alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (Delambdafy.scala)

This example Scala source code file (Delambdafy.scala) is included in my "Source Code Warehouse" project. The intent of this project is to help you more easily find Scala source code examples by using tags.

All credit for the original source code belongs to scala-lang.org; I'm just trying to make examples easier to find. (For my Scala work, see my Scala examples and tutorials.)

Scala tags/keywords

collection, compiler, defdef, function, ident, list, methodtype, mutable, nosymbol, nsc, reflection, symbol, synthetic, tree, valdef

The Delambdafy.scala Scala example source code

package scala.tools.nsc
package transform

import symtab._
import Flags._
import scala.collection._
import scala.language.postfixOps
import scala.reflect.internal.Symbols
import scala.collection.mutable.LinkedHashMap

/**
 * This transformer is responisble for turning lambdas into anonymous classes.
 * The main assumption it makes is that a lambda {args => body} has been turned into
 * {args => liftedBody()} where lifted body is a top level method that implements the body of the lambda.
 * Currently Uncurry is responsible for that transformation.
 *
 * From a lambda, Delambdafy will create
 * 1) a static forwarder at the top level of the class that contained the lambda
 * 2) a new top level class that
      a) has fields and a constructor taking the captured environment (including possbily the "this"
 *       reference)
 *    b) an apply method that calls the static forwarder
 *    c) if needed a bridge method for the apply method
 *  3) an instantiation of the newly created class which replaces the lambda
 *
 *  TODO the main work left to be done is to plug into specialization. Primarily that means choosing a
 * specialized FunctionN trait instead of the generic FunctionN trait as a parent and creating the
 * appropriately named applysp method
 */
abstract class Delambdafy extends Transform with TypingTransformers with ast.TreeDSL with TypeAdaptingTransformer {
  import global._
  import definitions._
  import CODE._

  val analyzer: global.analyzer.type = global.analyzer

  /** the following two members override abstract members in Transform */
  val phaseName: String = "delambdafy"

  protected def newTransformer(unit: CompilationUnit): Transformer =
    new DelambdafyTransformer(unit)

  class DelambdafyTransformer(unit: CompilationUnit) extends TypingTransformer(unit) with TypeAdapter {
    private val lambdaClassDefs = new mutable.LinkedHashMap[Symbol, List[Tree]] withDefaultValue Nil


    val typer = localTyper

    // we need to know which methods refer to the 'this' reference so that we can determine
    // which lambdas need access to it
    val thisReferringMethods: Set[Symbol] = {
      val thisReferringMethodsTraverser = new ThisReferringMethodsTraverser()
      thisReferringMethodsTraverser traverse unit.body
      val methodReferringMap = thisReferringMethodsTraverser.liftedMethodReferences
      val referrers = thisReferringMethodsTraverser.thisReferringMethods
      // recursively find methods that refer to 'this' directly or indirectly via references to other methods
      // for each method found add it to the referrers set
      def refersToThis(symbol: Symbol): Boolean = {
        if (referrers contains symbol) true
        else if (methodReferringMap(symbol) exists refersToThis) {
          // add it early to memoize
          debuglog(s"$symbol indirectly refers to 'this'")
          referrers += symbol
          true
        } else false
      }
      methodReferringMap.keys foreach refersToThis
      referrers
    }

    val accessorMethods = mutable.ArrayBuffer[Tree]()

    // the result of the transformFunction method. A class definition for the lambda, an expression
    // insantiating the lambda class, and an accessor method for the lambda class to be able to
    // call the implementation
    case class TransformedFunction(lambdaClassDef: ClassDef, newExpr: Tree, accessorMethod: Tree)

    // here's the main entry point of the transform
    override def transform(tree: Tree): Tree = tree match {
      // the main thing we care about is lambdas
      case fun @ Function(_, _) =>
        // a lambda beccomes a new class, an instantiation expression, and an
        // accessor method
        val TransformedFunction(lambdaClassDef, newExpr, accessorMethod) = transformFunction(fun)
        // we'll add accessor methods to the current template later
        accessorMethods += accessorMethod
        val pkg = lambdaClassDef.symbol.owner

