alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (FormatMicroBenchmark.java)

This example Java source code file (FormatMicroBenchmark.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

all_nines_bench, decimalformat, doit, fair_bench, fair_simple_bench, fractional_all_nines_bench, fractional_bench, integer_bench, max_range, nb_runs, small_integral_bench, string, text, tie_bench, util, verbose

The FormatMicroBenchmark.java Java example source code

/*
 * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * @test
 * @bug 7050528
 * @summary Set of micro-benchmarks testing throughput of java.text.DecimalFormat.format()
 * @author Olivier Lagneau
 * @run main FormatMicroBenchmark
 */

/* This is a set of micro-benchmarks testing throughput of java.text.DecimalFormat.format().
 * It never fails.
 *
 * Usage and arguments:
 *  - Run with no argument skips the whole benchmark and exits.
 *  - Run with "-help" as first argument calls the usage() method and exits.
 *  - Run with "-doit" runs the benchmark with summary details.
 *  - Run with "-verbose" provides additional details on the run.
 *
 * Example run :
 *   java -Xms500m -Xmx500m -XX:NewSize=400m FormatMicroBenchmark -doit -verbose
 *
 * Running with jtreg:
 *  The jtreg header "run" tag options+args must be changed to avoid skipping
 *  the execution. here is an example of run options:
 *  "main/othervm -Xms500m -Xmx500m -XX:NewSize=400m FormatMicroBenchmark -doit"
 *
 * Note:
 *  - Vm options -Xms, -Xmx, -XX:NewSize must be set correctly for
 *    getting reliable numbers. Otherwise GC activity may corrupt results.
 *    As of jdk80b48 using "-Xms500m -Xmx500m -XX:NewSize=400m" covers
 *    all cases.
 *  - Optionally using "-XX:+printGC" option provides information that
 *    helps checking any GC activity while benches are run.
 *
 * Vm Options:
 *  - Vm options to use (as of jdk80b48):
 *     fast-path case :     -Xms128m -Xmx128m -XX:NewSize=100m
 *     non fast-path case:  -Xms500m -Xmx500m -XX:NewSize=400m
 *    or use worst case (non fast-path above) with both types of algorithm.
 *
 *  - use -XX:+PrintGC to verify memory consumption of the benchmarks.
 *    (See "Checking Memory Consumption" below).
 *
 * Description:
 *
 *  Fast-path algorithm for format(double...)  call stack is very different  of
 *  the standard call stack. Where the  standard algorithm for formating double
 *  uses internal class sun.misc.FloatingDecimal and its dtoa(double) method to
 *  provide digits,  fast-path embeds its own  algorithm for  binary to decimal
 *  string conversion.
 *
 *  FloatingDecimal always converts completely  the passed double to  a string.
 *  Fast-path converts  only to the needed digits  since it follows constraints
 *  on both the pattern rule,  the  DecimalFormat instance properties, and  the
 *  passed double.
 *
 *  Micro benchmarks below measure  the throughput for formating double  values
 *  using NumberFormat.format(double)  call stack.  The  standard DecimalFormat
 *  call stack as well as the  fast-path algorithm implementation are sensitive
 *  to the nature of the passed double values regarding throughput performance.
 *
 *  These benchmarks are useful both  for measuring the global performance gain
 *  of fast-path and to check that any modification done on fast-path algorithm
 *  does not bring any regression in the performance boost of fast-path.
 *
 *  Note  that these benchmarks  will provide numbers  without any knowledge of
 *  the  implementation of DecimalFormat class. So  to check regression any run
 *  should be compared to another reference run with  a previous JDK, wether or
 *  not this previous reference JDK contains fast-path implementation.
 *
 *  The eight benchmarks below are dedicated to measure throughput on different
 *  kinds of double that all fall in the fast-path case (all in Integer range):
 *
 *  - Integer case : used double values are all "integer-like" (ex: -12345.0).
 *    This is the benchFormatInteger micro-benchmark.
 *
 *  - Fractional case : double values are "fractional" (ex: -0.12345).
 *    This is the benchFormatFractional micro-benchmark.
 *
 *  - Small integral case : like Integer case but double values are all limited
 *    in their magnitude, from -500.0 to 500.0 if the number of iterations N is
 *    set to 500000.
 *    This is the benchFormatSmallIntegral micro-benchmark.
 *
 *  - Fractional All Nines : doubles values have fractional part that is very
 *    close to "999" (decimal pattern), or "99" (currency pattern),
