUNK_INDEX_MASK))
/* Hash code value */
typedef unsigned HashCode;
/* Basic key for an element. What makes the element unique. */
typedef struct TableKey {
void *ptr; /* Pointer to arbitrary data that forms the key. */
int len; /* Length in bytes of this key. */
} TableKey;
/* Basic TableElement (but only allocated if keys are used) */
typedef struct TableElement {
TableKey key; /* The element key. */
HashCode hcode; /* The full 32bit hashcode for the key. */
TableIndex next; /* The next TableElement in the hash bucket chain. */
void *info; /* Info pointer */
} TableElement;
/* Generic Lookup Table structure */
typedef struct LookupTable {
char name[48]; /* Name of table. */
void *table; /* Pointer to array of elements. */
TableIndex *hash_buckets; /* Pointer to hash bucket chains. */
Blocks *info_blocks; /* Blocks space for info */
Blocks *key_blocks; /* Blocks space for keys */
TableIndex next_index; /* Next element available. */
TableIndex table_size; /* Current size of table. */
TableIndex table_incr; /* Suggested increment size. */
TableIndex hash_bucket_count; /* Number of hash buckets. */
int elem_size; /* Size of element. */
int info_size; /* Size of info structure (can be 0). */
void *freed_bv; /* Freed element bit vector */
int freed_count; /* Count of freed'd elements */
TableIndex freed_start; /* First freed in table */
int resizes; /* Count of table resizes done. */
unsigned bucket_walks; /* Count of bucket walks. */
jrawMonitorID lock; /* Lock for table access. */
SerialNumber serial_num; /* Table serial number. */
TableIndex hare; /* Rabbit (HARE) trick. */
} LookupTable;
/* To get a pointer to an element, regardless of element size. */
#define ELEMENT_PTR(ltable, i) \
((void*)(((char*)(ltable)->table) + (ltable)->elem_size * (i)))
/* Sanity, check all the time. */
#define SANITY_CHECK(condition) ( (condition) ? (void)0 : \
HPROF_ERROR(JNI_FALSE, "SANITY IN QUESTION: " #condition))
/* To see if an index is valid. */
#define SANITY_CHECK_INDEX(ltable,i) SANITY_CHECK((i) < ltable->next_index)
/* Small rabbits (hares) can be hidden in the index value returned.
* Only the right rabbits are allowed in certain pens (LookupTables).
* When herding rabbits it's important to keep them separate,
* there are lots of rabbits, all different kinds and sizes,
* keeping them all separate is important to avoid cross breeding.
*/
#define _SANITY_USE_HARE
#ifdef _SANITY_USE_HARE
#define SANITY_ADD_HARE(i,hare) (SANITY_REMOVE_HARE(i) | (hare))
#define SANITY_REMOVE_HARE(i) ((i) & 0x0FFFFFFF)
#define SANITY_CHECK_HARE(i,hare) SANITY_CHECK(SANITY_ADD_HARE(i,hare)==(i))
#else
#define SANITY_ADD_HARE(i,hare) (i)
#define SANITY_REMOVE_HARE(i) (i)
#define SANITY_CHECK_HARE(i,hare)
#endif
static jrawMonitorID
lock_create(char *name)
{
jrawMonitorID stanley;
stanley = createRawMonitor(name);
return stanley;
}
static void
lock_destroy(jrawMonitorID stanley)
{
if ( stanley != NULL ) {
destroyRawMonitor(stanley);
}
}
static void
lock_enter(jrawMonitorID stanley)
{
if ( stanley != NULL ) {
rawMonitorEnter(stanley);
}
}
static void
lock_exit(jrawMonitorID stanley)