        // we'll add the lambda class to the package later
        lambdaClassDefs(pkg) = lambdaClassDef :: lambdaClassDefs(pkg)

        super.transform(newExpr)
      // when we encounter a template (basically the thing that holds body of a class/trait)
      // we need to updated it to include newly created accesor methods after transforming it
      case Template(_, _, _) =>
        try {
          // during this call accessorMethods will be populated from the Function case
          val Template(parents, self, body) = super.transform(tree)
          Template(parents, self, body ++ accessorMethods)
        } finally accessorMethods.clear()
      case _ => super.transform(tree)
    }

    // this entry point is aimed at the statements in the compilation unit.
    // after working on the entire compilation until we'll have a set of
    // new class definitions to add to the top level
    override def transformStats(stats: List[Tree], exprOwner: Symbol): List[Tree] = {
      super.transformStats(stats, exprOwner) ++ lambdaClassDefs(exprOwner)
    }

    private def optionSymbol(sym: Symbol): Option[Symbol] = if (sym.exists) Some(sym) else None

    // turns a lambda into a new class def, a New expression instantiating that class, and an
    // accessor method fo the body of the lambda
    private def transformFunction(originalFunction: Function): TransformedFunction = {
      val functionTpe = originalFunction.tpe
      val targs = functionTpe.typeArgs
      val formals :+ restpe = targs
      val oldClass = originalFunction.symbol.enclClass

      // find which variables are free in the lambda because those are captures that need to be
      // passed into the constructor of the anonymous function class
      val captures = FreeVarTraverser.freeVarsOf(originalFunction)

      /**
       * Creates the apply method for the anonymous subclass of FunctionN
       */
      def createAccessorMethod(thisProxy: Symbol, fun: Function): DefDef = {
        val target = targetMethod(fun)
        if (!thisProxy.exists) {
          target setFlag STATIC
        }
        val params = ((optionSymbol(thisProxy) map {proxy:Symbol => ValDef(proxy)}) ++ (target.paramss.flatten map ValDef.apply)).toList

        val methSym = oldClass.newMethod(unit.freshTermName(nme.accessor.toString() + "$"), target.pos, FINAL | BRIDGE | SYNTHETIC | PROTECTED | STATIC)

        val paramSyms = params map {param => methSym.newSyntheticValueParam(param.symbol.tpe, param.name) }

        params zip paramSyms foreach { case (valdef, sym) => valdef.symbol = sym }
        params foreach (_.symbol.owner = methSym)

        val methodType = MethodType(paramSyms, restpe)
        methSym setInfo methodType

        oldClass.info.decls enter methSym

        val body = localTyper.typed {
          val newTarget = Select(if (thisProxy.exists) gen.mkAttributedRef(paramSyms(0)) else gen.mkAttributedThis(oldClass), target)
          val newParams = paramSyms drop (if (thisProxy.exists) 1 else 0) map Ident
          Apply(newTarget, newParams)
        } setPos fun.pos
        val methDef = DefDef(methSym, List(params), body)

        // Have to repack the type to avoid mismatches when existentials
        // appear in the result - see SI-4869.
        // TODO probably don't need packedType
        methDef.tpt setType localTyper.packedType(body, methSym)
        methDef
      }

      /**
       * Creates the apply method for the anonymous subclass of FunctionN
       */
      def createApplyMethod(newClass: Symbol, fun: Function, accessor: DefDef, thisProxy: Symbol): DefDef = {
        val methSym = newClass.newMethod(nme.apply, fun.pos, FINAL | SYNTHETIC)
        val params = fun.vparams map (_.duplicate)

        val paramSyms = map2(formals, params) {
          (tp, vparam) => methSym.newSyntheticValueParam(tp, vparam.name)
        }
        params zip paramSyms foreach { case (valdef, sym) => valdef.symbol = sym }
        params foreach (_.symbol.owner = methSym)

        val methodType = MethodType(paramSyms, restpe)
        methSym setInfo methodType

        newClass.info.decls enter methSym

        val Apply(_, oldParams) = fun.body

        val body = localTyper typed Apply(Select(gen.mkAttributedThis(oldClass), accessor.symbol), (optionSymbol(thisProxy) map {tp => Select(gen.mkAttributedThis(newClass), tp)}).toList ++ oldParams)
        body.substituteSymbols(fun.vparams map (_.symbol), params map (_.symbol))
        body changeOwner (fun.symbol -> methSym)

        val methDef = DefDef(methSym, List(params), body)

        // Have to repack the type to avoid mismatches when existentials
        // appear in the result - see SI-4869.
        // TODO probably don't need packedType
        methDef.tpt setType localTyper.packedType(body, methSym)
        methDef
      }