 *    or "0000...".
 *    This is the benchFormatFractionalAllNines micro-benchmark.
 *
 *  - All Nines : double values are such that both integral and fractional
 *    part consist only of '9' digits. None of these values are rounded up.
 *    This is the benchFormatAllNines micro-benchmark.
 *
 *  - Fair simple case : calling J the loop variable and iterating over
 *    the N number of iterations, used double values are computed as
 *    d = (double) J + J*seed
 *    where seed is a very small value that adds a fractional part and adds a
 *    small number to integral part. Provides fairly distributed double values.
 *    This is the benchFormatFairSimple micro-benchmark.
 *
 *  - Fair case : this is a combination of small integral case and fair simple
 *    case. Double values are limited in their magnitude but follow a parabolic
 *    curve y = x**2 / K, keeping large magnitude only for large values of J.
 *    The intent is trying to reproduce a distribution of double values as could
 *    be found in a business application, with most values in either the low
 *    range or the high range.
 *    This is the benchFormatFair micro-benchmark.
 *
 *  - Tie cases: values are very close to a tie case (iii...ii.fff5)
 *    That is the worst situation that can happen for Fast-path algorithm when
 *    considering throughput.
 *    This is the benchFormatTie micro-benchmark.
 *
 *  For  all  of  the micro-benchmarks,  the  throughput load   of the eventual
 *  additional computations inside the loop is calculated  prior to running the
 *  benchmark, and provided in the output.  That may be  useful since this load
 *  may vary for each architecture or machine configuration.
 *
 *  The "-verbose" flag,  when set, provides the  throughput  load numbers, the
 *  time spent for  each run of  a benchmark, as  well as an estimation  of the
 *  memory consumed  by the  runs.  Beware of  incremental  GCs, see  "Checking
 *  Memory  Consumption" section below. Every run   should be done with correct
 *  ms, mx, and NewSize vm options to get fully reliable numbers.
 *
 *  The output provides the  mean time needed for  a benchmark after the server
 *  jit compiler has done its optimization work if  any. Thus only the last but
 *  first three runs are taken into account in the time measurement (server jit
 *  compiler shows  to have  done full  optimization  in  most cases  after the
 *  second run, given a base number of iterations set to 500000).
 *
 *  The program cleans up memory (stabilizeMemory() method) between each run of
 *  the benchmarks to make sure that  no garbage collection activity happens in
 *  measurements. However that does not  preclude incremental GCs activity that
 *  may  happen during the micro-benchmark if  -Xms, -Xmx, and NewSize options
 *  have not been tuned and set correctly.
 *
 * Checking Memory Consumption:
 *
 *  For getting confidence  in the throughput numbers, there  must not give any
 *  GC activity during the benchmark runs. That  means that specific VM options
 *  related to memory must be tuned for any given implementation of the JDK.
 *
 *  Running with "-verbose" arguments will provide  clues of the memory consumed
 *  but  is   not enough,  since  any   unexpected  incremental  GC  may  lower
 *  artificially the estimation of the memory consumption.
 *
 *  Options to  set are -Xms, -Xmx,  -XX:NewSize, plus -XX:+PrintGC to evaluate
 *  correctly  the  values of  these options. When  running "-verbose", varying
 *  numbers reported for memory consumption may  indicate bad choices for these
 *  options.
 *
 *  For jdk80b25, fast-path shows a consuption of ~60Mbs for 500000 iterations
 *  while a jdk without fast-path will consume ~260Mbs for each benchmark run.
 *  Indeed these values will vary depending on the jdk used.
 *
 *  Correct option settings found jdk80b48 were :
 *     fast-path :     -Xms128m -Xmx128m -XX:NewSize=100m
 *     non fast-path : -Xms500m -Xmx500m -XX:NewSize=400m
 *  Greater values can be provided safely but not smaller ones.
 * ----------------------------------------------------------------------
 */

import java.util.*;
import java.text.NumberFormat;
import java.text.DecimalFormat;

public class FormatMicroBenchmark {

    // The number of times the bench method will be run (must be at least 4).
    private static final int NB_RUNS = 20;

    // The bench* methods below all iterates over [-MAX_RANGE , +MAX_RANGE] integer values.
    private static final int MAX_RANGE = 500000;

