alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (MethodEmitter.java)

This example Java source code file (MethodEmitter.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

arraytype, bitwisetype, class, debug, handle, label, large_string_threshold, linkerbootstrap, methodemitter, numerictype, object, reflection, string, symbol, type, util

The MethodEmitter.java Java example source code

/*
 * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package jdk.nashorn.internal.codegen;

import static jdk.internal.org.objectweb.asm.Opcodes.ATHROW;
import static jdk.internal.org.objectweb.asm.Opcodes.CHECKCAST;
import static jdk.internal.org.objectweb.asm.Opcodes.DUP2;
import static jdk.internal.org.objectweb.asm.Opcodes.GETFIELD;
import static jdk.internal.org.objectweb.asm.Opcodes.GETSTATIC;
import static jdk.internal.org.objectweb.asm.Opcodes.GOTO;
import static jdk.internal.org.objectweb.asm.Opcodes.H_INVOKESTATIC;
import static jdk.internal.org.objectweb.asm.Opcodes.IFEQ;
import static jdk.internal.org.objectweb.asm.Opcodes.IFGE;
import static jdk.internal.org.objectweb.asm.Opcodes.IFGT;
import static jdk.internal.org.objectweb.asm.Opcodes.IFLE;
import static jdk.internal.org.objectweb.asm.Opcodes.IFLT;
import static jdk.internal.org.objectweb.asm.Opcodes.IFNE;
import static jdk.internal.org.objectweb.asm.Opcodes.IFNONNULL;
import static jdk.internal.org.objectweb.asm.Opcodes.IFNULL;
import static jdk.internal.org.objectweb.asm.Opcodes.IF_ACMPEQ;
import static jdk.internal.org.objectweb.asm.Opcodes.IF_ACMPNE;
import static jdk.internal.org.objectweb.asm.Opcodes.IF_ICMPEQ;
import static jdk.internal.org.objectweb.asm.Opcodes.IF_ICMPNE;
import static jdk.internal.org.objectweb.asm.Opcodes.INSTANCEOF;
import static jdk.internal.org.objectweb.asm.Opcodes.INVOKEINTERFACE;
import static jdk.internal.org.objectweb.asm.Opcodes.INVOKESPECIAL;
import static jdk.internal.org.objectweb.asm.Opcodes.INVOKESTATIC;
import static jdk.internal.org.objectweb.asm.Opcodes.INVOKEVIRTUAL;
import static jdk.internal.org.objectweb.asm.Opcodes.NEW;
import static jdk.internal.org.objectweb.asm.Opcodes.PUTFIELD;
import static jdk.internal.org.objectweb.asm.Opcodes.PUTSTATIC;
import static jdk.internal.org.objectweb.asm.Opcodes.RETURN;
import static jdk.nashorn.internal.codegen.CompilerConstants.ARGUMENTS;
import static jdk.nashorn.internal.codegen.CompilerConstants.CONSTANTS;
import static jdk.nashorn.internal.codegen.CompilerConstants.SCOPE;
import static jdk.nashorn.internal.codegen.CompilerConstants.THIS;
import static jdk.nashorn.internal.codegen.CompilerConstants.THIS_DEBUGGER;
import static jdk.nashorn.internal.codegen.CompilerConstants.VARARGS;
import static jdk.nashorn.internal.codegen.CompilerConstants.className;
import static jdk.nashorn.internal.codegen.CompilerConstants.constructorNoLookup;
import static jdk.nashorn.internal.codegen.CompilerConstants.methodDescriptor;
import static jdk.nashorn.internal.codegen.CompilerConstants.staticField;
import static jdk.nashorn.internal.codegen.CompilerConstants.virtualCallNoLookup;

import java.io.PrintStream;
import java.lang.reflect.Array;
import java.util.EnumSet;
import java.util.List;
import jdk.internal.dynalink.support.NameCodec;
import jdk.internal.org.objectweb.asm.Handle;
import jdk.internal.org.objectweb.asm.MethodVisitor;
import jdk.nashorn.internal.codegen.ClassEmitter.Flag;
import jdk.nashorn.internal.codegen.CompilerConstants.Call;
import jdk.nashorn.internal.codegen.CompilerConstants.FieldAccess;
import jdk.nashorn.internal.codegen.types.ArrayType;
import jdk.nashorn.internal.codegen.types.BitwiseType;
import jdk.nashorn.internal.codegen.types.NumericType;
import jdk.nashorn.internal.codegen.types.Type;
import jdk.nashorn.internal.ir.FunctionNode;
import jdk.nashorn.internal.ir.IdentNode;
import jdk.nashorn.internal.ir.LexicalContext;
import jdk.nashorn.internal.ir.LiteralNode;
import jdk.nashorn.internal.ir.RuntimeNode;
import jdk.nashorn.internal.ir.Symbol;
import jdk.nashorn.internal.runtime.ArgumentSetter;
import jdk.nashorn.internal.runtime.Debug;
import jdk.nashorn.internal.runtime.DebugLogger;
import jdk.nashorn.internal.runtime.JSType;
import jdk.nashorn.internal.runtime.ScriptEnvironment;
import jdk.nashorn.internal.runtime.ScriptObject;
import jdk.nashorn.internal.runtime.linker.Bootstrap;
import jdk.nashorn.internal.runtime.options.Options;

/**
 * This is the main function responsible for emitting method code
 * in a class. It maintains a type stack and keeps track of control
 * flow to make sure that the registered instructions don't violate
 * byte code verification.
 *
 * Running Nashorn with -ea will assert as soon as a type stack
 * becomes corrupt, for easier debugging
 *
 * Running Nashorn with -Dnashorn.codegen.debug=true will print
 * all generated bytecode and labels to stderr, for easier debugging,
 * including bytecode stack contents
 */
public class MethodEmitter implements Emitter {
    /** The ASM MethodVisitor we are plugged into */
    private final MethodVisitor method;

    /** Current type stack for current evaluation */
    private Label.Stack stack;

    /** Parent classEmitter representing the class of this method */
    private final ClassEmitter classEmitter;

    /** FunctionNode representing this method, or null if none exists */
    protected FunctionNode functionNode;

    /** Check whether this emitter ever has a function return point */
    private boolean hasReturn;

    /** The script environment */
    private final ScriptEnvironment env;

    /** Threshold in chars for when string constants should be split */
    static final int LARGE_STRING_THRESHOLD = 32 * 1024;

    /** Debug flag, should we dump all generated bytecode along with stacks? */
    private static final DebugLogger LOG   = new DebugLogger("codegen", "nashorn.codegen.debug");
    private static final boolean     DEBUG = LOG.isEnabled();

    /** dump stack on a particular line, or -1 if disabled */
    private static final int DEBUG_TRACE_LINE;

    static {
        final String tl = Options.getStringProperty("nashorn.codegen.debug.trace", "-1");
        int line = -1;
        try {
            line = Integer.parseInt(tl);
        } catch (final NumberFormatException e) {
            //fallthru
        }
        DEBUG_TRACE_LINE = line;
    }

    /** Bootstrap for normal indy:s */
    private static final Handle LINKERBOOTSTRAP  = new Handle(H_INVOKESTATIC, Bootstrap.BOOTSTRAP.className(), Bootstrap.BOOTSTRAP.name(), Bootstrap.BOOTSTRAP.descriptor());

    /** Bootstrap for runtime node indy:s */
    private static final Handle RUNTIMEBOOTSTRAP = new Handle(H_INVOKESTATIC, RuntimeCallSite.BOOTSTRAP.className(), RuntimeCallSite.BOOTSTRAP.name(), RuntimeCallSite.BOOTSTRAP.descriptor());