      /**
       * Creates the constructor on the newly created class. It will handle
       * initialization of members that represent the captured environment
       */
      def createConstructor(newClass: Symbol, members: List[ValDef]): DefDef = {
        val constrSym = newClass.newConstructor(originalFunction.pos, SYNTHETIC)

        val (paramSymbols, params, assigns) = (members map {member =>
          val paramSymbol = newClass.newVariable(member.symbol.name.toTermName, newClass.pos, 0)
          paramSymbol.setInfo(member.symbol.info)
          val paramVal = ValDef(paramSymbol)
          val paramIdent = Ident(paramSymbol)
          val assign = Assign(Select(gen.mkAttributedThis(newClass), member.symbol), paramIdent)

          (paramSymbol, paramVal, assign)
        }).unzip3

        val constrType = MethodType(paramSymbols, newClass.thisType)
        constrSym setInfoAndEnter constrType

        val body =
          Block(
            List(
              Apply(Select(Super(gen.mkAttributedThis(newClass), tpnme.EMPTY) setPos newClass.pos, nme.CONSTRUCTOR) setPos newClass.pos, Nil) setPos newClass.pos
            ) ++ assigns,
            Literal(Constant(())): Tree
          ) setPos newClass.pos

        (localTyper typed DefDef(constrSym, List(params), body) setPos newClass.pos).asInstanceOf[DefDef]
      }

      val pkg = oldClass.owner

      // Parent for anonymous class def
      val abstractFunctionErasedType = AbstractFunctionClass(formals.length).tpe

      // anonymous subclass of FunctionN with an apply method
      def makeAnonymousClass = {
        val parents = addSerializable(abstractFunctionErasedType)
        val funOwner = originalFunction.symbol.owner

        // TODO harmonize the naming of delamdafy anon-fun classes with those spun up by Uncurry
        //      - make `anonClass.isAnonymousClass` true.
        //      - use `newAnonymousClassSymbol` or push the required variations into a similar factory method
        //      - reinstate the assertion in `Erasure.resolveAnonymousBridgeClash`
        val suffix = "$lambda$" + (
          if (funOwner.isPrimaryConstructor) ""
          else "$" + funOwner.name + "$"
        )
        val name = unit.freshTypeName(s"${oldClass.name.decode}$suffix")

        val anonClass = pkg newClassSymbol(name, originalFunction.pos, FINAL | SYNTHETIC) addAnnotation SerialVersionUIDAnnotation
        anonClass setInfo ClassInfoType(parents, newScope, anonClass)

        val captureProxies2 = new LinkedHashMap[Symbol, TermSymbol]
        captures foreach {capture =>
          val sym = anonClass.newVariable(capture.name.toTermName, capture.pos, SYNTHETIC)
          sym setInfo capture.info
          captureProxies2 += ((capture, sym))
        }

      // the Optional proxy that will hold a reference to the 'this'
      // object used by the lambda, if any. NoSymbol if there is no this proxy
      val thisProxy = {
        val target = targetMethod(originalFunction)
        if (thisReferringMethods contains target) {
          val sym = anonClass.newVariable(nme.FAKE_LOCAL_THIS, originalFunction.pos, SYNTHETIC)
          sym.info = oldClass.tpe
          sym
        } else NoSymbol
      }

      val decapturify = new DeCapturifyTransformer(captureProxies2, unit, oldClass, anonClass, originalFunction.symbol.pos, thisProxy)

      val accessorMethod = createAccessorMethod(thisProxy, originalFunction)

      val decapturedFunction = decapturify.transform(originalFunction).asInstanceOf[Function]

      val members = (optionSymbol(thisProxy).toList ++ (captureProxies2 map (_._2))) map {member =>
        anonClass.info.decls enter member
        ValDef(member, gen.mkZero(member.tpe)) setPos decapturedFunction.pos
      }

      // constructor
      val constr = createConstructor(anonClass, members)