    // Flag for more details on each bench run (default is no).
    private static boolean Verbose = false;

    // Should we really execute the benches ? (no by default).
    private static boolean DoIt = false;

    // Prints out a message describing how to run the program.
    private static void usage() {
        System.out.println(
            "This is a set of micro-benchmarks testing throughput of " +
            "java.text.DecimalFormat.format(). It never fails.\n\n" +
            "Usage and arguments:\n" +
            " - Run with no argument skips the whole benchmark and exits.\n" +
            " - Run with \"-help\" as first argument prints this message and exits.\n" +
            " - Run with \"-doit\" runs the benchmark with summary details.\n" +
            " - Run with \"-verbose\" provides additional details on the run.\n\n" +
            "Example run :\n" +
            "   java -Xms500m -Xmx500m -XX:NewSize=400m FormatMicroBenchmark -doit -verbose\n\n" +
            "Note: \n" +
            " - Vm options -Xms, -Xmx, -XX:NewSize must be set correctly for \n" +
            "   getting reliable numbers. Otherwise GC activity may corrupt results.\n" +
            "   As of jdk80b48 using \"-Xms500m -Xmx500m -XX:NewSize=400m\" covers \n" +
            "   all cases.\n" +
            " - Optionally using \"-XX:+printGC\" option provides information that \n" +
            "   helps checking any GC activity while benches are run.\n\n" +
            "Look at the heading comments and description in source code for " +
            "detailed information.\n");
    }

    /* We will call stabilizeMemory before each call of benchFormat***().
     * This in turn tries to clean up as much memory as possible.
     * As a safe bound we limit number of System.gc() calls to 10,
     * but most of the time two calls to System.gc() will be enough.
     * If memory reporting is asked for, the method returns the difference
     * of free memory between entering an leaving the method.
     */
    private static long stabilizeMemory(boolean reportConsumedMemory) {
        final long oneMegabyte = 1024L * 1024L;

        long refMemory = 0;
        long initialMemoryLeft = Runtime.getRuntime().freeMemory();
        long currMemoryLeft = initialMemoryLeft;
        int nbGCCalls = 0;

        do {
            nbGCCalls++;

            refMemory = currMemoryLeft;
            System.gc();
            currMemoryLeft = Runtime.getRuntime().freeMemory();

        } while ((Math.abs(currMemoryLeft - refMemory) > oneMegabyte) &&
                 (nbGCCalls < 10));

        if (Verbose &&
            reportConsumedMemory)
            System.out.println("Memory consumed by previous run : " +
                               (currMemoryLeft - initialMemoryLeft)/oneMegabyte + "Mbs.");

        return currMemoryLeft;
    }


    // ---------- Integer only based bench --------------------
    private static final String INTEGER_BENCH = "benchFormatInteger";
    private static String benchFormatInteger(NumberFormat nf) {
        String str = "";
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++)
            str = nf.format((double) j);
        return str;
    }

    // This reproduces the throughput load added in benchFormatInteger
    static double integerThroughputLoad() {
        double d = 0.0d;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            d = (double) j;
        }
        return d;
    }

    // Runs integerThroughputLoad and calculate its mean load
    static void calculateIntegerThroughputLoad() {
        int nbRuns = NB_RUNS;
        long elapsedTime = 0;
        double foo;

        for (int i = 1; i <= nbRuns; i++) {

            long startTime = System.nanoTime();
            foo = integerThroughputLoad();
            long estimatedTime = System.nanoTime() - startTime;
            if (i > 3) elapsedTime += estimatedTime / 1000;
        }


        if (Verbose)
            System.out.println(
               "calculated throughput load for " + INTEGER_BENCH +
               " bench is = " + (elapsedTime / (nbRuns - 3)) + " microseconds");
    }

    // ---------- Fractional only based bench --------------------
    private static final String FRACTIONAL_BENCH = "benchFormatFractional";
    private static String benchFormatFractional(NumberFormat nf) {
        String str = "";
        double floatingN = 1.0d / (double) MAX_RANGE;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++)
            str = nf.format(floatingN * (double) j);
        return str;
    }

    // This reproduces the throughput load added in benchFormatFractional
    static double fractionalThroughputLoad() {
        double d = 0.0d;
        double floatingN = 1.0d / (double) MAX_RANGE;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            d = floatingN * (double) j;
        }
        return d;
    }