    /**
     * Constructor - internal use from ClassEmitter only
     * @see ClassEmitter#method
     *
     * @param classEmitter the class emitter weaving the class this method is in
     * @param method       a method visitor
     */
    MethodEmitter(final ClassEmitter classEmitter, final MethodVisitor method) {
        this(classEmitter, method, null);
    }

    /**
     * Constructor - internal use from ClassEmitter only
     * @see ClassEmitter#method
     *
     * @param classEmitter the class emitter weaving the class this method is in
     * @param method       a method visitor
     * @param functionNode a function node representing this method
     */
    MethodEmitter(final ClassEmitter classEmitter, final MethodVisitor method, final FunctionNode functionNode) {
        this.env          = classEmitter.getEnv();
        this.classEmitter = classEmitter;
        this.method       = method;
        this.functionNode = functionNode;
        this.stack        = null;
    }

    /**
     * Begin a method
     * @see Emitter
     */
    @Override
    public void begin() {
        classEmitter.beginMethod(this);
        newStack();
        method.visitCode();
    }

    /**
     * End a method
     * @see Emitter
     */
    @Override
    public void end() {
        method.visitMaxs(0, 0);
        method.visitEnd();

        classEmitter.endMethod(this);
    }

    private void newStack() {
        stack = new Label.Stack();
    }

    @Override
    public String toString() {
        return "methodEmitter: " + (functionNode == null ? method : functionNode.getName()).toString() + ' ' + Debug.id(this);
    }

    /**
     * Push a type to the existing stack
     * @param type the type
     */
    private void pushType(final Type type) {
        if (type != null) {
            stack.push(type);
        }
    }

    /**
     * Pop a type from the existing stack
     *
     * @param expected expected type - will assert if wrong
     *
     * @return the type that was retrieved
     */
    private Type popType(final Type expected) {
        final Type type = stack.pop();
        assert type.isObject() && expected.isObject() ||
            type.isEquivalentTo(expected) : type + " is not compatible with " + expected;
        return type;
    }

    /**
     * Pop a type from the existing stack, no matter what it is.
     *
     * @return the type
     */
    private Type popType() {
        return stack.pop();
    }

    /**
     * Pop a type from the existing stack, ensuring that it is numeric,
     * assert if not
     *
     * @return the type
     */
    private NumericType popNumeric() {
        final Type type = stack.pop();
        assert type.isNumeric() : type + " is not numeric";
        return (NumericType)type;
    }

    /**
     * Pop a type from the existing stack, ensuring that it is an integer type
     * (integer or long), assert if not
     *
     * @return the type
     */
    private BitwiseType popInteger() {
        final Type type = stack.pop();
        assert type.isInteger() || type.isLong() : type + " is not an integer or long";
        return (BitwiseType)type;
    }

    /**
     * Pop a type from the existing stack, ensuring that it is an array type,
     * assert if not
     *
     * @return the type
     */
    private ArrayType popArray() {
        final Type type = stack.pop();
        assert type.isArray() : type;
        return (ArrayType)type;
    }

    /**
     * Peek a given number of slots from the top of the stack and return the
     * type in that slot
     *
     * @param pos the number of positions from the top, 0 is the top element
     *
     * @return the type at position "pos" on the stack
     */
    final Type peekType(final int pos) {
        return stack.peek(pos);
    }

    /**
     * Peek at the type at the top of the stack
     *
     * @return the type at the top of the stack
     */
    final Type peekType() {
        return stack.peek();
    }

    /**
     * Generate code a for instantiating a new object and push the
     * object type on the stack
     *
     * @param classDescriptor class descriptor for the object type
     *
     * @return the method emitter
     */
    MethodEmitter _new(final String classDescriptor) {
        debug("new", classDescriptor);
        method.visitTypeInsn(NEW, classDescriptor);
        pushType(Type.OBJECT);
        return this;
    }

    /**
     * Generate code a for instantiating a new object and push the
     * object type on the stack
     *
     * @param clazz class type to instatiate
     *
     * @return the method emitter
     */
    MethodEmitter _new(final Class<?> clazz) {
        return _new(className(clazz));
    }

    /**
     * Generate code to call the empty constructor for a class
     *
     * @param clazz class type to instatiate
     *
     * @return the method emitter
     */
    MethodEmitter newInstance(final Class<?> clazz) {
        return invoke(constructorNoLookup(clazz));
    }

    /**
     * Perform a dup, that is, duplicate the top element and
     * push the duplicate down a given number of positions
     * on the stack. This is totally type agnostic.
     *
     * @param depth the depth on which to put the copy
     *
     * @return the method emitter, or null if depth is illegal and
     *  has no instruction equivalent.
     */
    MethodEmitter dup(final int depth) {
        if (peekType().dup(method, depth) == null) {
            return null;
        }

        debug("dup", depth);

        switch (depth) {
        case 0:
            pushType(peekType());
            break;
        case 1: {
            final Type p0 = popType();
            final Type p1 = popType();
            pushType(p0);
            pushType(p1);
            pushType(p0);
            break;
        }
        case 2: {
            final Type p0 = popType();
            final Type p1 = popType();
            final Type p2 = popType();
            pushType(p0);
            pushType(p2);
            pushType(p1);
            pushType(p0);
            break;
        }
        default:
            assert false : "illegal dup depth = " + depth;
            return null;
        }

        return this;
    }

    /**
     * Perform a dup2, that is, duplicate the top element if it
     * is a category 2 type, or two top elements if they are category
     * 1 types, and push them on top of the stack
     *
     * @return the method emitter
     */
    MethodEmitter dup2() {
        debug("dup2");

        if (peekType().isCategory2()) {
            pushType(peekType());
        } else {
            final Type type = get2();
            pushType(type);
            pushType(type);
            pushType(type);
            pushType(type);
        }
        method.visitInsn(DUP2);
        return this;
    }

    /**
     * Duplicate the top element on the stack and push it
     *
     * @return the method emitter
     */
    MethodEmitter dup() {
        return dup(0);
    }

    /**
     * Pop the top element of the stack and throw it away
     *
     * @return the method emitter
     */
    MethodEmitter pop() {
        debug("pop", peekType());
        popType().pop(method);
        return this;
    }

    /**
     * Pop the top element of the stack if category 2 type, or the two
     * top elements of the stack if category 1 types
     *
     * @return the method emitter
     */
    MethodEmitter pop2() {
        if (peekType().isCategory2()) {
            popType();
        } else {
            get2n();
        }
        return this;
    }

    /**
     * Swap the top two elements of the stack. This is totally
     * type agnostic and works for all types
     *
     * @return the method emitter
     */
    MethodEmitter swap() {
        debug("swap");

        final Type p0 = popType();
        final Type p1 = popType();
        p0.swap(method, p1);

        pushType(p0);
        pushType(p1);
        debug("after ", p0, p1);
        return this;
    }

    /**
     * Add a local variable. This is a nop if the symbol has no slot
     *
     * @param symbol symbol for the local variable
     * @param start  start of scope
     * @param end    end of scope
     */
    void localVariable(final Symbol symbol, final Label start, final Label end) {
        if (!symbol.hasSlot()) {
            return;
        }

        String name = symbol.getName();

        if (name.equals(THIS.symbolName())) {
            name = THIS_DEBUGGER.symbolName();
        }

        method.visitLocalVariable(name, symbol.getSymbolType().getDescriptor(), null, start.getLabel(), end.getLabel(), symbol.getSlot());
    }

    /**
     * Create a new string builder, call the constructor and push the instance to the stack.
     *
     * @return the method emitter
     */
    MethodEmitter newStringBuilder() {
        return invoke(constructorNoLookup(StringBuilder.class)).dup();
    }