{
if ( stanley != NULL ) {
rawMonitorExit(stanley);
}
}
static void
get_key(LookupTable *ltable, TableIndex index, void **pkey_ptr, int *pkey_len)
{
*pkey_ptr = ((TableElement*)ELEMENT_PTR(ltable,index))->key.ptr;
*pkey_len = ((TableElement*)ELEMENT_PTR(ltable,index))->key.len;
}
static void *
get_info(LookupTable *ltable, TableIndex index)
{
TableElement *element;
element = (TableElement*)ELEMENT_PTR(ltable,index);
return element->info;
}
static void
hash_out(LookupTable *ltable, TableIndex index)
{
if ( ltable->hash_bucket_count > 0 ) {
TableElement *element;
TableElement *prev_e;
TableIndex bucket;
TableIndex i;
element = (TableElement*)ELEMENT_PTR(ltable,index);
bucket = (element->hcode % ltable->hash_bucket_count);
i = ltable->hash_buckets[bucket];
HPROF_ASSERT(i!=0);
prev_e = NULL;
while ( i != 0 && i != index ) {
prev_e = (TableElement*)ELEMENT_PTR(ltable,i);
i = prev_e->next;
}
HPROF_ASSERT(i==index);
if ( prev_e == NULL ) {
ltable->hash_buckets[bucket] = element->next;
} else {
prev_e->next = element->next;
}
element->next = 0;
element->hcode = 0;
}
}
static jboolean
is_freed_entry(LookupTable *ltable, TableIndex index)
{
if ( ltable->freed_bv == NULL ) {
return JNI_FALSE;
}
if ( ( BV_CHUNK(ltable->freed_bv, index) & BV_CHUNK_MASK(index) ) != 0 ) {
return JNI_TRUE;
}
return JNI_FALSE;
}
static void
set_freed_bit(LookupTable *ltable, TableIndex index)
{
void *p;
HPROF_ASSERT(!is_freed_entry(ltable, index));
p = ltable->freed_bv;
if ( p == NULL ) {
int size;
/* First time for a free */
HPROF_ASSERT(ltable->freed_start==0);
HPROF_ASSERT(ltable->freed_start==0);
size = BV_ELEMENT_COUNT(ltable->table_size);
p = HPROF_MALLOC(size*(int)sizeof(BV_CHUNK_TYPE));
ltable->freed_bv = p;
(void)memset(p, 0, size*(int)sizeof(BV_CHUNK_TYPE));
}
BV_CHUNK(p, index) |= BV_CHUNK_MASK(index);
ltable->freed_count++;
if ( ltable->freed_count == 1 ) {
/* Set freed_start for first time. */
HPROF_ASSERT(ltable->freed_start==0);
ltable->freed_start = index;
} else if ( index < ltable->freed_start ) {
/* Set freed_start to smaller value so we can be smart about search */
HPROF_ASSERT(ltable->freed_start!=0);
ltable->freed_start = index;
}
HPROF_ASSERT(ltable->freed_start!=0);
HPROF_ASSERT(ltable->freed_start < ltable->next_index);
HPROF_ASSERT(is_freed_entry(ltable, index));
}
static TableIndex
find_freed_entry(LookupTable *ltable)
{
if ( ltable->freed_count > 0 ) {
TableIndex i;
TableIndex istart;
void *p;
BV_CHUNK_TYPE chunk;
HPROF_ASSERT(BV_CHUNK_BITSIZE==(1<next_index);
istart = BV_CHUNK_ROUND(ltable->freed_start);
/* Find chunk with any bit set */
chunk = 0;
for( ; istart < ltable->next_index ; istart += BV_CHUNK_BITSIZE ) {
chunk = BV_CHUNK(p, istart);
if ( chunk != 0 ) {
break;
}
}
HPROF_ASSERT(chunk!=0);
HPROF_ASSERT(chunk==BV_CHUNK(p,istart));
HPROF_ASSERT(istart < ltable->next_index);
/* Find bit in chunk and return index of freed item */
for( i = istart ; i < (istart+BV_CHUNK_BITSIZE) ; i++) {
BV_CHUNK_TYPE mask;
mask = BV_CHUNK_MASK(i);
if ( (chunk & mask) != 0 ) {
HPROF_ASSERT(chunk==BV_CHUNK(p,i));
chunk &= ~mask;
BV_CHUNK(p, i) = chunk;