    // Runs fractionalThroughputLoad and calculate its mean load
    static void calculateFractionalThroughputLoad() {
        int nbRuns = NB_RUNS;
        long elapsedTime = 0;
        double foo;

        for (int i = 1; i <= nbRuns; i++) {

            long startTime = System.nanoTime();
            foo = fractionalThroughputLoad();
            long estimatedTime = System.nanoTime() - startTime;
            if (i > 3) elapsedTime += estimatedTime / 1000;
        }

        if (Verbose)
        System.out.println(
            "calculated throughput load for " + FRACTIONAL_BENCH +
            " bench is = " + (elapsedTime / (nbRuns - 3)) + " microseconds");
    }

    // ---------- An Small Integral bench --------------------
    //  that limits the magnitude of tested double values
    private static final String SMALL_INTEGRAL_BENCH = "benchFormatSmallIntegral";
    private static String benchFormatSmallIntegral(NumberFormat nf) {
        String str = "";
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++)
            str = nf.format(((double) j) / 1000.0d);
        return str;
    }

    // This reproduces the throughput load added in benchFormatSmallIntegral
    static double smallIntegralThroughputLoad() {
        double d = 0.0d;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            d = (double) j / 1000.0d;
        }
        return d;
    }

    // Runs small_integralThroughputLoad and calculate its mean load
    static void calculateSmallIntegralThroughputLoad() {
        int nbRuns = NB_RUNS;
        long elapsedTime = 0;
        double foo;

        for (int i = 1; i <= nbRuns; i++) {

            long startTime = System.nanoTime();
            foo = smallIntegralThroughputLoad();
            long estimatedTime = System.nanoTime() - startTime;
            if (i > 3) elapsedTime += estimatedTime / 1000;
        }

        if (Verbose)
        System.out.println(
            "calculated throughput load for " + SMALL_INTEGRAL_BENCH +
            " bench is = " + (elapsedTime / (nbRuns - 3)) + " microseconds");
    }

    // ---------- A fair and simple bench --------------------
    private static final String FAIR_SIMPLE_BENCH = "benchFormatFairSimple";
    private static String benchFormatFairSimple(NumberFormat nf, boolean isCurrency) {
        String str = "";
        double seed = isCurrency ?  0.0010203040506070809 : 0.00010203040506070809;
        double d = (double) -MAX_RANGE;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            d = d  + 1.0d + seed;
            str = nf.format(d);
        }
        return str;
    }

    // This reproduces the throughput load added in benchFormatFairSimple
    static double fairSimpleThroughputLoad() {
        double seed =  0.00010203040506070809;
        double delta = 0.0d;
        double d = (double) -MAX_RANGE;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            d = d + 1.0d + seed;
        }
        return d;
    }

    // Runs fairThroughputLoad and calculate its mean load
    static void calculateFairSimpleThroughputLoad() {
        int nbRuns = NB_RUNS;
        long elapsedTime = 0;
        double foo;

        for (int i = 1; i <= nbRuns; i++) {

            long startTime = System.nanoTime();
            foo = fairSimpleThroughputLoad();
            long estimatedTime = System.nanoTime() - startTime;
            if (i > 3) elapsedTime += estimatedTime / 1000;
        }

        if (Verbose)
        System.out.println(
            "calculated throughput load for " + FAIR_SIMPLE_BENCH +
            " bench is = " + (elapsedTime / (nbRuns - 3)) + " microseconds");
    }

    // ---------- Fractional part is only made of nines bench --------------
    private static final String FRACTIONAL_ALL_NINES_BENCH = "benchFormatFractionalAllNines";
    private static String benchFormatFractionalAllNines(NumberFormat nf, boolean isCurrency) {
        String str = "";
        double fractionalEven = isCurrency ?  0.993000001 : 0.99930000001;
        double fractionalOdd  = isCurrency ?  0.996000001 : 0.99960000001;
        double fractional;
        double d;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            if ((j & 1) == 0)
                fractional = fractionalEven;
            else
                fractional = fractionalOdd;
            if ( j >= 0)
                d = (double ) j + fractional;
            else d = (double) j - fractional;
            str = nf.format(d);
        }
        return str;
    }