    /**
     * Pop a string and a StringBuilder from the top of the stack and call the append
     * function of the StringBuilder, appending the string. Pushes the StringBuilder to
     * the stack when finished.
     *
     * @return the method emitter
     */
    MethodEmitter stringBuilderAppend() {
        convert(Type.STRING);
        return invoke(virtualCallNoLookup(StringBuilder.class, "append", StringBuilder.class, String.class));
    }

    /**
     * Pops two integer types from the stack, performs a bitwise and and pushes
     * the result
     *
     * @return the method emitter
     */
    MethodEmitter and() {
        debug("and");
        pushType(get2i().and(method));
        return this;
    }

    /**
     * Pops two integer types from the stack, performs a bitwise or and pushes
     * the result
     *
     * @return the method emitter
     */
    MethodEmitter or() {
        debug("or");
        pushType(get2i().or(method));
        return this;
    }

    /**
     * Pops two integer types from the stack, performs a bitwise xor and pushes
     * the result
     *
     * @return the method emitter
     */
    MethodEmitter xor() {
        debug("xor");
        pushType(get2i().xor(method));
        return this;
    }

    /**
     * Pops two integer types from the stack, performs a bitwise logic shift right and pushes
     * the result. The shift count, the first element, must be INT.
     *
     * @return the method emitter
     */
    MethodEmitter shr() {
        debug("shr");
        popType(Type.INT);
        pushType(popInteger().shr(method));
        return this;
    }

    /**
     * Pops two integer types from the stack, performs a bitwise shift left and and pushes
     * the result. The shift count, the first element, must be INT.
     *
     * @return the method emitter
     */
    MethodEmitter shl() {
        debug("shl");
        popType(Type.INT);
        pushType(popInteger().shl(method));
        return this;
    }

    /**
     * Pops two integer types from the stack, performs a bitwise arithetic shift right and pushes
     * the result. The shift count, the first element, must be INT.
     *
     * @return the method emitter
     */
    MethodEmitter sar() {
        debug("sar");
        popType(Type.INT);
        pushType(popInteger().sar(method));
        return this;
    }

    /**
     * Pops a numeric type from the stack, negates it and pushes the result
     *
     * @return the method emitter
     */
    MethodEmitter neg() {
        debug("neg");
        pushType(popNumeric().neg(method));
        return this;
    }

    /**
     * Add label for the start of a catch block and push the exception to the
     * stack
     *
     * @param recovery label pointing to start of catch block
     */
    void _catch(final Label recovery) {
        stack.clear();
        stack.push(Type.OBJECT);
        label(recovery);
    }

    /**
     * Start a try/catch block.
     *
     * @param entry          start label for try
     * @param exit           end label for try
     * @param recovery       start label for catch
     * @param typeDescriptor type descriptor for exception
     */
    void _try(final Label entry, final Label exit, final Label recovery, final String typeDescriptor) {
        method.visitTryCatchBlock(entry.getLabel(), exit.getLabel(), recovery.getLabel(), typeDescriptor);
    }

    /**
     * Start a try/catch block.
     *
     * @param entry    start label for try
     * @param exit     end label for try
     * @param recovery start label for catch
     * @param clazz    exception class
     */
    void _try(final Label entry, final Label exit, final Label recovery, final Class<?> clazz) {
        method.visitTryCatchBlock(entry.getLabel(), exit.getLabel(), recovery.getLabel(), CompilerConstants.className(clazz));
    }

    /**
     * Start a try/catch block. The catch is "Throwable" - i.e. catch-all
     *
     * @param entry    start label for try
     * @param exit     end label for try
     * @param recovery start label for catch
     */
    void _try(final Label entry, final Label exit, final Label recovery) {
        _try(entry, exit, recovery, (String)null);
    }


    /**
     * Load the constants array
     * @return this method emitter
     */
    MethodEmitter loadConstants() {
        getStatic(classEmitter.getUnitClassName(), CONSTANTS.symbolName(), CONSTANTS.descriptor());
        assert peekType().isArray() : peekType();
        return this;
    }

    /**
     * Push the undefined value for the given type, i.e.
     * UNDEFINED or UNDEFINEDNUMBER. Currently we have no way of
     * representing UNDEFINED for INTs and LONGs, so they are not
     * allowed to be local variables (yet)
     *
     * @param type the type for which to push UNDEFINED
     * @return the method emitter
     */
    MethodEmitter loadUndefined(final Type type) {
        debug("load undefined ", type);
        pushType(type.loadUndefined(method));
        return this;
    }

    /**
     * Push the empty value for the given type, i.e. EMPTY.
     *
     * @param type the type
     * @return the method emitter
     */
    MethodEmitter loadEmpty(final Type type) {
        debug("load empty ", type);
        pushType(type.loadEmpty(method));
        return this;
    }

    /**
     * Push null to stack
     *
     * @return the method emitter
     */
    MethodEmitter loadNull() {
        debug("aconst_null");
        pushType(Type.OBJECT.ldc(method, null));
        return this;
    }

    /**
     * Push a handle representing this class top stack
     *
     * @param className name of the class
     *
     * @return the method emitter
     */
    MethodEmitter loadType(final String className) {
        debug("load type", className);
        method.visitLdcInsn(jdk.internal.org.objectweb.asm.Type.getObjectType(className));
        pushType(Type.OBJECT);
        return this;
    }

    /**
     * Push a boolean constant to the stack.
     *
     * @param b value of boolean
     *
     * @return the method emitter
     */
    MethodEmitter load(final boolean b) {
        debug("load boolean", b);
        pushType(Type.BOOLEAN.ldc(method, b));
        return this;
    }

    /**
     * Push an int constant to the stack
     *
     * @param i value of the int
     *
     * @return the method emitter
     */
    MethodEmitter load(final int i) {
        debug("load int", i);
        pushType(Type.INT.ldc(method, i));
        return this;
    }

    /**
     * Push a double constant to the stack
     *
     * @param d value of the double
     *
     * @return the method emitter
     */
    MethodEmitter load(final double d) {
        debug("load double", d);
        pushType(Type.NUMBER.ldc(method, d));
        return this;
    }

    /**
     * Push an long constant to the stack
     *
     * @param l value of the long
     *
     * @return the method emitter
     */
    MethodEmitter load(final long l) {
        debug("load long", l);
        pushType(Type.LONG.ldc(method, l));
        return this;
    }

    /**
     * Fetch the length of an array.
     * @return Array length.
     */
    MethodEmitter arraylength() {
        debug("arraylength");
        popType(Type.OBJECT);
        pushType(Type.OBJECT_ARRAY.arraylength(method));
        return this;
    }

    /**
     * Push a String constant to the stack
     *
     * @param s value of the String
     *
     * @return the method emitter
     */
    MethodEmitter load(final String s) {
        debug("load string", s);

        if (s == null) {
            loadNull();
            return this;
        }

        //NASHORN-142 - split too large string
        final int length = s.length();
        if (length > LARGE_STRING_THRESHOLD) {

            _new(StringBuilder.class);
            dup();
            load(length);
            invoke(constructorNoLookup(StringBuilder.class, int.class));

            for (int n = 0; n < length; n += LARGE_STRING_THRESHOLD) {
                final String part = s.substring(n, Math.min(n + LARGE_STRING_THRESHOLD, length));
                load(part);
                stringBuilderAppend();
            }

            invoke(virtualCallNoLookup(StringBuilder.class, "toString", String.class));

            return this;
        }

        pushType(Type.OBJECT.ldc(method, s));
        return this;
    }

    /**
     * Push a local variable to the stack. If the symbol representing
     * the local variable doesn't have a slot, this is a NOP
     *
     * @param symbol the symbol representing the local variable.
     *
     * @return the method emitter
     */
    MethodEmitter load(final Symbol symbol) {
        assert symbol != null;
        if (symbol.hasSlot()) {
            final int slot = symbol.getSlot();
            debug("load symbol", symbol.getName(), " slot=", slot);
            final Type type = symbol.getSymbolType().load(method, slot);
            pushType(type == Type.OBJECT && symbol.isThis() ? Type.THIS : type);
        } else if (symbol.isParam()) {
            assert !symbol.isScope();
            assert functionNode.isVarArg() : "Non-vararg functions have slotted parameters";
            final int index = symbol.getFieldIndex();
            if (functionNode.needsArguments()) {
                // ScriptObject.getArgument(int) on arguments
                debug("load symbol", symbol.getName(), " arguments index=", index);
                loadCompilerConstant(ARGUMENTS);
                load(index);
                ScriptObject.GET_ARGUMENT.invoke(this);
            } else {
                // array load from __varargs__
                debug("load symbol", symbol.getName(), " array index=", index);
                loadCompilerConstant(VARARGS);
                load(symbol.getFieldIndex());
                arrayload();
            }
        }
        return this;
    }

