alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (jidctflt.c)

This example Java source code file (jidctflt.c) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

dct_float_supported, dctsize, dequantize, descale, fast_float, float_mult_type, global, idct_range_limit, jcoefptr, jdimension, jpeg_internals, jsamprow, range_mask, sorry

The jidctflt.c Java example source code

/*
 * reserved comment block
 * DO NOT REMOVE OR ALTER!
 */
/*
 * jidctflt.c
 *
 * Copyright (C) 1994-1998, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains a floating-point implementation of the
 * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
 * must also perform dequantization of the input coefficients.
 *
 * This implementation should be more accurate than either of the integer
 * IDCT implementations.  However, it may not give the same results on all
 * machines because of differences in roundoff behavior.  Speed will depend
 * on the hardware's floating point capacity.
 *
 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
 * on each row (or vice versa, but it's more convenient to emit a row at
 * a time).  Direct algorithms are also available, but they are much more
 * complex and seem not to be any faster when reduced to code.
 *
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
 * JPEG textbook (see REFERENCES section in file README).  The following code
 * is based directly on figure 4-8 in P&M.
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
 * possible to arrange the computation so that many of the multiplies are
 * simple scalings of the final outputs.  These multiplies can then be
 * folded into the multiplications or divisions by the JPEG quantization
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
 * to be done in the DCT itself.
 * The primary disadvantage of this method is that with a fixed-point
 * implementation, accuracy is lost due to imprecise representation of the
 * scaled quantization values.  However, that problem does not arise if
 * we use floating point arithmetic.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h"               /* Private declarations for DCT subsystem */

#ifdef DCT_FLOAT_SUPPORTED


/*
 * This module is specialized to the case DCTSIZE = 8.
 */

#if DCTSIZE != 8
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif


/* Dequantize a coefficient by multiplying it by the multiplier-table
 * entry; produce a float result.
 */

#define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval))


/*
 * Perform dequantization and inverse DCT on one block of coefficients.
 */

GLOBAL(void)
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
                 JCOEFPTR coef_block,
                 JSAMPARRAY output_buf, JDIMENSION output_col)
{
  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
  FAST_FLOAT z5, z10, z11, z12, z13;
  JCOEFPTR inptr;
  FLOAT_MULT_TYPE * quantptr;
  FAST_FLOAT * wsptr;
  JSAMPROW outptr;
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  int ctr;
  FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
  SHIFT_TEMPS

  /* Pass 1: process columns from input, store into work array. */

  inptr = coef_block;
  quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
  wsptr = workspace;
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
    /* Due to quantization, we will usually find that many of the input
     * coefficients are zero, especially the AC terms.  We can exploit this
     * by short-circuiting the IDCT calculation for any column in which all
     * the AC terms are zero.  In that case each output is equal to the
     * DC coefficient (with scale factor as needed).
     * With typical images and quantization tables, half or more of the
     * column DCT calculations can be simplified this way.
     */

    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
        inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
        inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
        inptr[DCTSIZE*7] == 0) {
      /* AC terms all zero */
      FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);

      wsptr[DCTSIZE*0] = dcval;
      wsptr[DCTSIZE*1] = dcval;
      wsptr[DCTSIZE*2] = dcval;
      wsptr[DCTSIZE*3] = dcval;
      wsptr[DCTSIZE*4] = dcval;
      wsptr[DCTSIZE*5] = dcval;
      wsptr[DCTSIZE*6] = dcval;
      wsptr[DCTSIZE*7] = dcval;

      inptr++;                  /* advance pointers to next column */
      quantptr++;
      wsptr++;
      continue;
    }

    /* Even part */

    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);

    tmp10 = tmp0 + tmp2;        /* phase 3 */
    tmp11 = tmp0 - tmp2;

    tmp13 = tmp1 + tmp3;        /* phases 5-3 */
    tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */

    tmp0 = tmp10 + tmp13;       /* phase 2 */
    tmp3 = tmp10 - tmp13;
    tmp1 = tmp11 + tmp12;
    tmp2 = tmp11 - tmp12;

    /* Odd part */

    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);

    z13 = tmp6 + tmp5;          /* phase 6 */
    z10 = tmp6 - tmp5;
    z11 = tmp4 + tmp7;
    z12 = tmp4 - tmp7;

    tmp7 = z11 + z13;           /* phase 5 */
    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */

    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */

    tmp6 = tmp12 - tmp7;        /* phase 2 */
    tmp5 = tmp11 - tmp6;
    tmp4 = tmp10 + tmp5;

    wsptr[DCTSIZE*0] = tmp0 + tmp7;
    wsptr[DCTSIZE*7] = tmp0 - tmp7;
    wsptr[DCTSIZE*1] = tmp1 + tmp6;
    wsptr[DCTSIZE*6] = tmp1 - tmp6;
    wsptr[DCTSIZE*2] = tmp2 + tmp5;
    wsptr[DCTSIZE*5] = tmp2 - tmp5;
    wsptr[DCTSIZE*4] = tmp3 + tmp4;
    wsptr[DCTSIZE*3] = tmp3 - tmp4;

    inptr++;                    /* advance pointers to next column */
    quantptr++;
    wsptr++;
  }

  /* Pass 2: process rows from work array, store into output array. */
  /* Note that we must descale the results by a factor of 8 == 2**3. */

  wsptr = workspace;
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
    outptr = output_buf[ctr] + output_col;
    /* Rows of zeroes can be exploited in the same way as we did with columns.
     * However, the column calculation has created many nonzero AC terms, so
     * the simplification applies less often (typically 5% to 10% of the time).
     * And testing floats for zero is relatively expensive, so we don't bother.
     */

    /* Even part */

    tmp10 = wsptr[0] + wsptr[4];
    tmp11 = wsptr[0] - wsptr[4];

    tmp13 = wsptr[2] + wsptr[6];
    tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;

    tmp0 = tmp10 + tmp13;
    tmp3 = tmp10 - tmp13;
    tmp1 = tmp11 + tmp12;
    tmp2 = tmp11 - tmp12;

    /* Odd part */

    z13 = wsptr[5] + wsptr[3];
    z10 = wsptr[5] - wsptr[3];
    z11 = wsptr[1] + wsptr[7];
    z12 = wsptr[1] - wsptr[7];

    tmp7 = z11 + z13;
    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);

    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */

    tmp6 = tmp12 - tmp7;
    tmp5 = tmp11 - tmp6;
    tmp4 = tmp10 + tmp5;

    /* Final output stage: scale down by a factor of 8 and range-limit */

    outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
                            & RANGE_MASK];
    outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
                            & RANGE_MASK];
    outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
                            & RANGE_MASK];
    outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
                            & RANGE_MASK];
    outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
                            & RANGE_MASK];
    outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
                            & RANGE_MASK];
    outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
                            & RANGE_MASK];
    outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
                            & RANGE_MASK];

    wsptr += DCTSIZE;           /* advance pointer to next row */
  }
}

#endif /* DCT_FLOAT_SUPPORTED */

Other Java examples (source code examples)

Here is a short list of links related to this Java jidctflt.c source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.