    // This reproduces the throughput load added in benchFormatFractionalAllNines
    static double fractionalAllNinesThroughputLoad() {
        double fractionalEven = 0.99930000001;
        double fractionalOdd  = 0.99960000001;
        double fractional;
        double d = 0.0d;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            if ((j & 1) == 0)
                fractional = fractionalEven;
            else fractional = fractionalOdd;
            if ( j >= 0)
                d = (double ) j + fractional;
            else d = (double) j - fractional;
        }
        return d;
    }

    // Runs fractionalAllNinesThroughputLoad and calculate its mean load
    static void calculateFractionalAllNinesThroughputLoad() {
        int nbRuns = NB_RUNS;
        long elapsedTime = 0;
        double foo;

        for (int i = 1; i <= nbRuns; i++) {

            long startTime = System.nanoTime();
            foo = fractionalAllNinesThroughputLoad();
            long estimatedTime = System.nanoTime() - startTime;
            if (i > 3) elapsedTime += estimatedTime / 1000;
        }

        if (Verbose)
            System.out.println(
               "calculated throughput load for " + FRACTIONAL_ALL_NINES_BENCH +
               " bench is = " + (elapsedTime / (nbRuns - 3)) + " microseconds");
    }

    // ---------- Number is only made of nines bench --------------
    private static final String ALL_NINES_BENCH = "benchFormatAllNines";
    private static String benchFormatAllNines(NumberFormat nf, boolean isCurrency) {
        String str = "";
        double[] decimaAllNines =
            {9.9993, 99.9993, 999.9993, 9999.9993, 99999.9993,
             999999.9993, 9999999.9993, 99999999.9993, 999999999.9993};
        double[] currencyAllNines =
            {9.993, 99.993, 999.993, 9999.993, 99999.993,
             999999.993, 9999999.993, 99999999.993, 999999999.993};
        double[] valuesArray = (isCurrency) ? currencyAllNines : decimaAllNines;
        double seed = 1.0 / (double) MAX_RANGE;
        double d;
        int id;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            id = (j >=  0) ? j % 9 : -j % 9;
            if ((j & 1) == 0)
                d = valuesArray[id] + id * seed;
            else
                d = valuesArray[id] - id * seed;
            str = nf.format(d);
        }
        return str;
    }

    // This reproduces the throughput load added in benchFormatAllNines
    static double allNinesThroughputLoad() {
        double[] decimaAllNines =
            {9.9993, 99.9993, 999.9993, 9999.9993, 99999.9993,
             999999.9993, 9999999.9993, 99999999.9993, 999999999.9993};
        double[] valuesArray = decimaAllNines;
        double seed = 1.0 / (double) MAX_RANGE;
        double d = 0.0d;
        int id;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            id = (j >=  0) ? j % 9 : -j % 9;
            if ((j & 1) == 0)
                d = valuesArray[id] + id * seed;
            else
                d = valuesArray[id] - id * seed;
        }
        return d;
    }

    // Runs allNinesThroughputLoad and calculate its mean load
    static void calculateAllNinesThroughputLoad() {
        int nbRuns = NB_RUNS;
        long elapsedTime = 0;
        double foo;

        for (int i = 1; i <= nbRuns; i++) {

            long startTime = System.nanoTime();
            foo = allNinesThroughputLoad();
            long estimatedTime = System.nanoTime() - startTime;
            if (i > 3) elapsedTime += estimatedTime / 1000;
        }

        if (Verbose)
            System.out.println(
               "calculated throughput load for " + ALL_NINES_BENCH +
               " bench is = " + (elapsedTime / (nbRuns - 3)) + " microseconds");
    }



