alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (PowTests.java)

This example Java source code file (PowTests.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

assertionerror, bad, convert, large, nan, nans, now, powtests, runtimeexception

The PowTests.java Java example source code

/*
 * Copyright (c) 2004, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * @test
 * @bug 4984407 5033578
 * @summary Tests for {Math, StrictMath}.pow
 * @author Joseph D. Darcy
 */

public class PowTests {
    private PowTests(){}

    static final double infinityD = Double.POSITIVE_INFINITY;

    static int testPowCase(double input1, double input2, double expected) {
        int failures = 0;
        failures += Tests.test("StrictMath.pow(double, double)", input1, input2,
                               StrictMath.pow(input1, input2), expected);
        failures += Tests.test("Math.pow(double, double)", input1, input2,
                               Math.pow(input1, input2), expected);
        return failures;
    }


    static int testStrictPowCase(double input1, double input2, double expected) {
        int failures = 0;
        failures += Tests.test("StrictMath.pow(double, double)", input1, input2,
                               StrictMath.pow(input1, input2), expected);
        return failures;
    }

    static int testNonstrictPowCase(double input1, double input2, double expected) {
        int failures = 0;
        failures += Tests.test("Math.pow(double, double)", input1, input2,
                               Math.pow(input1, input2), expected);
        return failures;
    }

    /*
     * Test for bad negation implementation.
     */
    static int testPow() {
        int failures = 0;

        double [][] testCases = {
            {-0.0,               3.0,   -0.0},
            {-0.0,               4.0,    0.0},
            {-infinityD,        -3.0,   -0.0},
            {-infinityD,        -4.0,    0.0},
        };

        for (double[] testCase : testCases) {
            failures+=testPowCase(testCase[0], testCase[1], testCase[2]);
        }

        return failures;
    }

    /*
     * Test cross-product of different kinds of arguments.
     */
    static int testCrossProduct() {
        int failures = 0;

        double testData[] = {
                                Double.NEGATIVE_INFINITY,
/* > -oo */                     -Double.MAX_VALUE,
/**/                            (double)Long.MIN_VALUE,
/**/                            (double) -((1L<<53)+2L),
/**/                            (double) -((1L<<53)),
/**/                            (double) -((1L<<53)-1L),
/**/                            -((double)Integer.MAX_VALUE + 4.0),
/**/                            (double)Integer.MIN_VALUE - 1.0,
/**/                            (double)Integer.MIN_VALUE,
/**/                            (double)Integer.MIN_VALUE + 1.0,
/**/                            -Math.PI,
/**/                            -3.0,
/**/                            -Math.E,
/**/                            -2.0,
/**/                            -1.0000000000000004,
/* < -1.0 */                    -1.0000000000000002, // nextAfter(-1.0, -oo)
                                -1.0,
/* > -1.0 */                    -0.9999999999999999, // nextAfter(-1.0, +oo)
/* > -1.0 */                    -0.9999999999999998,
/**/                            -0.5,
/**/                            -1.0/3.0,
/* < 0.0 */                     -Double.MIN_VALUE,
                                -0.0,
                                +0.0,
/* > 0.0 */                     +Double.MIN_VALUE,
/**/                            +1.0/3.0,
/**/                            +0.5,
/**/                            +0.9999999999999998,
/* < +1.0 */                    +0.9999999999999999, // nextAfter(-1.0, +oo)
                                +1.0,
/* > 1.0 */                     +1.0000000000000002, // nextAfter(+1.0, +oo)
/**/                            +1.0000000000000004,
/**/                            +2.0,
/**/                            +Math.E,
/**/                            +3.0,
/**/                            +Math.PI,
/**/                            -(double)Integer.MIN_VALUE - 1.0,
/**/                            -(double)Integer.MIN_VALUE,
/**/                            -(double)Integer.MIN_VALUE + 1.0,
/**/                            (double)Integer.MAX_VALUE + 4.0,
/**/                            (double) ((1L<<53)-1L),
/**/                            (double) ((1L<<53)),
/**/                            (double) ((1L<<53)+2L),
/**/                            -(double)Long.MIN_VALUE,
/* < oo */                      Double.MAX_VALUE,
                                Double.POSITIVE_INFINITY,
                                Double.NaN
    };

        double NaN = Double.NaN;
        for(double x: testData) {
            for(double y: testData) {
                boolean testPass = false;
                double expected=NaN;
                double actual;

