|
Java example source code file (ecp_521.c)
The ecp_521.c Java example source code/* * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* ********************************************************************* * * The Original Code is the elliptic curve math library for prime field curves. * * The Initial Developer of the Original Code is * Sun Microsystems, Inc. * Portions created by the Initial Developer are Copyright (C) 2003 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Douglas Stebila <douglas@stebila.ca> * *********************************************************************** */ #include "ecp.h" #include "mpi.h" #include "mplogic.h" #include "mpi-priv.h" #ifndef _KERNEL #include <stdlib.h> #endif #define ECP521_DIGITS ECL_CURVE_DIGITS(521) /* Fast modular reduction for p521 = 2^521 - 1. a can be r. Uses * algorithm 2.31 from Hankerson, Menezes, Vanstone. Guide to * Elliptic Curve Cryptography. */ mp_err ec_GFp_nistp521_mod(const mp_int *a, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; int a_bits = mpl_significant_bits(a); unsigned int i; /* m1, m2 are statically-allocated mp_int of exactly the size we need */ mp_int m1; mp_digit s1[ECP521_DIGITS] = { 0 }; MP_SIGN(&m1) = MP_ZPOS; MP_ALLOC(&m1) = ECP521_DIGITS; MP_USED(&m1) = ECP521_DIGITS; MP_DIGITS(&m1) = s1; if (a_bits < 521) { if (a==r) return MP_OKAY; return mp_copy(a, r); } /* for polynomials larger than twice the field size or polynomials * not using all words, use regular reduction */ if (a_bits > (521*2)) { MP_CHECKOK(mp_mod(a, &meth->irr, r)); } else { #define FIRST_DIGIT (ECP521_DIGITS-1) for (i = FIRST_DIGIT; i < MP_USED(a)-1; i++) { s1[i-FIRST_DIGIT] = (MP_DIGIT(a, i) >> 9) | (MP_DIGIT(a, 1+i) << (MP_DIGIT_BIT-9)); } s1[i-FIRST_DIGIT] = MP_DIGIT(a, i) >> 9; if ( a != r ) { MP_CHECKOK(s_mp_pad(r,ECP521_DIGITS)); for (i = 0; i < ECP521_DIGITS; i++) { MP_DIGIT(r,i) = MP_DIGIT(a, i); } } MP_USED(r) = ECP521_DIGITS; MP_DIGIT(r,FIRST_DIGIT) &= 0x1FF; MP_CHECKOK(s_mp_add(r, &m1)); if (MP_DIGIT(r, FIRST_DIGIT) & 0x200) { MP_CHECKOK(s_mp_add_d(r,1)); MP_DIGIT(r,FIRST_DIGIT) &= 0x1FF; } s_mp_clamp(r); } CLEANUP: return res; } /* Compute the square of polynomial a, reduce modulo p521. Store the * result in r. r could be a. Uses optimized modular reduction for p521. */ mp_err ec_GFp_nistp521_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; MP_CHECKOK(mp_sqr(a, r)); MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth)); CLEANUP: return res; } /* Compute the product of two polynomials a and b, reduce modulo p521. * Store the result in r. r could be a or b; a could be b. Uses * optimized modular reduction for p521. */ mp_err ec_GFp_nistp521_mul(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; MP_CHECKOK(mp_mul(a, b, r)); MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth)); CLEANUP: return res; } /* Divides two field elements. If a is NULL, then returns the inverse of * b. */ mp_err ec_GFp_nistp521_div(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_int t; /* If a is NULL, then return the inverse of b, otherwise return a/b. */ if (a == NULL) { return mp_invmod(b, &meth->irr, r); } else { /* MPI doesn't support divmod, so we implement it using invmod and * mulmod. */ MP_CHECKOK(mp_init(&t, FLAG(b))); MP_CHECKOK(mp_invmod(b, &meth->irr, &t)); MP_CHECKOK(mp_mul(a, &t, r)); MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth)); CLEANUP: mp_clear(&t); return res; } } /* Wire in fast field arithmetic and precomputation of base point for * named curves. */ mp_err ec_group_set_gfp521(ECGroup *group, ECCurveName name) { if (name == ECCurve_NIST_P521) { group->meth->field_mod = &ec_GFp_nistp521_mod; group->meth->field_mul = &ec_GFp_nistp521_mul; group->meth->field_sqr = &ec_GFp_nistp521_sqr; group->meth->field_div = &ec_GFp_nistp521_div; } return MP_OKAY; } Other Java examples (source code examples)Here is a short list of links related to this Java ecp_521.c source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.