ltable->freed_count--;
HPROF_ASSERT(i < ltable->next_index);
if ( ltable->freed_count > 0 ) {
/* Set freed_start so we can be smart about search */
HPROF_ASSERT((i+1) < ltable->next_index);
ltable->freed_start = i+1;
} else {
/* Clear freed_start because there are no freed entries */
ltable->freed_start = 0;
}
HPROF_ASSERT(!is_freed_entry(ltable, i));
return i;
}
}
HPROF_ASSERT(0);
}
return 0;
}
static void
free_entry(LookupTable *ltable, TableIndex index)
{
set_freed_bit(ltable, index);
hash_out(ltable, index);
}
/* Fairly generic hash code generator (not a hash table index) */
static HashCode
hashcode(void *key_ptr, int key_len)
{
unsigned char * p;
HashCode hcode;
int i;
hcode = 0;
if ( key_ptr == NULL || key_len == 0 ) {
return hcode;
}
i = 0;
p = (unsigned char*)key_ptr;
for ( ; i < key_len-3 ; i += 4 ) {
/* Do a little loop unrolling */
hcode += (
( (unsigned)(p[i]) << 24 ) |
( (unsigned)(p[i+1]) << 16 ) |
( (unsigned)(p[i+2]) << 8 ) |
( (unsigned)(p[i+3]) )
);
}
for ( ; i < key_len ; i++ ) {
hcode += (unsigned)(p[i]);
}
return hcode;
}
static void
hash_in(LookupTable *ltable, TableIndex index, HashCode hcode)
{
if ( ltable->hash_bucket_count > 0 ) {
TableElement *element;
TableIndex bucket;
bucket = (hcode % ltable->hash_bucket_count);
element = (TableElement*)ELEMENT_PTR(ltable, index);
element->hcode = hcode;
element->next = ltable->hash_buckets[bucket];
ltable->hash_buckets[bucket] = index;
}
}
static void
resize_hash_buckets(LookupTable *ltable)
{
/* Don't want to do this too often. */
/* Hash table needs resizing when it's smaller than 1/16 the number of
* elements used in the table. This is just a guess.
*/
if ( ( ltable->hash_bucket_count < (ltable->next_index >> 4) )
&& ( ltable->hash_bucket_count > 0 )
&& ( ( ltable->resizes % 10 ) == 0 )
&& ( ltable->bucket_walks > 1000*ltable->hash_bucket_count )
) {
int old_size;
int new_size;
TableIndex *new_buckets;
TableIndex *old_buckets;
int bucket;
/* Increase size of hash_buckets array, and rehash all elements */
LOG3("Table resize", ltable->name, ltable->resizes);
old_size = ltable->hash_bucket_count;
old_buckets = ltable->hash_buckets;
new_size = (ltable->next_index >> 3); /* 1/8 current used count */
SANITY_CHECK(new_size > old_size);
new_buckets = HPROF_MALLOC(new_size*(int)sizeof(TableIndex));
(void)memset(new_buckets, 0, new_size*(int)sizeof(TableIndex));
ltable->hash_bucket_count = new_size;
ltable->hash_buckets = new_buckets;
for ( bucket = 0 ; bucket < old_size ; bucket++ ) {
TableIndex index;
index = old_buckets[bucket];
while ( index != 0 ) {
TableElement *element;
TableIndex next;
element = (TableElement*)ELEMENT_PTR(ltable, index);
next = element->next;
element->next = 0;
hash_in(ltable, index, element->hcode);
index = next;
}
}
HPROF_FREE(old_buckets);
ltable->bucket_walks = 0;
}
}
static void
resize(LookupTable *ltable)
{
int old_size;
int new_size;
void *old_table;
void *new_table;
int nbytes;
int obytes;
LOG3("Table resize", ltable->name, ltable->resizes);
/* Adjust increment on every resize
* Minimum is 1/4 the size of the current table or 512.