                // First, switch on y
                if( Double.isNaN(y)) {
                    expected = NaN;
                } else if (y == 0.0) {
                    expected = 1.0;
                } else if (Double.isInfinite(y) ) {
                    if(y > 0) { // x ^ (+oo)
                        if (Math.abs(x) > 1.0) {
                            expected = Double.POSITIVE_INFINITY;
                        } else if (Math.abs(x) == 1.0) {
                            expected = NaN;
                        } else if (Math.abs(x) < 1.0) {
                            expected = +0.0;
                        } else { // x is NaN
                            assert Double.isNaN(x);
                            expected = NaN;
                        }
                    } else { // x ^ (-oo)
                        if (Math.abs(x) > 1.0) {
                            expected = +0.0;
                        } else if (Math.abs(x) == 1.0) {
                            expected = NaN;
                        } else if (Math.abs(x) < 1.0) {
                            expected = Double.POSITIVE_INFINITY;
                        } else { // x is NaN
                            assert Double.isNaN(x);
                            expected = NaN;
                        }
                    } /* end Double.isInfinite(y) */
                } else if (y == 1.0) {
                    expected = x;
                } else if (Double.isNaN(x)) { // Now start switching on x
                    assert y != 0.0;
                    expected = NaN;
                } else if (x == Double.NEGATIVE_INFINITY) {
                    expected = (y < 0.0) ? f2(y) :f1(y);
                } else if (x == Double.POSITIVE_INFINITY) {
                    expected = (y < 0.0) ? +0.0 : Double.POSITIVE_INFINITY;
                } else if (equivalent(x, +0.0)) {
                    assert y != 0.0;
                    expected = (y < 0.0) ? Double.POSITIVE_INFINITY: +0.0;
                } else if (equivalent(x, -0.0)) {
                    assert y != 0.0;
                    expected = (y < 0.0) ? f1(y): f2(y);
                } else if( x < 0.0) {
                    assert y != 0.0;
                    failures += testStrictPowCase(x, y, f3(x, y));
                    failures += testNonstrictPowCase(x, y, f3ns(x, y));
                    continue;
                } else {
                    // go to next iteration
                    expected = NaN;
                    continue;
                }

                failures += testPowCase(x, y, expected);
            } // y
        } // x
        return failures;
    }

    static boolean equivalent(double a, double b) {
        return Double.compare(a, b) == 0;
    }

    static double f1(double y) {
        return (intClassify(y) == 1)?
            Double.NEGATIVE_INFINITY:
            Double.POSITIVE_INFINITY;
    }


    static double f2(double y) {
        return (intClassify(y) == 1)?-0.0:0.0;
    }

    static double f3(double x, double y) {
        switch( intClassify(y) ) {
        case 0:
            return StrictMath.pow(Math.abs(x), y);
            // break;

        case 1:
            return -StrictMath.pow(Math.abs(x), y);
            // break;

        case -1:
            return Double.NaN;
            // break;

        default:
            throw new AssertionError("Bad classification.");
            // break;
        }
    }

    static double f3ns(double x, double y) {
        switch( intClassify(y) ) {
        case 0:
            return Math.pow(Math.abs(x), y);
            // break;

        case 1:
            return -Math.pow(Math.abs(x), y);
            // break;

        case -1:
            return Double.NaN;
            // break;

        default:
            throw new AssertionError("Bad classification.");
            // break;
        }
    }

    static boolean isFinite(double a) {
        return (0.0*a  == 0);
    }

    /**
     * Return classification of argument: -1 for non-integers, 0 for
     * even integers, 1 for odd integers.
     */
    static int intClassify(double a) {
        if(!isFinite(a) || // NaNs and infinities
           (a != Math.floor(a) )) { // only integers are fixed-points of floor
                return -1;
        }
        else {
            // Determine if argument is an odd or even integer.

            a = StrictMath.abs(a); // absolute value doesn't affect odd/even

            if(a+1.0 == a) { // a > maximum odd floating-point integer
                return 0; // Large integers are all even
            }
            else { // Convert double -> long and look at low-order bit
                long ell = (long)  a;
                return ((ell & 0x1L) == (long)1)?1:0;
            }
        }
    }

    public static void main(String [] argv) {
        int failures = 0;

        failures += testPow();
        failures += testCrossProduct();

        if (failures > 0) {
            System.err.println("Testing pow incurred "
                               + failures + " failures.");
            throw new RuntimeException();
        }
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java PowTests.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.