    // --- A fair bench trying (hopefully) to reproduce business applicatons  ---

    /*  benchFormatFair uses the following formula :
     *   y = F(x) = sign(x) * x**2 * ((1000/MAX_RANGE)**2).
     *
     *  which converts in the loop as (if j is the loop index) :
     *   x = double(j)
     *   k = 1000.0d * double(MAX_RANGE)
     *   y = sign(j) * x**2 * k**2
     *
     *  This is a flattened parabolic curve where only the j values
     *  in [-1000, 1000] will provide y results in [-1, +1] interval,
     *  and for abs(j) >= 1000 the result y will be greater than 1.
     *
     *  The difference with benchFormatSmallIntegral is that since y results
     *  follow a parabolic curve the magnitude of y grows much more rapidly
     *  and closer to j values when abs(j) >= 1000:
     *   - for |j| < 1000,  SmallIntegral(j) < 1.0 and fair(j) < 1.0
     *   - for j in [1000, 10000[
     *      SmallIntegral(j) is in [1, 10[
     *      Fair(j) is in [4, 400[
     *   - for j in [10000,100000[
     *      SmallIntegral(j) is in [10, 100[
     *      Fair(j) is in [400,40000[
     *   - for j in [100000,1000000[
     *      SmallIntegral(j) is in [100, 1000[
     *      Fair(j) is in [40000, 4000000[
     *
     *  Since double values for j less than 100000 provide only 4 digits in the
     *  integral, values greater than 250000 provide at least 6 digits, and 500000
     *  computes to 1000000, the distribution is roughly half with less than 5
     *  digits and half with at least 6 digits in the integral part.
     *
     *  Compared to FairSimple bench, this represents an application where 20% of
     *  the double values to format are less than 40000.0 absolute value.
     *
     *  Fair(j) is close to the magnitude of j when j > 100000 and is hopefully
     *  more representative of what may be found in general in business apps.
     *  (assumption : there will be mainly either small or large values, and
     *   less values in middle range).
     *
     *  We could get even more precise distribution of values using formula :
     *   y = sign(x) * abs(x)**n * ((1000 / MAX_RANGE)**n) where n > 2,
     *  or even well-known statistics function to fine target such distribution,
     *  but we have considred that the throughput load for calculating y would
     *  then be too high. We thus restrain the use of a power of 2 formula.
     */

    private static final String FAIR_BENCH = "benchFormatFair";
    private static String benchFormatFair(NumberFormat nf) {
        String str = "";
        double k = 1000.0d / (double) MAX_RANGE;
        k *= k;

        double d;
        double absj;
        double jPowerOf2;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            absj = (double) j;
            jPowerOf2 = absj * absj;
            d = k * jPowerOf2;
            if (j < 0) d = -d;
            str = nf.format(d);
        }
        return str;
    }

    // This is the exact throughput load added in benchFormatFair
    static double fairThroughputLoad() {
        double k = 1000.0d / (double) MAX_RANGE;
        k *= k;

        double d = 0.0d;
        double absj;
        double jPowerOf2;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            absj = (double) j;
            jPowerOf2 = absj * absj;
            d = k * jPowerOf2;
            if (j < 0) d = -d;
        }
        return d;
    }

    // Runs fairThroughputLoad and calculate its mean load
    static void calculateFairThroughputLoad() {
        int nbRuns = NB_RUNS;
        long elapsedTime = 0;
        double foo;

        for (int i = 1; i <= nbRuns; i++) {

            long startTime = System.nanoTime();
            foo = fairThroughputLoad();
            long estimatedTime = System.nanoTime() - startTime;
            if (i > 3) elapsedTime += estimatedTime / 1000;
        }

        if (Verbose)
            System.out.println(
               "calculated throughput load for " + FAIR_BENCH +
               " bench is = " + (elapsedTime / (nbRuns - 3)) + " microseconds");
    }

    // ---------- All double values are very close to a tie --------------------
    // i.e. like 123.1235 (for decimal case) or 123.125 (for currency case).

    private static final String TIE_BENCH = "benchFormatTie";
    private static String benchFormatTie(NumberFormat nf, boolean isCurrency) {
        double d;
        String str = "";
        double fractionaScaling = (isCurrency) ? 1000.0d : 10000.0d;
        int fixedFractionalPart = (isCurrency) ? 125 : 1235;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            d = (((double) j * fractionaScaling) +
                 (double) fixedFractionalPart) / fractionaScaling;
            str = nf.format(d);
        }
        return str;
    }

    // This is the exact throughput load added in benchFormatTie
    static double tieThroughputLoad(boolean isCurrency) {
        double d = 0.0d;
        double fractionaScaling = (isCurrency) ? 1000.0d : 10000.0d;
        int fixedFractionalPart = (isCurrency) ? 125 : 1235;
        for (int j = - MAX_RANGE; j <= MAX_RANGE; j++) {
            d = (((double) j * fractionaScaling) +
                 (double) fixedFractionalPart) / fractionaScaling;
        }
        return d;
    }