*/
old_size = ltable->table_size;
if ( ltable->table_incr < (unsigned)(old_size >> 2) ) {
ltable->table_incr = (old_size >> 2);
}
if ( ltable->table_incr < 512 ) {
ltable->table_incr = 512;
}
new_size = old_size + ltable->table_incr;
/* Basic table element array */
obytes = old_size * ltable->elem_size;
nbytes = new_size * ltable->elem_size;
old_table = ltable->table;
new_table = HPROF_MALLOC(nbytes);
(void)memcpy(new_table, old_table, obytes);
(void)memset(((char*)new_table)+obytes, 0, nbytes-obytes);
ltable->table = new_table;
ltable->table_size = new_size;
HPROF_FREE(old_table);
/* Then bit vector for freed entries */
if ( ltable->freed_bv != NULL ) {
void *old_bv;
void *new_bv;
obytes = BV_ELEMENT_COUNT(old_size)*(int)sizeof(BV_CHUNK_TYPE);
nbytes = BV_ELEMENT_COUNT(new_size)*(int)sizeof(BV_CHUNK_TYPE);
old_bv = ltable->freed_bv;
new_bv = HPROF_MALLOC(nbytes);
(void)memcpy(new_bv, old_bv, obytes);
(void)memset(((char*)new_bv)+obytes, 0, nbytes-obytes);
ltable->freed_bv = new_bv;
HPROF_FREE(old_bv);
}
/* Check to see if the hash table needs resizing */
resize_hash_buckets(ltable);
ltable->resizes++;
}
static jboolean
keys_equal(void *key_ptr1, void *key_ptr2, int key_len)
{
unsigned char * p1;
unsigned char * p2;
int i;
if ( key_len == 0 ) {
return JNI_TRUE;
}
/* We know these are aligned because we malloc'd them. */
/* Compare word by word, then byte by byte */
p1 = (unsigned char*)key_ptr1;
p2 = (unsigned char*)key_ptr2;
for ( i = 0 ; i < key_len-3 ; i += 4 ) {
/*LINTED*/
if ( *(unsigned*)(p1+i) != *(unsigned*)(p2+i) ) {
return JNI_FALSE;
}
}
for ( ; i < key_len ; i++ ) {
if ( p1[i] != p2[i] ) {
return JNI_FALSE;
}
}
return JNI_TRUE;
}
static TableIndex
find_entry(LookupTable *ltable, void *key_ptr, int key_len, HashCode hcode)
{
TableIndex index;
HPROF_ASSERT(ltable!=NULL);
index = 0;
if ( ltable->hash_bucket_count > 0 ) {
TableIndex bucket;
TableIndex prev_index;
HPROF_ASSERT(key_ptr!=NULL);
HPROF_ASSERT(key_len>0);
prev_index = 0;
bucket = (hcode % ltable->hash_bucket_count);
index = ltable->hash_buckets[bucket];
while ( index != 0 ) {
TableElement *element;
TableElement *prev_element;
element = (TableElement*)ELEMENT_PTR(ltable, index);
if ( hcode == element->hcode &&
key_len == element->key.len &&
keys_equal(key_ptr, element->key.ptr, key_len) ) {
/* Place this guy at the head of the bucket list */
if ( prev_index != 0 ) {
prev_element = (TableElement*)ELEMENT_PTR(ltable, prev_index);
prev_element->next = element->next;
element->next = ltable->hash_buckets[bucket];
ltable->hash_buckets[bucket] = index;
}
break;
}
prev_index = index;
index = element->next;
ltable->bucket_walks++;
}
}
return index;
}
static TableIndex
setup_new_entry(LookupTable *ltable, void *key_ptr, int key_len, void *info_ptr)
{
TableIndex index;
TableElement *element;
void *info;
void *dup_key;
/* Assume we need new allocations for key and info */
dup_key = NULL;
info = NULL;
/* Look for a freed element */
index = 0;
if ( ltable->freed_count > 0 ) {
index = find_freed_entry(ltable);
}
if ( index != 0 ) {
int old_key_len;
/* Found a freed element, re-use what we can but clean it up. */
element = (TableElement*)ELEMENT_PTR(ltable, index);
dup_key = element->key.ptr;
old_key_len = element->key.len;
info = element->info;
(void)memset(element, 0, ltable->elem_size);
/* Toss the key space if size is too small to hold new key */
if ( key_ptr != NULL ) {
if ( old_key_len < key_len ) {
/* This could leak space in the Blocks if keys are variable
* in size AND the table does frees of elements.
