|
Scala example source code file (Delambdafy.scala)
The Delambdafy.scala Scala example source codepackage scala.tools.nsc package transform import symtab._ import Flags._ import scala.collection._ import scala.language.postfixOps import scala.reflect.internal.Symbols import scala.collection.mutable.LinkedHashMap /** * This transformer is responisble for turning lambdas into anonymous classes. * The main assumption it makes is that a lambda {args => body} has been turned into * {args => liftedBody()} where lifted body is a top level method that implements the body of the lambda. * Currently Uncurry is responsible for that transformation. * * From a lambda, Delambdafy will create * 1) a static forwarder at the top level of the class that contained the lambda * 2) a new top level class that a) has fields and a constructor taking the captured environment (including possbily the "this" * reference) * b) an apply method that calls the static forwarder * c) if needed a bridge method for the apply method * 3) an instantiation of the newly created class which replaces the lambda * * TODO the main work left to be done is to plug into specialization. Primarily that means choosing a * specialized FunctionN trait instead of the generic FunctionN trait as a parent and creating the * appropriately named applysp method */ abstract class Delambdafy extends Transform with TypingTransformers with ast.TreeDSL with TypeAdaptingTransformer { import global._ import definitions._ import CODE._ val analyzer: global.analyzer.type = global.analyzer /** the following two members override abstract members in Transform */ val phaseName: String = "delambdafy" protected def newTransformer(unit: CompilationUnit): Transformer = new DelambdafyTransformer(unit) class DelambdafyTransformer(unit: CompilationUnit) extends TypingTransformer(unit) with TypeAdapter { private val lambdaClassDefs = new mutable.LinkedHashMap[Symbol, List[Tree]] withDefaultValue Nil val typer = localTyper // we need to know which methods refer to the 'this' reference so that we can determine // which lambdas need access to it val thisReferringMethods: Set[Symbol] = { val thisReferringMethodsTraverser = new ThisReferringMethodsTraverser() thisReferringMethodsTraverser traverse unit.body val methodReferringMap = thisReferringMethodsTraverser.liftedMethodReferences val referrers = thisReferringMethodsTraverser.thisReferringMethods // recursively find methods that refer to 'this' directly or indirectly via references to other methods // for each method found add it to the referrers set def refersToThis(symbol: Symbol): Boolean = { if (referrers contains symbol) true else if (methodReferringMap(symbol) exists refersToThis) { // add it early to memoize debuglog(s"$symbol indirectly refers to 'this'") referrers += symbol true } else false } methodReferringMap.keys foreach refersToThis referrers } val accessorMethods = mutable.ArrayBuffer[Tree]() // the result of the transformFunction method. A class definition for the lambda, an expression // insantiating the lambda class, and an accessor method for the lambda class to be able to // call the implementation case class TransformedFunction(lambdaClassDef: ClassDef, newExpr: Tree, accessorMethod: Tree) // here's the main entry point of the transform override def transform(tree: Tree): Tree = tree match { // the main thing we care about is lambdas case fun @ Function(_, _) => // a lambda beccomes a new class, an instantiation expression, and an // accessor method val TransformedFunction(lambdaClassDef, newExpr, accessorMethod) = transformFunction(fun) // we'll add accessor methods to the current template later accessorMethods += accessorMethod val pkg = lambdaClassDef.symbol.owner // we'll add the lambda class to the package later lambdaClassDefs(pkg) = lambdaClassDef :: lambdaClassDefs(pkg) super.transform(newExpr) // when we encounter a template (basically the thing that holds body of a class/trait) // we need to updated it to include newly created accesor methods after transforming it case Template(_, _, _) => try { // during this call accessorMethods will be populated from the Function case val Template(parents, self, body) = super.transform(tree) Template(parents, self, body ++ accessorMethods) } finally accessorMethods.clear() case _ => super.transform(tree) } // this entry point is aimed at the statements in the compilation unit. // after working on the entire compilation until we'll have a set of // new class definitions to add to the top level override def transformStats(stats: List[Tree], exprOwner: Symbol): List[Tree] = { super.transformStats(stats, exprOwner) ++ lambdaClassDefs(exprOwner) } private def optionSymbol(sym: Symbol): Option[Symbol] = if (sym.exists) Some(sym) else None // turns a lambda into a new class def, a New expression instantiating that class, and an // accessor method fo the body of the lambda private def transformFunction(originalFunction: Function): TransformedFunction = { val functionTpe = originalFunction.tpe val targs = functionTpe.typeArgs val formals :+ restpe = targs val oldClass = originalFunction.symbol.enclClass // find which variables are free in the lambda because those are captures that need to be // passed into the constructor of the anonymous function class val captures = FreeVarTraverser.freeVarsOf(originalFunction) /** * Creates the apply method for the anonymous subclass of FunctionN */ def createAccessorMethod(thisProxy: Symbol, fun: Function): DefDef = { val target = targetMethod(fun) if (!thisProxy.exists) { target setFlag STATIC } val params = ((optionSymbol(thisProxy) map {proxy:Symbol => ValDef(proxy)}) ++ (target.paramss.flatten map ValDef.apply)).toList val methSym = oldClass.newMethod(unit.freshTermName(nme.accessor.toString() + "$"), target.pos, FINAL | BRIDGE | SYNTHETIC | PROTECTED | STATIC) val paramSyms = params map {param => methSym.newSyntheticValueParam(param.symbol.tpe, param.name) } params zip paramSyms foreach { case (valdef, sym) => valdef.symbol = sym } params foreach (_.symbol.owner = methSym) val methodType = MethodType(paramSyms, restpe) methSym setInfo methodType oldClass.info.decls enter methSym val body = localTyper.typed { val newTarget = Select(if (thisProxy.exists) gen.mkAttributedRef(paramSyms(0)) else gen.mkAttributedThis(oldClass), target) val newParams = paramSyms drop (if (thisProxy.exists) 1 else 0) map Ident Apply(newTarget, newParams) } setPos fun.pos val methDef = DefDef(methSym, List(params), body) // Have to repack the type to avoid mismatches when existentials // appear in the result - see SI-4869. // TODO probably don't need packedType methDef.tpt setType localTyper.packedType(body, methSym) methDef } /** * Creates the apply method for the anonymous subclass of FunctionN */ def createApplyMethod(newClass: Symbol, fun: Function, accessor: DefDef, thisProxy: Symbol): DefDef = { val methSym = newClass.newMethod(nme.apply, fun.pos, FINAL | SYNTHETIC) val params = fun.vparams map (_.duplicate) val paramSyms = map2(formals, params) { (tp, vparam) => methSym.newSyntheticValueParam(tp, vparam.name) } params zip paramSyms foreach { case (valdef, sym) => valdef.symbol = sym } params foreach (_.symbol.owner = methSym) val methodType = MethodType(paramSyms, restpe) methSym setInfo methodType newClass.info.decls enter methSym val Apply(_, oldParams) = fun.body val body = localTyper typed Apply(Select(gen.mkAttributedThis(oldClass), accessor.symbol), (optionSymbol(thisProxy) map {tp => Select(gen.mkAttributedThis(newClass), tp)}).toList ++ oldParams) body.substituteSymbols(fun.vparams map (_.symbol), params map (_.symbol)) body changeOwner (fun.symbol -> methSym) val