alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (HypotTests.java)

This example Java source code file (HypotTests.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

assertionerror, hypottests, n*n, nand, result, runtimeexception

The HypotTests.java Java example source code

/*
 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * @test
 * @bug 4851638 4939441
 * @summary Tests for {Math, StrictMath}.hypot
 * @author Joseph D. Darcy
 */

import sun.misc.DoubleConsts;
import sun.misc.FpUtils;

public class HypotTests {
    private HypotTests(){}

    static final double infinityD = Double.POSITIVE_INFINITY;
    static final double NaNd      = Double.NaN;

    /**
     * Given integers m and n, assuming m < n, the triple (n^2 - m^2,
     * 2mn, and n^2 + m^2) is a Pythagorean triple with a^2 + b^2 =
     * c^2.  This methods returns a long array holding the Pythagorean
     * triple corresponding to the inputs.
     */
    static long [] pythagoreanTriple(int m, int n) {
        long M = m;
        long N = n;
        long result[] = new long[3];


        result[0] = Math.abs(M*M - N*N);
        result[1] = Math.abs(2*M*N);
        result[2] = Math.abs(M*M + N*N);

        return result;
    }

    static int testHypot() {
        int failures = 0;

        double [][] testCases = {
            // Special cases
            {infinityD,         infinityD,              infinityD},
            {infinityD,         0.0,                    infinityD},
            {infinityD,         1.0,                    infinityD},
            {infinityD,         NaNd,                   infinityD},
            {NaNd,              NaNd,                   NaNd},
            {0.0,               NaNd,                   NaNd},
            {1.0,               NaNd,                   NaNd},
            {Double.longBitsToDouble(0x7FF0000000000001L),      1.0,    NaNd},
            {Double.longBitsToDouble(0xFFF0000000000001L),      1.0,    NaNd},
            {Double.longBitsToDouble(0x7FF8555555555555L),      1.0,    NaNd},
            {Double.longBitsToDouble(0xFFF8555555555555L),      1.0,    NaNd},
            {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),      1.0,    NaNd},
            {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),      1.0,    NaNd},
            {Double.longBitsToDouble(0x7FFDeadBeef00000L),      1.0,    NaNd},
            {Double.longBitsToDouble(0xFFFDeadBeef00000L),      1.0,    NaNd},
            {Double.longBitsToDouble(0x7FFCafeBabe00000L),      1.0,    NaNd},
            {Double.longBitsToDouble(0xFFFCafeBabe00000L),      1.0,    NaNd},
        };

        for(int i = 0; i < testCases.length; i++) {
            failures += testHypotCase(testCases[i][0], testCases[i][1],
                                      testCases[i][2]);
        }

        // Verify hypot(x, 0.0) is close to x over the entire exponent
        // range.
        for(int i = DoubleConsts.MIN_SUB_EXPONENT;
            i <= DoubleConsts.MAX_EXPONENT;
            i++) {
            double input = Math.scalb(2, i);
            failures += testHypotCase(input, 0.0, input);
        }


        // Test Pythagorean triples

        // Small ones
        for(int m = 1; m < 10; m++) {
            for(int n = m+1; n < 11; n++) {
                long [] result = pythagoreanTriple(m, n);
                failures += testHypotCase(result[0], result[1], result[2]);
            }
        }

        // Big ones
        for(int m = 100000; m < 100100; m++) {
            for(int n = m+100000; n < 200200; n++) {
                long [] result = pythagoreanTriple(m, n);
                failures += testHypotCase(result[0], result[1], result[2]);
            }
        }

        // Approaching overflow tests

        /*
         * Create a random value r with an large-ish exponent.  The
         * result of hypot(3*r, 4*r) should be approximately 5*r. (The
         * computation of 4*r is exact since it just changes the
         * exponent).  While the exponent of r is less than or equal
         * to (MAX_EXPONENT - 3), the computation should not overflow.
         */
        java.util.Random rand = new java.util.Random();
        for(int i = 0; i < 1000; i++) {
            double d = rand.nextDouble();
            // Scale d to have an exponent equal to MAX_EXPONENT -15
            d = Math.scalb(d, DoubleConsts.MAX_EXPONENT
                                 -15 - FpUtils.ilogb(d));
            for(int j = 0; j <= 13; j += 1) {
                failures += testHypotCase(3*d, 4*d, 5*d, 2.5);
                d *= 2.0; // increase exponent by 1
            }
        }