      // apply method with same arguments and return type as original lambda.
      val applyMethodDef = createApplyMethod(anonClass, decapturedFunction, accessorMethod, thisProxy)

      val bridgeMethod = createBridgeMethod(anonClass, originalFunction, applyMethodDef)

      def fulldef(sym: Symbol) =
        if (sym == NoSymbol) sym.toString
        else s"$sym: ${sym.tpe} in ${sym.owner}"

        bridgeMethod foreach (bm =>
          // TODO SI-6260 maybe just create the apply method with the signature (Object => Object) in all cases
          //      rather than the method+bridge pair.
          if (bm.symbol.tpe =:= applyMethodDef.symbol.tpe)
            erasure.resolveAnonymousBridgeClash(applyMethodDef.symbol, bm.symbol)
        )

        val body = members ++ List(constr, applyMethodDef) ++ bridgeMethod

        // TODO if member fields are private this complains that they're not accessible
        (localTyper.typedPos(decapturedFunction.pos)(ClassDef(anonClass, body)).asInstanceOf[ClassDef], thisProxy, accessorMethod)
      }

      val (anonymousClassDef, thisProxy, accessorMethod) = makeAnonymousClass

      pkg.info.decls enter anonymousClassDef.symbol

      val thisArg = optionSymbol(thisProxy) map (_ => gen.mkAttributedThis(oldClass) setPos originalFunction.pos)
      val captureArgs = captures map (capture => Ident(capture) setPos originalFunction.pos)

      val newStat =
          Typed(New(anonymousClassDef.symbol, (thisArg.toList ++ captureArgs): _*), TypeTree(abstractFunctionErasedType))

      val typedNewStat = localTyper.typedPos(originalFunction.pos)(newStat)

      TransformedFunction(anonymousClassDef, typedNewStat, accessorMethod)
    }

    /**
     * Creates a bridge method if needed. The bridge method forwards from apply(x1: Object, x2: Object...xn: Object): Object to
     * apply(x1: T1, x2: T2...xn: Tn): T0 using type adaptation on each input and output. The only time a bridge isn't needed
     * is when the original lambda is already erased to type Object, Object, Object... => Object
     */
    def createBridgeMethod(newClass:Symbol, originalFunction: Function, applyMethod: DefDef): Option[DefDef] = {
      val bridgeMethSym = newClass.newMethod(nme.apply, applyMethod.pos, FINAL | SYNTHETIC | BRIDGE)
      val originalParams = applyMethod.vparamss(0)
      val bridgeParams = originalParams map { originalParam =>
        val bridgeSym = bridgeMethSym.newSyntheticValueParam(ObjectTpe, originalParam.name)
        ValDef(bridgeSym)
      }

      val bridgeSyms = bridgeParams map (_.symbol)

      val methodType = MethodType(bridgeSyms, ObjectTpe)
      bridgeMethSym setInfo methodType

      def adapt(tree: Tree, expectedTpe: Type): (Boolean, Tree) = {
        if (tree.tpe =:= expectedTpe) (false, tree)
        else (true, adaptToType(tree, expectedTpe))
      }

      def adaptAndPostErase(tree: Tree, pt: Type): (Boolean, Tree) = {
        val (needsAdapt, adaptedTree) = adapt(tree, pt)
        val trans = postErasure.newTransformer(unit)
        val postErasedTree = trans.atOwner(currentOwner)(trans.transform(adaptedTree)) // SI-8017 elimnates ErasedValueTypes
        (needsAdapt, postErasedTree)
      }

      enteringPhase(currentRun.posterasurePhase) {
        // e.g, in:
        //   class C(val a: Int) extends AnyVal; (x: Int) => new C(x)
        //
        // This type is:
        //    (x: Int)ErasedValueType(class C, Int)
        val liftedBodyDefTpe: MethodType = {
          val liftedBodySymbol = {
            val Apply(method, _) = originalFunction.body
            method.symbol
          }
          liftedBodySymbol.info.asInstanceOf[MethodType]
        }
        val (paramNeedsAdaptation, adaptedParams) = (bridgeSyms zip liftedBodyDefTpe.params map {case (bridgeSym, param) => adapt(Ident(bridgeSym) setType bridgeSym.tpe, param.tpe)}).unzip
        // SI-8017 Before, this code used `applyMethod.symbol.info.resultType`.
        //         But that symbol doesn't have a type history that goes back before `delambdafy`,
        //         so we just see a plain `Int`, rather than `ErasedValueType(C, Int)`.
        //         This triggered primitive boxing, rather than value class boxing.
        val resTp = liftedBodyDefTpe.finalResultType
        val body = Apply(gen.mkAttributedSelect(gen.mkAttributedThis(newClass), applyMethod.symbol), adaptedParams) setType resTp
        val (needsReturnAdaptation, adaptedBody) = adaptAndPostErase(body, ObjectTpe)

        val needsBridge = (paramNeedsAdaptation contains true) || needsReturnAdaptation
        if (needsBridge) {
          val methDef = DefDef(bridgeMethSym, List(bridgeParams), adaptedBody)
          newClass.info.decls enter bridgeMethSym
          Some((localTyper typed methDef).asInstanceOf[DefDef])
        } else None
      }
    }
  } // DelambdafyTransformer