methDef = DefDef(methSym, List(params), body) // Have to repack the type to avoid mismatches when existentials // appear in the result - see SI-4869. // TODO probably don't need packedType methDef.tpt setType localTyper.packedType(body, methSym) methDef } /** * Creates the constructor on the newly created class. It will handle * initialization of members that represent the captured environment */ def createConstructor(newClass: Symbol, members: List[ValDef]): DefDef = { val constrSym = newClass.newConstructor(originalFunction.pos, SYNTHETIC) val (paramSymbols, params, assigns) = (members map {member => val paramSymbol = newClass.newVariable(member.symbol.name.toTermName, newClass.pos, 0) paramSymbol.setInfo(member.symbol.info) val paramVal = ValDef(paramSymbol) val paramIdent = Ident(paramSymbol) val assign = Assign(Select(gen.mkAttributedThis(newClass), member.symbol), paramIdent) (paramSymbol, paramVal, assign) }).unzip3 val constrType = MethodType(paramSymbols, newClass.thisType) constrSym setInfoAndEnter constrType val body = Block( List( Apply(Select(Super(gen.mkAttributedThis(newClass), tpnme.EMPTY) setPos newClass.pos, nme.CONSTRUCTOR) setPos newClass.pos, Nil) setPos newClass.pos ) ++ assigns, Literal(Constant(())): Tree ) setPos newClass.pos (localTyper typed DefDef(constrSym, List(params), body) setPos newClass.pos).asInstanceOf[DefDef] } val pkg = oldClass.owner // Parent for anonymous class def val abstractFunctionErasedType = AbstractFunctionClass(formals.length).tpe // anonymous subclass of FunctionN with an apply method def makeAnonymousClass = { val parents = addSerializable(abstractFunctionErasedType) val funOwner = originalFunction.symbol.owner // TODO harmonize the naming of delamdafy anon-fun classes with those spun up by Uncurry // - make `anonClass.isAnonymousClass` true. // - use `newAnonymousClassSymbol` or push the required variations into a similar factory method // - reinstate the assertion in `Erasure.resolveAnonymousBridgeClash` val suffix = "$lambda$" + ( if (funOwner.isPrimaryConstructor) "" else "$" + funOwner.name + "$" ) val name = unit.freshTypeName(s"${oldClass.name.decode}$suffix") val anonClass = pkg newClassSymbol(name, originalFunction.pos, FINAL | SYNTHETIC) addAnnotation SerialVersionUIDAnnotation anonClass setInfo ClassInfoType(parents, newScope, anonClass) val captureProxies2 = new LinkedHashMap[Symbol, TermSymbol] captures foreach {capture => val sym = anonClass.newVariable(capture.name.toTermName, capture.pos, SYNTHETIC) sym setInfo capture.info captureProxies2 += ((capture, sym)) } // the Optional proxy that will hold a reference to the 'this' // object used by the lambda, if any. NoSymbol if there is no this proxy val thisProxy = { val target = targetMethod(originalFunction) if (thisReferringMethods contains target) { val sym = anonClass.newVariable(nme.FAKE_LOCAL_THIS, originalFunction.pos, SYNTHETIC) sym.info = oldClass.tpe sym } else NoSymbol } val decapturify = new DeCapturifyTransformer(captureProxies2, unit, oldClass, anonClass, originalFunction.symbol.pos, thisProxy) val accessorMethod = createAccessorMethod(thisProxy, originalFunction) val decapturedFunction = decapturify.transform(originalFunction).asInstanceOf[Function] val members = (optionSymbol(thisProxy).toList ++ (captureProxies2 map (_._2))) map {member => anonClass.info.decls enter member ValDef(member, gen.mkZero(member.tpe)) setPos decapturedFunction.pos } // constructor val constr = createConstructor(anonClass, members) // apply method with same arguments and return type as original lambda. val applyMethodDef = createApplyMethod(anonClass, decapturedFunction, accessorMethod, thisProxy) val bridgeMethod = createBridgeMethod(anonClass, originalFunction, applyMethodDef) def fulldef(sym: Symbol) = if (sym == NoSymbol) sym.toString else s"$sym: ${sym.tpe} in ${sym.owner}" bridgeMethod foreach (bm => // TODO SI-6260 maybe just create the apply method with the signature (Object => Object) in all cases // rather than the method+bridge pair. if (bm.symbol.tpe =:= applyMethodDef.symbol.tpe) erasure.resolveAnonymousBridgeClash(applyMethodDef.symbol, bm.symbol) ) val body = members ++ List(constr, applyMethodDef) ++ bridgeMethod // TODO if member fields are private this complains that they're not accessible (localTyper.typedPos(decapturedFunction.pos)(ClassDef(anonClass, body)).asInstanceOf[ClassDef], thisProxy, accessorMethod) } val (anonymousClassDef, thisProxy, accessorMethod) = makeAnonymousClass pkg.info.decls enter anonymousClassDef.symbol val thisArg = optionSymbol(thisProxy) map (_ => gen.mkAttributedThis(oldClass) setPos originalFunction.pos) val captureArgs = captures map (capture => Ident(capture) setPos originalFunction.pos) val newStat = Typed(New(anonymousClassDef.symbol, (thisArg.toList ++ captureArgs): _*), TypeTree(abstractFunctionErasedType)) val typedNewStat = localTyper.typedPos(originalFunction.pos)(newStat) TransformedFunction(anonymousClassDef, typedNewStat, accessorMethod) } /** * Creates a bridge method if needed. The bridge method forwards from apply(x1: Object, x2: Object...xn: Object): Object to * apply(x1: T1, x2: T2...xn: Tn): T0 using type adaptation on each input and output. The only time a bridge isn't needed * is when the original lambda is already erased to type Object, Object, Object... => Object */ def createBridgeMethod(newClass:Symbol, originalFunction: Function, applyMethod: DefDef): Option[DefDef] = { val bridgeMethSym = newClass.newMethod(nme.apply, applyMethod.pos, FINAL | SYNTHETIC | BRIDGE) val originalParams = applyMethod.vparamss(0) val bridgeParams = originalParams map { originalParam => val bridgeSym = bridgeMethSym.newSyntheticValueParam(ObjectTpe, originalParam.name) ValDef(bridgeSym) } val bridgeSyms = bridgeParams map (_.symbol) val methodType = MethodType(bridgeSyms, ObjectTpe) bridgeMethSym setInfo methodType def adapt(tree: Tree, expectedTpe: Type): (Boolean, Tree) = { if (tree.tpe =:= expectedTpe) (false, tree) else (true, adaptToType(tree, expectedTpe)) } def adaptAndPostErase(tree: Tree, pt: Type): (Boolean, Tree) = { val (needsAdapt, adaptedTree) = adapt(tree, pt) val trans = postErasure.newTransformer(unit) val postErasedTree = trans.atOwner(currentOwner)(trans.transform(adaptedTree)) // SI-8017 elimnates ErasedValueTypes (needsAdapt, postErasedTree) } enteringPhase(currentRun.posterasurePhase) { // e.g, in: // class C(val a: Int) extends AnyVal; (x: Int) => new C(x) // // This type is: // (x: Int)ErasedValueType(class C, Int) val liftedBodyDefTpe: MethodType = { val liftedBodySymbol = { val Apply(method, _) = originalFunction.body method.symbol } liftedBodySymbol.info.asInstanceOf[MethodType] } val (paramNeedsAdaptation, adaptedParams) = (bridgeSyms zip liftedBodyDefTpe.params map {case (bridgeSym, param) => adapt(Ident(bridgeSym) setType bridgeSym.tpe, param.tpe)}).unzip // SI-8017 Before, this code used `applyMethod.symbol.info.resultType`. // But that symbol doesn't have a type history that goes back before `delambdafy`, // so we just see a plain `Int`, rather than `ErasedValueType(C, Int)`. // This triggered primitive boxing, rather than value class boxing. val resTp = liftedBodyDefTpe.finalResultType val body = Apply(gen.mkAttributedSelect(gen.mkAttributedThis(newClass), applyMethod.symbol), adaptedParams) setType resTp val (needsReturnAdaptation, adaptedBody) = adaptAndPostErase(body, ObjectTpe) val needsBridge = (paramNeedsAdaptation contains true) || needsReturnAdaptation if (needsBridge) { val methDef = DefDef(bridgeMethSym, List(bridgeParams), adaptedBody) newClass.info.decls enter bridgeMethSym Some((localTyper typed methDef).asInstanceOf[DefDef]) } else