    // Runs tieThroughputLoad and calculate its mean load
    static void calculateTieThroughputLoad(boolean isCurrency) {
        int nbRuns = NB_RUNS;
        long elapsedTime = 0;
        double foo;

        for (int i = 1; i <= nbRuns; i++) {

            long startTime = System.nanoTime();
            foo = tieThroughputLoad(isCurrency);
            long estimatedTime = System.nanoTime() - startTime;
            if (i > 3) elapsedTime += estimatedTime / 1000;
        }

        if (Verbose)
            System.out.println(
               "calculated throughput load for " + TIE_BENCH +
               " bench is = " + (elapsedTime / (nbRuns - 3)) + " microseconds");
    }


    // Print statistics for passed times results of benchName.
    static void printPerfResults(long[] times, String benchName) {
        int nbBenches = times.length;

        long totalTimeSpent = 0;
        long meanTimeSpent;

        double variance = 0;
        double standardDeviation = 0;

        // Calculates mean spent time
        for (int i = 1; i <= nbBenches; i++)
            totalTimeSpent += times[i-1];
        meanTimeSpent = totalTimeSpent / nbBenches;

        // Calculates standard deviation
        for (int j = 1; j <= nbBenches; j++)
            variance += Math.pow(((double)times[j-1] - (double)meanTimeSpent), 2);
        variance = variance / (double) times.length;
        standardDeviation = Math.sqrt(variance) / meanTimeSpent;

        // Print result and statistics for benchName
        System.out.println(
           "Statistics (starting at 4th bench) for bench " + benchName +
           "\n for last " + nbBenches +
           " runs out of " + NB_RUNS +
           " , each with 2x" + MAX_RANGE + " format(double) calls : " +
           "\n  mean exec time = " + meanTimeSpent + " microseconds" +
           "\n  standard deviation = " + String.format("%.3f", standardDeviation) + "% \n");
    }

    public static void main(String[] args) {

        if (args.length >= 1) {
            // Parse args, just checks expected ones. Ignore others or dups.
            if (args[0].equals("-help")) {
                usage();
                return;
            }

            for (String s : args) {
                if (s.equals("-doit"))
                    DoIt = true;
                else if (s.equals("-verbose"))
                    Verbose = true;
            }
        } else {
            // No arguments, skips the benchmarks and exits.
            System.out.println(
                "Test skipped with success by default. See -help for details.");
            return;
        }

        if (!DoIt) {
            if (Verbose)
                usage();
            System.out.println(
                "Test skipped and considered successful.");
            return;
        }

        System.out.println("Single Threaded micro benchmark evaluating " +
                           "the throughput of java.text.DecimalFormat.format() call stack.\n");

        String fooString = "";

        // Run benches for decimal instance
        DecimalFormat df = (DecimalFormat) NumberFormat.getInstance(Locale.US);
        System.out.println("Running with a decimal instance of DecimalFormat.");

        calculateIntegerThroughputLoad();
        fooString =
            BenchType.INTEGER_BENCH.runBenchAndPrintStatistics(NB_RUNS, df, false);

        calculateFractionalThroughputLoad();
        fooString =
            BenchType.FRACTIONAL_BENCH.runBenchAndPrintStatistics(NB_RUNS, df, false);

        calculateSmallIntegralThroughputLoad();
        fooString =
            BenchType.SMALL_INTEGRAL_BENCH.runBenchAndPrintStatistics(NB_RUNS, df, false);

        calculateFractionalAllNinesThroughputLoad();
        fooString =
            BenchType.FRACTIONAL_ALL_NINES_BENCH.runBenchAndPrintStatistics(NB_RUNS, df, false);

        calculateAllNinesThroughputLoad();
        fooString =
            BenchType.ALL_NINES_BENCH.runBenchAndPrintStatistics(NB_RUNS, df, false);

        calculateFairSimpleThroughputLoad();
        fooString =
            BenchType.FAIR_SIMPLE_BENCH.runBenchAndPrintStatistics(NB_RUNS, df, false);

        calculateFairThroughputLoad();
        fooString =
            BenchType.FAIR_BENCH.runBenchAndPrintStatistics(NB_RUNS, df, false);

        calculateTieThroughputLoad(false);
        fooString =
            BenchType.TIE_BENCH.runBenchAndPrintStatistics(NB_RUNS, df, false);