        // Test for monotonicity failures.  Fix one argument and test
        // two numbers before and two numbers after each chosen value;
        // i.e.
        //
        // pcNeighbors[] =
        // {nextDown(nextDown(pc)),
        // nextDown(pc),
        // pc,
        // nextUp(pc),
        // nextUp(nextUp(pc))}
        //
        // and we test that hypot(pcNeighbors[i]) <= hypot(pcNeighbors[i+1])
        {
            double pcNeighbors[] = new double[5];
            double pcNeighborsHypot[] = new double[5];
            double pcNeighborsStrictHypot[] = new double[5];


            for(int i = -18; i <= 18; i++) {
                double pc = Math.scalb(1.0, i);

                pcNeighbors[2] = pc;
                pcNeighbors[1] = Math.nextDown(pc);
                pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
                pcNeighbors[3] = Math.nextUp(pc);
                pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);

                for(int j = 0; j < pcNeighbors.length; j++) {
                    pcNeighborsHypot[j]       =       Math.hypot(2.0, pcNeighbors[j]);
                    pcNeighborsStrictHypot[j] = StrictMath.hypot(2.0, pcNeighbors[j]);
                }

                for(int j = 0; j < pcNeighborsHypot.length-1; j++) {
                    if(pcNeighborsHypot[j] >  pcNeighborsHypot[j+1] ) {
                        failures++;
                        System.err.println("Monotonicity failure for Math.hypot on " +
                                          pcNeighbors[j] + " and "  +
                                          pcNeighbors[j+1] + "\n\treturned " +
                                          pcNeighborsHypot[j] + " and " +
                                          pcNeighborsHypot[j+1] );
                    }

                    if(pcNeighborsStrictHypot[j] >  pcNeighborsStrictHypot[j+1] ) {
                        failures++;
                        System.err.println("Monotonicity failure for StrictMath.hypot on " +
                                          pcNeighbors[j] + " and "  +
                                          pcNeighbors[j+1] + "\n\treturned " +
                                          pcNeighborsStrictHypot[j] + " and " +
                                          pcNeighborsStrictHypot[j+1] );
                    }


                }

            }
        }


        return failures;
    }

    static int testHypotCase(double input1, double input2, double expected) {
        return testHypotCase(input1,input2, expected, 1);
    }

    static int testHypotCase(double input1, double input2, double expected,
                             double ulps) {
        int failures = 0;
        if (expected < 0.0) {
            throw new AssertionError("Result of hypot must be greater than " +
                                     "or equal to zero");
        }

        // Test Math and StrictMath methods with no inputs negated,
        // each input negated singly, and both inputs negated.  Also
        // test inputs in reversed order.

        for(int i = -1; i <= 1; i+=2) {
            for(int j = -1; j <= 1; j+=2) {
                double x = i * input1;
                double y = j * input2;
                failures += Tests.testUlpDiff("Math.hypot", x, y,
                                              Math.hypot(x, y), expected, ulps);
                failures += Tests.testUlpDiff("Math.hypot", y, x,
                                              Math.hypot(y, x ), expected, ulps);

                failures += Tests.testUlpDiff("StrictMath.hypot", x, y,
                                              StrictMath.hypot(x, y), expected, ulps);
                failures += Tests.testUlpDiff("StrictMath.hypot", y, x,
                                              StrictMath.hypot(y, x), expected, ulps);
            }
        }

        return failures;
    }

    public static void main(String argv[]) {
        int failures = 0;

        failures += testHypot();

        if (failures > 0) {
            System.err.println("Testing the hypot incurred "
                               + failures + " failures.");
            throw new RuntimeException();
        }
    }

}

Other Java examples (source code examples)

Here is a short list of links related to this Java HypotTests.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.