alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (e_exp.c)

This example Java source code file (e_exp.c) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

ieee, nan

The e_exp.c Java example source code


/*
 * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/* __ieee754_exp(x)
 * Returns the exponential of x.
 *
 * Method
 *   1. Argument reduction:
 *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
 *      Given x, find r and integer k such that
 *
 *               x = k*ln2 + r,  |r| <= 0.5*ln2.
 *
 *      Here r will be represented as r = hi-lo for better
 *      accuracy.
 *
 *   2. Approximation of exp(r) by a special rational function on
 *      the interval [0,0.34658]:
 *      Write
 *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
 *      We use a special Reme algorithm on [0,0.34658] to generate
 *      a polynomial of degree 5 to approximate R. The maximum error
 *      of this polynomial approximation is bounded by 2**-59. In
 *      other words,
 *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
 *      (where z=r*r, and the values of P1 to P5 are listed below)
 *      and
 *          |                  5          |     -59
 *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
 *          |                             |
 *      The computation of exp(r) thus becomes
 *                             2*r
 *              exp(r) = 1 + -------
 *                            R - r
 *                                 r*R1(r)
 *                     = 1 + r + ----------- (for better accuracy)
 *                                2 - R1(r)
 *      where
 *                               2       4             10
 *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
 *
 *   3. Scale back to obtain exp(x):
 *      From step 1, we have
 *         exp(x) = 2^k * exp(r)
 *
 * Special cases:
 *      exp(INF) is INF, exp(NaN) is NaN;
 *      exp(-INF) is 0, and
 *      for finite argument, only exp(0)=1 is exact.
 *
 * Accuracy:
 *      according to an error analysis, the error is always less than
 *      1 ulp (unit in the last place).
 *
 * Misc. info.
 *      For IEEE double
 *          if x >  7.09782712893383973096e+02 then exp(x) overflow
 *          if x < -7.45133219101941108420e+02 then exp(x) underflow
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following
 * constants. The decimal values may be used, provided that the
 * compiler will convert from decimal to binary accurately enough
 * to produce the hexadecimal values shown.
 */

#include "fdlibm.h"

#ifdef __STDC__
static const double
#else
static double
#endif
one     = 1.0,
halF[2] = {0.5,-0.5,},
huge    = 1.0e+300,
twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
             -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
             -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */


#ifdef __STDC__
        double __ieee754_exp(double x)  /* default IEEE double exp */
#else
        double __ieee754_exp(x) /* default IEEE double exp */
        double x;
#endif
{
        double y,hi=0,lo=0,c,t;
        int k=0,xsb;
        unsigned hx;

        hx  = __HI(x);  /* high word of x */
        xsb = (hx>>31)&1;               /* sign bit of x */
        hx &= 0x7fffffff;               /* high word of |x| */

    /* filter out non-finite argument */
        if(hx >= 0x40862E42) {                  /* if |x|>=709.78... */
            if(hx>=0x7ff00000) {
                if(((hx&0xfffff)|__LO(x))!=0)
                     return x+x;                /* NaN */
                else return (xsb==0)? x:0.0;    /* exp(+-inf)={inf,0} */
            }
            if(x > o_threshold) return huge*huge; /* overflow */
            if(x < u_threshold) return twom1000*twom1000; /* underflow */
        }

    /* argument reduction */
        if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
            if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
                hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
            } else {
                k  = invln2*x+halF[xsb];
                t  = k;
                hi = x - t*ln2HI[0];    /* t*ln2HI is exact here */
                lo = t*ln2LO[0];
            }
            x  = hi - lo;
        }
        else if(hx < 0x3e300000)  {     /* when |x|<2**-28 */
            if(huge+x>one) return one+x;/* trigger inexact */
        }
        else k = 0;

    /* x is now in primary range */
        t  = x*x;
        c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
        if(k==0)        return one-((x*c)/(c-2.0)-x);
        else            y = one-((lo-(x*c)/(2.0-c))-hi);
        if(k >= -1021) {
            __HI(y) += (k<<20); /* add k to y's exponent */
            return y;
        } else {
            __HI(y) += ((k+1000)<<20);/* add k to y's exponent */
            return y*twom1000;
        }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java e_exp.c source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.