*/
dup_key = NULL;
}
}
} else {
/* Brand new table element */
if ( ltable->next_index >= ltable->table_size ) {
resize(ltable);
}
index = ltable->next_index++;
element = (TableElement*)ELEMENT_PTR(ltable, index);
}
/* Setup info area */
if ( ltable->info_size > 0 ) {
if ( info == NULL ) {
info = blocks_alloc(ltable->info_blocks, ltable->info_size);
}
if ( info_ptr==NULL ) {
(void)memset(info, 0, ltable->info_size);
} else {
(void)memcpy(info, info_ptr, ltable->info_size);
}
}
/* Setup key area if one was provided */
if ( key_ptr != NULL ) {
if ( dup_key == NULL ) {
dup_key = blocks_alloc(ltable->key_blocks, key_len);
}
(void)memcpy(dup_key, key_ptr, key_len);
}
/* Fill in element */
element->key.ptr = dup_key;
element->key.len = key_len;
element->info = info;
return index;
}
LookupTable *
table_initialize(const char *name, int size, int incr, int bucket_count,
int info_size)
{
LookupTable * ltable;
char lock_name[80];
int elem_size;
int key_size;
HPROF_ASSERT(name!=NULL);
HPROF_ASSERT(size>0);
HPROF_ASSERT(incr>0);
HPROF_ASSERT(bucket_count>=0);
HPROF_ASSERT(info_size>=0);
key_size = 1;
ltable = (LookupTable *)HPROF_MALLOC((int)sizeof(LookupTable));
(void)memset(ltable, 0, (int)sizeof(LookupTable));
(void)strncpy(ltable->name, name, sizeof(ltable->name));
elem_size = (int)sizeof(TableElement);
ltable->next_index = 1; /* Never use index 0 */
ltable->table_size = size;
ltable->table_incr = incr;
ltable->hash_bucket_count = bucket_count;
ltable->elem_size = elem_size;
ltable->info_size = info_size;
if ( info_size > 0 ) {
ltable->info_blocks = blocks_init(8, info_size, incr);
}
if ( key_size > 0 ) {
ltable->key_blocks = blocks_init(8, key_size, incr);
}
ltable->table = HPROF_MALLOC(size * elem_size);
(void)memset(ltable->table, 0, size * elem_size);
if ( bucket_count > 0 ) {
int nbytes;
nbytes = (int)(bucket_count*sizeof(TableIndex));
ltable->hash_buckets = (TableIndex*)HPROF_MALLOC(nbytes);
(void)memset(ltable->hash_buckets, 0, nbytes);
}
(void)md_snprintf(lock_name, sizeof(lock_name),
"HPROF %s table lock", name);
lock_name[sizeof(lock_name)-1] = 0;
ltable->lock = lock_create(lock_name);
ltable->serial_num = gdata->table_serial_number_counter++;
ltable->hare = (ltable->serial_num << 28);
LOG3("Table initialized", ltable->name, ltable->table_size);
return ltable;
}
int
table_element_count(LookupTable *ltable)
{
int nelems;
HPROF_ASSERT(ltable!=NULL);
lock_enter(ltable->lock); {
nelems = ltable->next_index-1;
} lock_exit(ltable->lock);
return nelems;
}
void
table_free_entry(LookupTable *ltable, TableIndex index)
{
HPROF_ASSERT(ltable!=NULL);
SANITY_CHECK_HARE(index, ltable->hare);
index = SANITY_REMOVE_HARE(index);
SANITY_CHECK_INDEX(ltable, index);
lock_enter(ltable->lock); {
HPROF_ASSERT(!is_freed_entry(ltable, index));
free_entry(ltable, index);
} lock_exit(ltable->lock);
}
void
table_walk_items(LookupTable *ltable, LookupTableIterator func, void* arg)
{
if ( ltable == NULL || ltable->next_index <= 1 ) {
return;
}
HPROF_ASSERT(func!=NULL);
lock_enter(ltable->lock); {
TableIndex index;
int fcount;
LOG3("table_walk_items() count+free", ltable->name, ltable->next_index);
fcount = 0;
for ( index = 1 ; index < ltable->next_index ; index++ ) {
if ( ! is_freed_entry(ltable, index) ) {
void *key_ptr;
int key_len;
void *info;
get_key(ltable, index, &key_ptr, &key_len);
if ( ltable->info_size == 0 ) {
info = NULL;
} else {
info = get_info(ltable, index);
}
(*func)(SANITY_ADD_HARE(index, ltable->hare), key_ptr, key_len, info, arg);
if ( is_freed_entry(ltable, index) ) {
fcount++;
}
} else {
fcount++;
}
}
LOG3("table_walk_items() count-free", ltable->name, ltable->next_index);
HPROF_ASSERT(fcount==ltable->freed_count);
} lock_exit(ltable->lock);
}
void