  // A traverser that finds symbols used but not defined in the given Tree
  // TODO freeVarTraverser in LambdaLift does a very similar task. With some
  // analysis this could probably be unified with it
  class FreeVarTraverser extends Traverser {
    val freeVars = mutable.LinkedHashSet[Symbol]()
    val declared = mutable.LinkedHashSet[Symbol]()

    override def traverse(tree: Tree) = {
      tree match {
        case Function(args, _) =>
          args foreach {arg => declared += arg.symbol}
        case ValDef(_, _, _, _) =>
          declared += tree.symbol
        case _: Bind =>
          declared += tree.symbol
        case Ident(_) =>
          val sym = tree.symbol
          if ((sym != NoSymbol) && sym.isLocalToBlock && sym.isTerm && !sym.isMethod && !declared.contains(sym)) freeVars += sym
        case _ =>
      }
      super.traverse(tree)
    }
  }

  object FreeVarTraverser {
    def freeVarsOf(function: Function) = {
      val freeVarsTraverser = new FreeVarTraverser
      freeVarsTraverser.traverse(function)
      freeVarsTraverser.freeVars
    }
  }

  // A transformer that converts specified captured symbols into other symbols
  // TODO this transform could look more like ThisSubstituter and TreeSymSubstituter. It's not clear that it needs that level of sophistication since the types
  // at this point are always very simple flattened/erased types, but it would probably be more robust if it tried to take more complicated types into account
  class DeCapturifyTransformer(captureProxies: Map[Symbol, TermSymbol], unit: CompilationUnit, oldClass: Symbol, newClass:Symbol, pos: Position, thisProxy: Symbol) extends TypingTransformer(unit) {
    override def transform(tree: Tree) = tree match {
      case tree@This(encl) if tree.symbol == oldClass && thisProxy.exists =>
        gen mkAttributedSelect (gen mkAttributedThis newClass, thisProxy)
      case Ident(name) if (captureProxies contains tree.symbol) =>
        gen mkAttributedSelect (gen mkAttributedThis newClass, captureProxies(tree.symbol))
      case _ => super.transform(tree)
    }
  }

  /**
   * Get the symbol of the target lifted lambad body method from a function. I.e. if
   * the function is {args => anonfun(args)} then this method returns anonfun's symbol
   */
  private def targetMethod(fun: Function): Symbol = fun match {
    case Function(_, Apply(target, _)) =>
      target.symbol
    case _ =>
      // any other shape of Function is unexpected at this point
      abort(s"could not understand function with tree $fun")
  }

  // finds all methods that reference 'this'
  class ThisReferringMethodsTraverser() extends Traverser {
    private var currentMethod: Symbol = NoSymbol
    // the set of methods that refer to this
    val thisReferringMethods = mutable.Set[Symbol]()
    // the set of lifted lambda body methods that each method refers to
    val liftedMethodReferences = mutable.Map[Symbol, Set[Symbol]]().withDefault(_ => mutable.Set())
    override def traverse(tree: Tree) = tree match {
      case DefDef(_, _, _, _, _, _) =>
        // we don't expect defs within defs. At this phase trees should be very flat
        if (currentMethod.exists) devWarning("Found a def within a def at a phase where defs are expected to be flattened out.")
        currentMethod = tree.symbol
        super.traverse(tree)
        currentMethod = NoSymbol
      case fun@Function(_, _) =>
        // we don't drill into functions because at the beginning of this phase they will always refer to 'this'.
        // They'll be of the form {(args...) => this.anonfun(args...)}
        // but we do need to make note of the lifted body method in case it refers to 'this'
        if (currentMethod.exists) liftedMethodReferences(currentMethod) += targetMethod(fun)
      case This(_) =>
        if (currentMethod.exists && tree.symbol == currentMethod.enclClass) {
          debuglog(s"$currentMethod directly refers to 'this'")
          thisReferringMethods add currentMethod
        }
      case _ =>
        super.traverse(tree)
    }
  }
}

Other Scala source code examples

Here is a short list of links related to this Scala Delambdafy.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.