        // Run benches for currency instance
        DecimalFormat cf = (DecimalFormat) NumberFormat.getCurrencyInstance(Locale.US);
        System.out.println("Running with a currency instance of DecimalFormat.");

        calculateIntegerThroughputLoad();
        fooString =
            BenchType.INTEGER_BENCH.runBenchAndPrintStatistics(NB_RUNS, cf, false);

        calculateFractionalThroughputLoad();
        fooString =
            BenchType.FRACTIONAL_BENCH.runBenchAndPrintStatistics(NB_RUNS, cf, false);

        calculateSmallIntegralThroughputLoad();
        fooString =
            BenchType.SMALL_INTEGRAL_BENCH.runBenchAndPrintStatistics(NB_RUNS, cf, false);

        calculateFractionalAllNinesThroughputLoad();
        fooString =
            BenchType.FRACTIONAL_ALL_NINES_BENCH.runBenchAndPrintStatistics(NB_RUNS, cf, false);

        calculateAllNinesThroughputLoad();
        fooString =
            BenchType.ALL_NINES_BENCH.runBenchAndPrintStatistics(NB_RUNS, cf, false);

        calculateFairSimpleThroughputLoad();
        fooString =
            BenchType.FAIR_SIMPLE_BENCH.runBenchAndPrintStatistics(NB_RUNS, cf, false);

        calculateFairThroughputLoad();
        fooString =
            BenchType.FAIR_BENCH.runBenchAndPrintStatistics(NB_RUNS, cf, false);

        calculateTieThroughputLoad(false);
        fooString =
            BenchType.TIE_BENCH.runBenchAndPrintStatistics(NB_RUNS, cf, false);

    }

    // This class to factorise what would be duplicated otherwise.
    static enum BenchType {

        INTEGER_BENCH("benchFormatInteger"),
        FRACTIONAL_BENCH("benchFormatFractional"),
        SMALL_INTEGRAL_BENCH("benchFormatSmallIntegral"),
        FAIR_SIMPLE_BENCH("benchFormatFairSimple"),
        FRACTIONAL_ALL_NINES_BENCH("benchFormatFractionalAllNines"),
        ALL_NINES_BENCH("benchFormatAllNines"),
        FAIR_BENCH("benchFormatFair"),
        TIE_BENCH("benchFormatTie");

        private final String name;

        BenchType(String name) {
            this.name = name;
        }

        String runBenchAndPrintStatistics(int nbRuns,
                         NumberFormat nf,
                         boolean isCurrency) {

            // We eliminate the first 3 runs in the time measurements
            // to let C2 do complete compilation and optimization work.
            long[] elapsedTimes = new long[nbRuns - 3];

            System.out.println("Now running " + nbRuns + " times bench " + name);

            String str = "";
            for (int i = 1; i <= nbRuns; i++) {

                stabilizeMemory(false);
                long startTime = System.nanoTime();

                switch(this) {
                case INTEGER_BENCH :
                    str = benchFormatInteger(nf);
                    break;
                case FRACTIONAL_BENCH :
                    str = benchFormatFractional(nf);
                    break;
                case SMALL_INTEGRAL_BENCH :
                    str = benchFormatSmallIntegral(nf);
                    break;
                case FRACTIONAL_ALL_NINES_BENCH :
                    str = benchFormatFractionalAllNines(nf, isCurrency);
                    break;
                case ALL_NINES_BENCH :
                    str = benchFormatAllNines(nf, isCurrency);
                    break;
                case FAIR_SIMPLE_BENCH :
                    str = benchFormatFairSimple(nf, isCurrency);
                    break;
                case FAIR_BENCH :
                    str = benchFormatFair(nf);
                    break;
                case TIE_BENCH :
                    str = benchFormatTie(nf, isCurrency);
                    break;

                default:
                }


                long estimatedTime = System.nanoTime() - startTime;
                if (i > 3)
                    elapsedTimes[i-4] = estimatedTime / 1000;

                if (Verbose)
                    System.out.println(
                                       "calculated time for " + name +
                                       " bench " + i + " is = " +
                                       (estimatedTime / 1000) + " microseconds");
                else System.out.print(".");

                stabilizeMemory(true);
            }

            System.out.println(name + " Done.");

            printPerfResults(elapsedTimes, name);

            return str;
        }
    }

}

Other Java examples (source code examples)

Here is a short list of links related to this Java FormatMicroBenchmark.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.