table_cleanup(LookupTable *ltable, LookupTableIterator func, void *arg)
{
if ( ltable == NULL ) {
return;
}
if ( func != NULL ) {
table_walk_items(ltable, func, arg);
}
lock_enter(ltable->lock); {
HPROF_FREE(ltable->table);
if ( ltable->hash_buckets != NULL ) {
HPROF_FREE(ltable->hash_buckets);
}
if ( ltable->freed_bv != NULL ) {
HPROF_FREE(ltable->freed_bv);
}
if ( ltable->info_blocks != NULL ) {
blocks_term(ltable->info_blocks);
ltable->info_blocks = NULL;
}
if ( ltable->key_blocks != NULL ) {
blocks_term(ltable->key_blocks);
ltable->key_blocks = NULL;
}
} lock_exit(ltable->lock);
lock_destroy(ltable->lock);
ltable->lock = NULL;
HPROF_FREE(ltable);
ltable = NULL;
}
TableIndex
table_create_entry(LookupTable *ltable, void *key_ptr, int key_len, void *info_ptr)
{
TableIndex index;
HashCode hcode;
HPROF_ASSERT(ltable!=NULL);
/* Create hash code if needed */
hcode = 0;
if ( ltable->hash_bucket_count > 0 ) {
hcode = hashcode(key_ptr, key_len);
}
/* Create a new entry */
lock_enter(ltable->lock); {
/* Need to create a new entry */
index = setup_new_entry(ltable, key_ptr, key_len, info_ptr);
/* Add to hash table if we have one */
if ( ltable->hash_bucket_count > 0 ) {
hash_in(ltable, index, hcode);
}
} lock_exit(ltable->lock);
return SANITY_ADD_HARE(index, ltable->hare);
}
TableIndex
table_find_entry(LookupTable *ltable, void *key_ptr, int key_len)
{
TableIndex index;
HashCode hcode;
/* Create hash code if needed */
hcode = 0;
if ( ltable->hash_bucket_count > 0 ) {
hcode = hashcode(key_ptr, key_len);
}
/* Look for element */
lock_enter(ltable->lock); {
index = find_entry(ltable, key_ptr, key_len, hcode);
} lock_exit(ltable->lock);
return index==0 ? index : SANITY_ADD_HARE(index, ltable->hare);
}
TableIndex
table_find_or_create_entry(LookupTable *ltable, void *key_ptr, int key_len,
jboolean *pnew_entry, void *info_ptr)
{
TableIndex index;
HashCode hcode;
/* Assume it is NOT a new entry for now */
if ( pnew_entry ) {
*pnew_entry = JNI_FALSE;
}
/* Create hash code if needed */
hcode = 0;
if ( ltable->hash_bucket_count > 0 ) {
hcode = hashcode(key_ptr, key_len);
}
/* Look for element */
index = 0;
lock_enter(ltable->lock); {
if ( ltable->hash_bucket_count > 0 ) {
index = find_entry(ltable, key_ptr, key_len, hcode);
}
if ( index == 0 ) {
/* Need to create a new entry */
index = setup_new_entry(ltable, key_ptr, key_len, info_ptr);
/* Add to hash table if we have one */
if ( ltable->hash_bucket_count > 0 ) {
hash_in(ltable, index, hcode);
}
if ( pnew_entry ) {
*pnew_entry = JNI_TRUE;
}
}
} lock_exit(ltable->lock);
return SANITY_ADD_HARE(index, ltable->hare);
}
void *
table_get_info(LookupTable *ltable, TableIndex index)
{
void *info;
HPROF_ASSERT(ltable!=NULL);
HPROF_ASSERT(ltable->info_size > 0);
SANITY_CHECK_HARE(index, ltable->hare);
index = SANITY_REMOVE_HARE(index);
SANITY_CHECK_INDEX(ltable, index);
lock_enter(ltable->lock); {
HPROF_ASSERT(!is_freed_entry(ltable, index));
info = get_info(ltable,index);
} lock_exit(ltable->lock);
return info;
}
void
table_get_key(LookupTable *ltable, TableIndex index, void **pkey_ptr, int *pkey_len)
{
HPROF_ASSERT(ltable!=NULL);
HPROF_ASSERT(pkey_ptr!=NULL);
HPROF_ASSERT(pkey_len!=NULL);
SANITY_CHECK_HARE(index, ltable->hare);
HPROF_ASSERT(ltable->elem_size!=0);
index = SANITY_REMOVE_HARE(index);
SANITY_CHECK_INDEX(ltable, index);
lock_enter(ltable->lock); {
HPROF_ASSERT(!is_freed_entry(ltable, index));
get_key(ltable, index, pkey_ptr, pkey_len);
} lock_exit(ltable->lock);
}
void
table_lock_enter(LookupTable *ltable)
{
lock_enter(ltable->lock);
}
void
table_lock_exit(LookupTable *ltable)
{
lock_exit(ltable->lock);
}
Other Java examples (source code examples)
Here is a short list of links related to this Java hprof_table.c source code file:
|