None } } } // DelambdafyTransformer // A traverser that finds symbols used but not defined in the given Tree // TODO freeVarTraverser in LambdaLift does a very similar task. With some // analysis this could probably be unified with it class FreeVarTraverser extends Traverser { val freeVars = mutable.LinkedHashSet[Symbol]() val declared = mutable.LinkedHashSet[Symbol]() override def traverse(tree: Tree) = { tree match { case Function(args, _) => args foreach {arg => declared += arg.symbol} case ValDef(_, _, _, _) => declared += tree.symbol case _: Bind => declared += tree.symbol case Ident(_) => val sym = tree.symbol if ((sym != NoSymbol) && sym.isLocalToBlock && sym.isTerm && !sym.isMethod && !declared.contains(sym)) freeVars += sym case _ => } super.traverse(tree) } } object FreeVarTraverser { def freeVarsOf(function: Function) = { val freeVarsTraverser = new FreeVarTraverser freeVarsTraverser.traverse(function) freeVarsTraverser.freeVars } } // A transformer that converts specified captured symbols into other symbols // TODO this transform could look more like ThisSubstituter and TreeSymSubstituter. It's not clear that it needs that level of sophistication since the types // at this point are always very simple flattened/erased types, but it would probably be more robust if it tried to take more complicated types into account class DeCapturifyTransformer(captureProxies: Map[Symbol, TermSymbol], unit: CompilationUnit, oldClass: Symbol, newClass:Symbol, pos: Position, thisProxy: Symbol) extends TypingTransformer(unit) { override def transform(tree: Tree) = tree match { case tree@This(encl) if tree.symbol == oldClass && thisProxy.exists => gen mkAttributedSelect (gen mkAttributedThis newClass, thisProxy) case Ident(name) if (captureProxies contains tree.symbol) => gen mkAttributedSelect (gen mkAttributedThis newClass, captureProxies(tree.symbol)) case _ => super.transform(tree) } } /** * Get the symbol of the target lifted lambad body method from a function. I.e. if * the function is {args => anonfun(args)} then this method returns anonfun's symbol */ private def targetMethod(fun: Function): Symbol = fun match { case Function(_, Apply(target, _)) => target.symbol case _ => // any other shape of Function is unexpected at this point abort(s"could not understand function with tree $fun") } // finds all methods that reference 'this' class ThisReferringMethodsTraverser() extends Traverser { private var currentMethod: Symbol = NoSymbol // the set of methods that refer to this val thisReferringMethods = mutable.Set[Symbol]() // the set of lifted lambda body methods that each method refers to val liftedMethodReferences = mutable.Map[Symbol, Set[Symbol]]().withDefault(_ => mutable.Set()) override def traverse(tree: Tree) = tree match { case DefDef(_, _, _, _, _, _) => // we don't expect defs within defs. At this phase trees should be very flat if (currentMethod.exists) devWarning("Found a def within a def at a phase where defs are expected to be flattened out.") currentMethod = tree.symbol super.traverse(tree) currentMethod = NoSymbol case fun@Function(_, _) => // we don't drill into functions because at the beginning of this phase they will always refer to 'this'. // They'll be of the form {(args...) => this.anonfun(args...)} // but we do need to make note of the lifted body method in case it refers to 'this' if (currentMethod.exists) liftedMethodReferences(currentMethod) += targetMethod(fun) case This(_) => if (currentMethod.exists && tree.symbol == currentMethod.enclClass) { debuglog(s"$currentMethod directly refers to 'this'") thisReferringMethods add currentMethod } case _ => super.traverse(tree) } } } Other Scala source code examplesHere is a short list of links related to this Scala Delambdafy.scala source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.