    /**
     * Push a local variable to the stack, given an explicit bytecode slot
     * This is used e.g. for stub generation where we know where items like
     * "this" and "scope" reside.
     *
     * @param type  the type of the variable
     * @param slot  the slot the variable is in
     *
     * @return the method emitter
     */
    MethodEmitter load(final Type type, final int slot) {
        debug("explicit load", type, slot);
        final Type loadType = type.load(method, slot);
        pushType(loadType == Type.OBJECT && isThisSlot(slot) ? Type.THIS : loadType);
        return this;
    }

    private boolean isThisSlot(final int slot) {
        if (functionNode == null) {
            return slot == CompilerConstants.JAVA_THIS.slot();
        }
        final int thisSlot = compilerConstant(THIS).getSlot();
        assert !functionNode.needsCallee() || thisSlot == 1; // needsCallee -> thisSlot == 1
        assert functionNode.needsCallee() || thisSlot == 0; // !needsCallee -> thisSlot == 0
        return slot == thisSlot;
    }

    /**
     * Push a method handle to the stack
     *
     * @param className  class name
     * @param methodName method name
     * @param descName   descriptor
     * @param flags      flags that describe this handle, e.g. invokespecial new, or invoke virtual
     *
     * @return the method emitter
     */
    MethodEmitter loadHandle(final String className, final String methodName, final String descName, final EnumSet<Flag> flags) {
        debug("load handle ");
        pushType(Type.OBJECT.ldc(method, new Handle(Flag.getValue(flags), className, methodName, descName)));
        return this;
    }

    private Symbol compilerConstant(final CompilerConstants cc) {
        return functionNode.getBody().getExistingSymbol(cc.symbolName());
    }

    /**
     * True if this method has a slot allocated for the scope variable (meaning, something in the method actually needs
     * the scope).
     * @return if this method has a slot allocated for the scope variable.
     */
    boolean hasScope() {
        return compilerConstant(SCOPE).hasSlot();
    }

    MethodEmitter loadCompilerConstant(final CompilerConstants cc) {
        final Symbol symbol = compilerConstant(cc);
        if (cc == SCOPE && peekType() == Type.SCOPE) {
            dup();
            return this;
        }
        return load(symbol);
    }

    void storeCompilerConstant(final CompilerConstants cc) {
        final Symbol symbol = compilerConstant(cc);
        debug("store compiler constant ", symbol);
        store(symbol);
    }

    /**
     * Load an element from an array, determining type automatically
     * @return the method emitter
     */
    MethodEmitter arrayload() {
        debug("Xaload");
        popType(Type.INT);
        pushType(popArray().aload(method));
        return this;
    }

    /**
     * Pop a value, an index and an array from the stack and store
     * the value at the given index in the array.
     */
    void arraystore() {
        debug("Xastore");
        final Type value = popType();
        final Type index = popType(Type.INT);
        assert index.isInteger() : "array index is not integer, but " + index;
        final ArrayType array = popArray();

        assert value.isEquivalentTo(array.getElementType()) : "Storing "+value+" into "+array;
        assert array.isObject();
        array.astore(method);
    }

    /**
     * Pop a value from the stack and store it in a local variable represented
     * by the given symbol. If the symbol has no slot, this is a NOP
     *
     * @param symbol symbol to store stack to
     */
    void store(final Symbol symbol) {
        assert symbol != null : "No symbol to store";
        if (symbol.hasSlot()) {
            final int slot = symbol.getSlot();
            debug("store symbol", symbol.getName(), " slot=", slot);
            popType(symbol.getSymbolType()).store(method, slot);
        } else if (symbol.isParam()) {
            assert !symbol.isScope();
            assert functionNode.isVarArg() : "Non-vararg functions have slotted parameters";
            final int index = symbol.getFieldIndex();
            if (functionNode.needsArguments()) {
                debug("store symbol", symbol.getName(), " arguments index=", index);
                loadCompilerConstant(ARGUMENTS);
                load(index);
                ArgumentSetter.SET_ARGUMENT.invoke(this);
            } else {
                // varargs without arguments object - just do array store to __varargs__
                debug("store symbol", symbol.getName(), " array index=", index);
                loadCompilerConstant(VARARGS);
                load(index);
                ArgumentSetter.SET_ARRAY_ELEMENT.invoke(this);
            }
        }
    }

    /**
     * Pop a value from the stack and store it in a given local variable
     * slot.
     *
     * @param type the type to pop
     * @param slot the slot
     */
    void store(final Type type, final int slot) {
        popType(type);
        type.store(method, slot);
    }

    /**
     * Increment/Decrement a local integer by the given value.
     *
     * @param slot the int slot
     * @param increment the amount to increment
     */
    void iinc(final int slot, final int increment) {
        debug("iinc");
        method.visitIincInsn(slot, increment);
    }

    /**
     * Pop an exception object from the stack and generate code
     * for throwing it
     */
    public void athrow() {
        debug("athrow");
        final Type receiver = popType(Type.OBJECT);
        assert receiver.isObject();
        method.visitInsn(ATHROW);
        stack = null;
    }

    /**
     * Pop an object from the stack and perform an instanceof
     * operation, given a classDescriptor to compare it to.
     * Push the boolean result 1/0 as an int to the stack
     *
     * @param classDescriptor descriptor of the class to type check against
     *
     * @return the method emitter
     */
    MethodEmitter _instanceof(final String classDescriptor) {
        debug("instanceof", classDescriptor);
        popType(Type.OBJECT);
        method.visitTypeInsn(INSTANCEOF, classDescriptor);
        pushType(Type.INT);
        return this;
    }

    /**
     * Pop an object from the stack and perform an instanceof
     * operation, given a classDescriptor to compare it to.
     * Push the boolean result 1/0 as an int to the stack
     *
     * @param clazz the type to check instanceof against
     *
     * @return the method emitter
     */
    MethodEmitter _instanceof(final Class<?> clazz) {
        return _instanceof(CompilerConstants.className(clazz));
    }

    /**
     * Perform a checkcast operation on the object at the top of the
     * stack.
     *
     * @param classDescriptor descriptor of the class to type check against
     *
     * @return the method emitter
     */
    MethodEmitter checkcast(final String classDescriptor) {
        debug("checkcast", classDescriptor);
        assert peekType().isObject();
        method.visitTypeInsn(CHECKCAST, classDescriptor);
        return this;
    }

    /**
     * Perform a checkcast operation on the object at the top of the
     * stack.
     *
     * @param clazz class to checkcast against
     *
     * @return the method emitter
     */
    MethodEmitter checkcast(final Class<?> clazz) {
        return checkcast(CompilerConstants.className(clazz));
    }

    /**
     * Instantiate a new array given a length that is popped
     * from the stack and the array type
     *
     * @param arrayType the type of the array
     *
     * @return the method emitter
     */
    MethodEmitter newarray(final ArrayType arrayType) {
        debug("newarray ", "arrayType=", arrayType);
        popType(Type.INT); //LENGTH
        pushType(arrayType.newarray(method));
        return this;
    }

    /**
     * Instantiate a multidimensional array with a given number of dimensions.
     * On the stack are dim lengths of the sub arrays.
     *
     * @param arrayType type of the array
     * @param dims      number of dimensions
     *
     * @return the method emitter
     */
    MethodEmitter multinewarray(final ArrayType arrayType, final int dims) {
        debug("multianewarray ", arrayType, dims);
        for (int i = 0; i < dims; i++) {
            popType(Type.INT); //LENGTH
        }
        pushType(arrayType.newarray(method, dims));
        return this;
    }

    /**
     * Helper function to pop and type check the appropriate arguments
     * from the stack given a method signature
     *
     * @param signature method signature
     *
     * @return return type of method
     */
    private Type fixParamStack(final String signature) {
        final Type[] params = Type.getMethodArguments(signature);
        for (int i = params.length - 1; i >= 0; i--) {
            popType(params[i]);
        }
        final Type returnType = Type.getMethodReturnType(signature);
        return returnType;
    }

    /**
     * Generate an invocation to a Call structure
     * @see CompilerConstants
     *
     * @param call the call object
     *
     * @return the method emitter
     */
    MethodEmitter invoke(final Call call) {
        return call.invoke(this);
    }

    private MethodEmitter invoke(final int opcode, final String className, final String methodName, final String methodDescriptor, final boolean hasReceiver) {
        final Type returnType = fixParamStack(methodDescriptor);

        if (hasReceiver) {
            popType(Type.OBJECT);
        }

        method.visitMethodInsn(opcode, className, methodName, methodDescriptor);

        if (returnType != null) {
            pushType(returnType);
        }

        return this;
    }

    /**
     * Pop receiver from stack, perform an invoke special
     *
     * @param className        class name
     * @param methodName       method name
     * @param methodDescriptor descriptor
     *
     * @return the method emitter
     */
    MethodEmitter invokespecial(final String className, final String methodName, final String methodDescriptor) {
        debug("invokespecial", className, ".", methodName, methodDescriptor);
        return invoke(INVOKESPECIAL, className, methodName, methodDescriptor, true);
    }

    /**
     * Pop receiver from stack, perform an invoke virtual, push return value if any
     *
     * @param className        class name
     * @param methodName       method name
     * @param methodDescriptor descriptor
     *
     * @return the method emitter
     */
    MethodEmitter invokevirtual(final String className, final String methodName, final String methodDescriptor) {
        debug("invokevirtual", className, ".", methodName, methodDescriptor, " ", stack);
        return invoke(INVOKEVIRTUAL, className, methodName, methodDescriptor, true);
    }

    /**
     * Perform an invoke static and push the return value if any
     *
     * @param className        class name
     * @param methodName       method name
     * @param methodDescriptor descriptor
     *
     * @return the method emitter
     */
    MethodEmitter invokestatic(final String className, final String methodName, final String methodDescriptor) {
        debug("invokestatic", className, ".", methodName, methodDescriptor);
        invoke(INVOKESTATIC, className, methodName, methodDescriptor, false);
        return this;
    }

    /**
     * Perform an invoke static and replace the return type if we know better, e.g. Global.allocate
     * that allocates an array should return an ObjectArray type as a NativeArray counts as that
     *
     * @param className        class name
     * @param methodName       method name
     * @param methodDescriptor descriptor
     * @param returnType       return type override
     *
     * @return the method emitter
     */
    MethodEmitter invokeStatic(final String className, final String methodName, final String methodDescriptor, final Type returnType) {
        invokestatic(className, methodName, methodDescriptor);
        popType();
        pushType(returnType);
        return this;
    }

    /**
     * Pop receiver from stack, perform an invoke interface and push return value if any
     *
     * @param className        class name
     * @param methodName       method name
     * @param methodDescriptor descriptor
     *
     * @return the method emitter
     */
    MethodEmitter invokeinterface(final String className, final String methodName, final String methodDescriptor) {
        debug("invokeinterface", className, ".", methodName, methodDescriptor);
        return invoke(INVOKEINTERFACE, className, methodName, methodDescriptor, true);
    }

    static jdk.internal.org.objectweb.asm.Label[] getLabels(final Label... table) {
        final jdk.internal.org.objectweb.asm.Label[] internalLabels = new jdk.internal.org.objectweb.asm.Label[table.length];
        for (int i = 0; i < table.length; i++) {
            internalLabels[i] = table[i].getLabel();
        }
        return internalLabels;
    }

    /**
     * Generate a lookup switch, popping the switch value from the stack
     *
     * @param defaultLabel default label
     * @param values       case values for the table
     * @param table        default label
     */
    void lookupswitch(final Label defaultLabel, final int[] values, final Label... table) {//Collection<Label> table) {
        debug("lookupswitch", peekType());
        popType(Type.INT);
        method.visitLookupSwitchInsn(defaultLabel.getLabel(), values, getLabels(table));
    }

    /**
     * Generate a table switch
     * @param lo            low value
     * @param hi            high value
     * @param defaultLabel  default label
     * @param table         label table
     */
    void tableswitch(final int lo, final int hi, final Label defaultLabel, final Label... table) {
        debug("tableswitch", peekType());
        popType(Type.INT);
        method.visitTableSwitchInsn(lo, hi, defaultLabel.getLabel(), getLabels(table));
    }

    /**
     * Abstraction for performing a conditional jump of any type
     *
     * @see MethodEmitter.Condition
     *
     * @param cond      the condition to test
     * @param trueLabel the destination label is condition is true
     */
    void conditionalJump(final Condition cond, final Label trueLabel) {
        conditionalJump(cond, cond != Condition.GT && cond != Condition.GE, trueLabel);
    }

    /**
     * Abstraction for performing a conditional jump of any type,
     * including a dcmpg/dcmpl semantic for doubles.
     *
     * @param cond      the condition to test
     * @param isCmpG    is this a dcmpg for numbers, false if it's a dcmpl
     * @param trueLabel the destination label if condition is true
     */
    void conditionalJump(final Condition cond, final boolean isCmpG, final Label trueLabel) {
        if (peekType().isCategory2()) {
            debug("[ld]cmp isCmpG=", isCmpG);
            pushType(get2n().cmp(method, isCmpG));
            jump(Condition.toUnary(cond), trueLabel, 1);
        } else {
            debug("if", cond);
            jump(Condition.toBinary(cond, peekType().isObject()), trueLabel, 2);
        }
    }

    MethodEmitter registerReturn() {
        setHasReturn();
        return this;
    }

    void setHasReturn() {
        this.hasReturn = true;
    }

    /**
     * Perform a non void return, popping the type from the stack
     *
     * @param type the type for the return
     */
    void _return(final Type type) {
        debug("return", type);
        assert stack.size() == 1 : "Only return value on stack allowed at return point - depth=" + stack.size() + " stack = " + stack;
        final Type stackType = peekType();
        if (!Type.areEquivalent(type, stackType)) {
            convert(type);
        }
        popType(type)._return(method);
        stack = null;
    }

    /**
     * Perform a return using the stack top value as the guide for the type
     */
    void _return() {
        _return(peekType());
    }

    /**
     * Perform a void return.
     */
    void returnVoid() {
        debug("return [void]");
        assert stack.isEmpty() : stack;
        method.visitInsn(RETURN);
        stack = null;
    }

    /**
     * Goto, possibly when splitting is taking place. If
     * a splitNode exists, we need to handle the case that the
     * jump target is another method
     *
     * @param label destination label
     */
    void splitAwareGoto(final LexicalContext lc, final Label label) {
        _goto(label);
    }

    /**
     * Perform a comparison of two number types that are popped from the stack
     *
     * @param isCmpG is this a dcmpg semantic, false if it's a dcmpl semantic
     *
     * @return the method emitter
     */
    MethodEmitter cmp(final boolean isCmpG) {
        pushType(get2n().cmp(method, isCmpG));
        return this;
    }

    /**
     * Helper function for jumps, conditional or not
     * @param opcode  opcode for jump
     * @param label   destination
     * @param n       elements on stack to compare, 0-2
     */
    private void jump(final int opcode, final Label label, final int n) {
        for (int i = 0; i < n; i++) {
            assert peekType().isInteger() || peekType().isBoolean() || peekType().isObject() : "expecting integer type or object for jump, but found " + peekType();
            popType();
        }
        mergeStackTo(label);
        method.visitJumpInsn(opcode, label.getLabel());
    }

    /**
     * Generate an if_acmpeq
     *
     * @param label label to true case
     */
    void if_acmpeq(final Label label) {
        debug("if_acmpeq", label);
        jump(IF_ACMPEQ, label, 2);
    }

    /**
     * Generate an if_acmpne
     *
     * @param label label to true case
     */
    void if_acmpne(final Label label) {
        debug("if_acmpne", label);
        jump(IF_ACMPNE, label, 2);
    }

    /**
     * Generate an ifnull
     *
     * @param label label to true case
     */
    void ifnull(final Label label) {
        debug("ifnull", label);
        jump(IFNULL, label, 1);
    }

    /**
     * Generate an ifnonnull
     *
     * @param label label to true case
     */
    void ifnonnull(final Label label) {
        debug("ifnonnull", label);
        jump(IFNONNULL, label, 1);
    }

    /**
     * Generate an ifeq
     *
     * @param label label to true case
     */
    void ifeq(final Label label) {
        debug("ifeq ", label);
        jump(IFEQ, label, 1);
    }

    /**
     * Generate an if_icmpeq
     *
     * @param label label to true case
     */
    void if_icmpeq(final Label label) {
        debug("if_icmpeq", label);
        jump(IF_ICMPEQ, label, 2);
    }

    /**
     * Generate an if_ne
     *
     * @param label label to true case
     */
    void ifne(final Label label) {
        debug("ifne", label);
        jump(IFNE, label, 1);
    }

    /**
     * Generate an if_icmpne
     *
     * @param label label to true case
     */
    void if_icmpne(final Label label) {
        debug("if_icmpne", label);
        jump(IF_ICMPNE, label, 2);
    }

    /**
     * Generate an iflt
     *
     * @param label label to true case
     */
    void iflt(final Label label) {
        debug("iflt", label);
        jump(IFLT, label, 1);
    }

    /**
     * Generate an ifle
     *
     * @param label label to true case
     */
    void ifle(final Label label) {
        debug("ifle", label);
        jump(IFLE, label, 1);
    }

    /**
     * Generate an ifgt
     *
     * @param label label to true case
     */
    void ifgt(final Label label) {
        debug("ifgt", label);
        jump(IFGT, label, 1);
    }

    /**
     * Generate an ifge
     *
     * @param label label to true case
     */
    void ifge(final Label label) {
        debug("ifge", label);
        jump(IFGE, label, 1);
    }

    /**
     * Unconditional jump to a label
     *
     * @param label destination label
     */
    void _goto(final Label label) {
        //debug("goto", label);
        jump(GOTO, label, 0);
        stack = null; //whoever reaches the point after us provides the stack, because we don't
    }

    /**
     * Examine two stacks and make sure they are of the same size and their
     * contents are equivalent to each other
     * @param s0 first stack
     * @param s1 second stack
     *
     * @return true if stacks are equivalent, false otherwise
     */
    /**
     * A join in control flow - helper function that makes sure all entry stacks
     * discovered for the join point so far are equivalent
     *
     * MergeStack: we are about to enter a label. If its stack, label.getStack() is null
     * we have never been here before. Then we are expected to carry a stack with us.
     *
     * @param label label
     */
    private void mergeStackTo(final Label label) {
        //sometimes we can do a merge stack without having a stack - i.e. when jumping ahead to dead code
        //see NASHORN-73. So far we had been saved by the line number nodes. This should have been fixed
        //by Lower removing everything after an unconditionally executed terminating statement OR a break
        //or continue in a block. Previously code left over after breaks and continues was still there
        //and caused bytecode to be generated - which crashed on stack not being there, as the merge
        //was not in fact preceeded by a visit. Furthermore, this led to ASM putting out its NOP NOP NOP
        //ATHROW sequences instead of no code being generated at all. This should now be fixed.
        assert stack != null : label + " entered with no stack. deadcode that remains?";

        final Label.Stack labelStack = label.getStack();
        if (labelStack == null) {
            label.setStack(stack.copy());
            return;
        }
        assert stack.isEquivalentTo(labelStack) : "stacks " + stack + " is not equivalent with " + labelStack + " at join point";
    }

    /**
     * Register a new label, enter it here.
     *
     * @param label the label
     */
    void label(final Label label) {
        /*
         * If stack == null, this means that we came here not through a fallthrough.
         * E.g. a label after an athrow. Then we create a new stack if one doesn't exist
         * for this location already.
         */
        if (stack == null) {
            stack = label.getStack();
            if (stack == null) {
                newStack();
            }
        }
        debug_label(label);

        mergeStackTo(label); //we have to merge our stack to whatever is in the label

        method.visitLabel(label.getLabel());
    }

    /**
     * Pop element from stack, convert to given type
     *
     * @param to type to convert to
     *
     * @return the method emitter
     */
    MethodEmitter convert(final Type to) {
        final Type type = peekType().convert(method, to);
        if (type != null) {
            if (!peekType().isEquivalentTo(to)) {
                debug("convert", peekType(), "->", to);
            }
            popType();
            pushType(type);
        }
        return this;
    }

    /**
     * Helper function - expect two types that are equivalent
     *
     * @return common type
     */
    private Type get2() {
        final Type p0 = popType();
        final Type p1 = popType();
        assert p0.isEquivalentTo(p1) : "expecting equivalent types on stack but got " + p0 + " and " + p1;
        return p0;
    }

    /**
     * Helper function - expect two types that are integer types and equivalent
     *
     * @return common type
     */
    private BitwiseType get2i() {
        final BitwiseType p0 = popInteger();
        final BitwiseType p1 = popInteger();
        assert p0.isEquivalentTo(p1) : "expecting equivalent types on stack but got " + p0 + " and " + p1;
        return p0;
    }

    /**
     * Helper function - expect two types that are numbers and equivalent
     *
     * @return common type
     */
    private NumericType get2n() {
        final NumericType p0 = popNumeric();
        final NumericType p1 = popNumeric();
        assert p0.isEquivalentTo(p1) : "expecting equivalent types on stack but got " + p0 + " and " + p1;
        return p0;
    }

    /**
     * Pop two numbers, perform addition and push result
     *
     * @return the method emitter
     */
    MethodEmitter add() {
        debug("add");
        pushType(get2().add(method));
        return this;
    }

    /**
     * Pop two numbers, perform subtraction and push result
     *
     * @return the method emitter
     */
    MethodEmitter sub() {
        debug("sub");
        pushType(get2n().sub(method));
        return this;
    }

    /**
     * Pop two numbers, perform multiplication and push result
     *
     * @return the method emitter
     */
    MethodEmitter mul() {
        debug("mul ");
        pushType(get2n().mul(method));
        return this;
    }

    /**
     * Pop two numbers, perform division and push result
     *
     * @return the method emitter
     */
    MethodEmitter div() {
        debug("div");
        pushType(get2n().div(method));
        return this;
    }

    /**
     * Pop two numbers, calculate remainder and push result
     *
     * @return the method emitter
     */
    MethodEmitter rem() {
        debug("rem");
        pushType(get2n().rem(method));
        return this;
    }

    /**
     * Retrieve the top <tt>count types on the stack without modifying it.
     *
     * @param count number of types to return
     * @return array of Types
     */
    protected Type[] getTypesFromStack(final int count) {
        final Type[] types = new Type[count];
        int pos = 0;
        for (int i = count - 1; i >= 0; i--) {
            types[i] = stack.peek(pos++);
        }

        return types;
    }

    /**
     * Helper function to generate a function signature based on stack contents
     * and argument count and return type
     *
     * @param returnType return type
     * @param argCount   argument count
     *
     * @return function signature for stack contents
     */
    private String getDynamicSignature(final Type returnType, final int argCount) {
        final Type[]         paramTypes = new Type[argCount];

        int pos = 0;
        for (int i = argCount - 1; i >= 0; i--) {
            paramTypes[i] = stack.peek(pos++);
        }
        final String descriptor = Type.getMethodDescriptor(returnType, paramTypes);
        for (int i = 0; i < argCount; i++) {
            popType(paramTypes[argCount - i - 1]);
        }

        return descriptor;
    }

    /**
     * Generate a dynamic new
     *
     * @param argCount  number of arguments
     * @param flags     callsite flags
     *
     * @return the method emitter
     */
    MethodEmitter dynamicNew(final int argCount, final int flags) {
        debug("dynamic_new", "argcount=", argCount);
        final String signature = getDynamicSignature(Type.OBJECT, argCount);
        method.visitInvokeDynamicInsn("dyn:new", signature, LINKERBOOTSTRAP, flags);
        pushType(Type.OBJECT); //TODO fix result type
        return this;
    }

    /**
     * Generate a dynamic call
     *
     * @param returnType return type
     * @param argCount   number of arguments
     * @param flags      callsite flags
     *
     * @return the method emitter
     */
    MethodEmitter dynamicCall(final Type returnType, final int argCount, final int flags) {
        debug("dynamic_call", "args=", argCount, "returnType=", returnType);
        final String signature = getDynamicSignature(returnType, argCount); // +1 because the function itself is the 1st parameter for dynamic calls (what you call - call target)
        debug("   signature", signature);
        method.visitInvokeDynamicInsn("dyn:call", signature, LINKERBOOTSTRAP, flags);
        pushType(returnType);

        return this;
    }

    /**
     * Generate a dynamic call for a runtime node
     *
     * @param name       tag for the invoke dynamic for this runtime node
     * @param returnType return type
     * @param request    RuntimeNode request
     *
     * @return the method emitter
     */
    MethodEmitter dynamicRuntimeCall(final String name, final Type returnType, final RuntimeNode.Request request) {
        debug("dynamic_runtime_call", name, "args=", request.getArity(), "returnType=", returnType);
        final String signature = getDynamicSignature(returnType, request.getArity());
        debug("   signature", signature);
        method.visitInvokeDynamicInsn(name, signature, RUNTIMEBOOTSTRAP);
        pushType(returnType);

        return this;
    }

    /**
     * Generate dynamic getter. Pop scope from stack. Push result
     *
     * @param valueType type of the value to set
     * @param name      name of property
     * @param flags     call site flags
     * @param isMethod  should it prefer retrieving methods
     *
     * @return the method emitter
     */
    MethodEmitter dynamicGet(final Type valueType, final String name, final int flags, final boolean isMethod) {
        debug("dynamic_get", name, valueType);

        Type type = valueType;
        if (type.isObject() || type.isBoolean()) {
            type = Type.OBJECT; //promote e.g strings to object generic setter
        }

        popType(Type.SCOPE);
        method.visitInvokeDynamicInsn((isMethod ? "dyn:getMethod|getProp|getElem:" : "dyn:getProp|getElem|getMethod:") +
                NameCodec.encode(name), Type.getMethodDescriptor(type, Type.OBJECT), LINKERBOOTSTRAP, flags);

        pushType(type);

        convert(valueType); //most probably a nop

        return this;
    }

    /**
     * Generate dynamic setter. Pop receiver and property from stack.
     *
     * @param valueType the type of the value to set
     * @param name      name of property
     * @param flags     call site flags
     */
     void dynamicSet(final String name, final int flags) {
        debug("dynamic_set", name, peekType());

        Type type = peekType();
        if (type.isObject() || type.isBoolean()) { //promote strings to objects etc
            type = Type.OBJECT;
            convert(Type.OBJECT); //TODO bad- until we specialize boolean setters,
        }
        popType(type);
        popType(Type.SCOPE);

        method.visitInvokeDynamicInsn("dyn:setProp|setElem:" + NameCodec.encode(name), methodDescriptor(void.class, Object.class, type.getTypeClass()), LINKERBOOTSTRAP, flags);
    }

     /**
     * Dynamic getter for indexed structures. Pop index and receiver from stack,
     * generate appropriate signatures based on types
     *
     * @param result result type for getter
     * @param flags call site flags for getter
     * @param isMethod should it prefer retrieving methods
     *
     * @return the method emitter
     */
    MethodEmitter dynamicGetIndex(final Type result, final int flags, final boolean isMethod) {
        debug("dynamic_get_index", peekType(1), "[", peekType(), "]");

        Type resultType = result;
        if (result.isBoolean()) {
            resultType = Type.OBJECT; // INT->OBJECT to avoid another dimension of cross products in the getters. TODO
        }

        Type index = peekType();
        if (index.isObject() || index.isBoolean()) {
            index = Type.OBJECT; //e.g. string->object
            convert(Type.OBJECT);
        }
        popType();

        popType(Type.OBJECT);

        final String signature = Type.getMethodDescriptor(resultType, Type.OBJECT /*e.g STRING->OBJECT*/, index);

        method.visitInvokeDynamicInsn(isMethod ? "dyn:getMethod|getElem|getProp" : "dyn:getElem|getProp|getMethod",
                signature, LINKERBOOTSTRAP, flags);
        pushType(resultType);

        if (result.isBoolean()) {
            convert(Type.BOOLEAN);
        }

        return this;
    }

    /**
     * Dynamic setter for indexed structures. Pop value, index and receiver from
     * stack, generate appropriate signature based on types
     *
     * @param flags call site flags for setter
     */
    void dynamicSetIndex(final int flags) {
        debug("dynamic_set_index", peekType(2), "[", peekType(1), "] =", peekType());

        Type value = peekType();
        if (value.isObject() || value.isBoolean()) {
            value = Type.OBJECT; //e.g. STRING->OBJECT - one descriptor for all object types
            convert(Type.OBJECT);
        }
        popType();

        Type index = peekType();
        if (index.isObject() || index.isBoolean()) {
            index = Type.OBJECT; //e.g. string->object
            convert(Type.OBJECT);
        }
        popType(index);

        final Type receiver = popType(Type.OBJECT);
        assert receiver.isObject();

        method.visitInvokeDynamicInsn("dyn:setElem|setProp", methodDescriptor(void.class, receiver.getTypeClass(), index.getTypeClass(), value.getTypeClass()), LINKERBOOTSTRAP, flags);
    }

    /**
     * Load a key value in the proper form.
     *
     * @param key
     */
    //TODO move this and break it apart
    MethodEmitter loadKey(final Object key) {
        if (key instanceof IdentNode) {
            method.visitLdcInsn(((IdentNode) key).getName());
        } else if (key instanceof LiteralNode) {
            method.visitLdcInsn(((LiteralNode<?>)key).getString());
        } else {
            method.visitLdcInsn(JSType.toString(key));
        }
        pushType(Type.OBJECT); //STRING
        return this;
    }

     @SuppressWarnings("fallthrough")
     private static Type fieldType(final String desc) {
         switch (desc) {
         case "Z":
         case "B":
         case "C":
         case "S":
         case "I":
             return Type.INT;
         case "F":
             assert false;
         case "D":
             return Type.NUMBER;
         case "J":
             return Type.LONG;
         default:
             assert desc.startsWith("[") || desc.startsWith("L") : desc + " is not an object type";
             switch (desc.charAt(0)) {
             case 'L':
                 return Type.OBJECT;
             case '[':
                 return Type.typeFor(Array.newInstance(fieldType(desc.substring(1)).getTypeClass(), 0).getClass());
             default:
                 assert false;
             }
             return Type.OBJECT;
         }
     }

     /**
      * Generate get for a field access
      *
      * @param fa the field access
      *
      * @return the method emitter
      */
    MethodEmitter getField(final FieldAccess fa) {
        return fa.get(this);
    }

     /**
      * Generate set for a field access
      *
      * @param fa the field access
      */
    void putField(final FieldAccess fa) {
        fa.put(this);
    }

    /**
     * Get the value of a non-static field, pop the receiver from the stack,
     * push value to the stack
     *
     * @param className        class
     * @param fieldName        field name
     * @param fieldDescriptor  field descriptor
     *
     * @return the method emitter
     */
    MethodEmitter getField(final String className, final String fieldName, final String fieldDescriptor) {
        debug("getfield", "receiver=", peekType(), className, ".", fieldName, fieldDescriptor);
        final Type receiver = popType();
        assert receiver.isObject();
        method.visitFieldInsn(GETFIELD, className, fieldName, fieldDescriptor);
        pushType(fieldType(fieldDescriptor));
        return this;
    }

    /**
     * Get the value of a static field, push it to the stack
     *
     * @param className        class
     * @param fieldName        field name
     * @param fieldDescriptor  field descriptor
     *
     * @return the method emitter
     */
    MethodEmitter getStatic(final String className, final String fieldName, final String fieldDescriptor) {
        debug("getstatic", className, ".", fieldName, ".", fieldDescriptor);
        method.visitFieldInsn(GETSTATIC, className, fieldName, fieldDescriptor);
        pushType(fieldType(fieldDescriptor));
        return this;
    }

    /**
     * Pop value and field from stack and write to a non-static field
     *
     * @param className       class
     * @param fieldName       field name
     * @param fieldDescriptor field descriptor
     */
    void putField(final String className, final String fieldName, final String fieldDescriptor) {
        debug("putfield", "receiver=", peekType(1), "value=", peekType());
        popType(fieldType(fieldDescriptor));
        popType(Type.OBJECT);
        method.visitFieldInsn(PUTFIELD, className, fieldName, fieldDescriptor);
    }

    /**
     * Pop value from stack and write to a static field
     *
     * @param className       class
     * @param fieldName       field name
     * @param fieldDescriptor field descriptor
     */
    void putStatic(final String className, final String fieldName, final String fieldDescriptor) {
        debug("putfield", "value=", peekType());
        popType(fieldType(fieldDescriptor));
        method.visitFieldInsn(PUTSTATIC, className, fieldName, fieldDescriptor);
    }

    /**
     * Register line number at a label
     *
     * @param line  line number
     * @param label label
     */
    void lineNumber(final int line) {
        if (env._debug_lines) {
            debug_label("[LINE]", line);
            final jdk.internal.org.objectweb.asm.Label l = new jdk.internal.org.objectweb.asm.Label();
            method.visitLabel(l);
            method.visitLineNumber(line, l);
        }
    }

    /*
     * Debugging below
     */

    private final FieldAccess ERR_STREAM       = staticField(System.class, "err", PrintStream.class);
    private final Call        PRINT            = virtualCallNoLookup(PrintStream.class, "print", void.class, Object.class);
    private final Call        PRINTLN          = virtualCallNoLookup(PrintStream.class, "println", void.class, Object.class);
    private final Call        PRINT_STACKTRACE = virtualCallNoLookup(Throwable.class, "printStackTrace", void.class);

    /**
     * Emit a System.err.print statement of whatever is on top of the bytecode stack
     */
     void print() {
         getField(ERR_STREAM);
         swap();
         convert(Type.OBJECT);
         invoke(PRINT);
     }

    /**
     * Emit a System.err.println statement of whatever is on top of the bytecode stack
     */
     void println() {
         getField(ERR_STREAM);
         swap();
         convert(Type.OBJECT);
         invoke(PRINTLN);
     }

     /**
      * Emit a System.err.print statement
      * @param string string to print
      */
     void print(final String string) {
         getField(ERR_STREAM);
         load(string);
         invoke(PRINT);
     }

     /**
      * Emit a System.err.println statement
      * @param string string to print
      */
     void println(final String string) {
         getField(ERR_STREAM);
         load(string);
         invoke(PRINTLN);
     }

     /**
      * Print a stacktrace to S
      */
     void stacktrace() {
         _new(Throwable.class);
         dup();
         invoke(constructorNoLookup(Throwable.class));
         invoke(PRINT_STACKTRACE);
     }

    private static int linePrefix = 0;

    /**
     * Debug function that outputs generated bytecode and stack contents
     *
     * @param args debug information to print
     */
    private void debug(final Object... args) {
        if (DEBUG) {
            debug(30, args);
        }
    }

    /**
     * Debug function that outputs generated bytecode and stack contents
     * for a label - indentation is currently the only thing that differs
     *
     * @param args debug information to print
     */
    private void debug_label(final Object... args) {
        if (DEBUG) {
            debug(22, args);
        }
    }

    private void debug(final int padConstant, final Object... args) {
        if (DEBUG) {
            final StringBuilder sb = new StringBuilder();
            int pad;

            sb.append('#');
            sb.append(++linePrefix);

            pad = 5 - sb.length();
            while (pad > 0) {
                sb.append(' ');
                pad--;
            }

            if (stack != null && !stack.isEmpty()) {
                sb.append("{");
                sb.append(stack.size());
                sb.append(":");
                for (int pos = 0; pos < stack.size(); pos++) {
                    final Type t = stack.peek(pos);

                    if (t == Type.SCOPE) {
                        sb.append("scope");
                    } else if (t == Type.THIS) {
                        sb.append("this");
                    } else if (t.isObject()) {
                        String desc = t.getDescriptor();
                        int i;
                        for (i = 0; desc.charAt(i) == '[' && i < desc.length(); i++) {
                            sb.append('[');
                        }
                        desc = desc.substring(i);
                        final int slash = desc.lastIndexOf('/');
                        if (slash != -1) {
                            desc = desc.substring(slash + 1, desc.length() - 1);
                        }
                        if ("Object".equals(desc)) {
                            sb.append('O');
                        } else {
                            sb.append(desc);
                        }
                    } else {
                        sb.append(t.getDescriptor());
                    }

                    if (pos + 1 < stack.size()) {
                        sb.append(' ');
                    }
                }
                sb.append('}');
                sb.append(' ');
            }

            pad = padConstant - sb.length();
            while (pad > 0) {
                sb.append(' ');
                pad--;
            }

            for (final Object arg : args) {
                sb.append(arg);
                sb.append(' ');
            }

            if (env != null) { //early bootstrap code doesn't have inited context yet
                LOG.info(sb);
                if (DEBUG_TRACE_LINE == linePrefix) {
                    new Throwable().printStackTrace(LOG.getOutputStream());
                }
            }
        }
    }

    /**
     * Set the current function node being emitted
     * @param functionNode the function node
     */
    void setFunctionNode(final FunctionNode functionNode) {
        this.functionNode = functionNode;
    }

    boolean hasReturn() {
        return hasReturn;
    }

    List<Label> getExternalTargets() {
        return null;
    }

}

Other Java examples (source code examples)

Here is a short list of links related to this Java MethodEmitter.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.