|
Scala example source code file (RedBlackTree.scala)
The RedBlackTree.scala Scala example source code/* __ *\ ** ________ ___ / / ___ Scala API ** ** / __/ __// _ | / / / _ | (c) 2005-2013, LAMP/EPFL ** ** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ ** ** /____/\___/_/ |_/____/_/ | | ** ** |/ ** \* */ package scala package collection package immutable import scala.annotation.tailrec import scala.annotation.meta.getter /** An object containing the RedBlack tree implementation used by for `TreeMaps` and `TreeSets`. * * Implementation note: since efficiency is important for data structures this implementation * uses `null` to represent empty trees. This also means pattern matching cannot * easily be used. The API represented by the RedBlackTree object tries to hide these * optimizations behind a reasonably clean API. * * @since 2.10 */ private[collection] object RedBlackTree { def isEmpty(tree: Tree[_, _]): Boolean = tree eq null def contains[A: Ordering](tree: Tree[A, _], x: A): Boolean = lookup(tree, x) ne null def get[A: Ordering, B](tree: Tree[A, B], x: A): Option[B] = lookup(tree, x) match { case null => None case tree => Some(tree.value) } @tailrec def lookup[A, B](tree: Tree[A, B], x: A)(implicit ordering: Ordering[A]): Tree[A, B] = if (tree eq null) null else { val cmp = ordering.compare(x, tree.key) if (cmp < 0) lookup(tree.left, x) else if (cmp > 0) lookup(tree.right, x) else tree } def count(tree: Tree[_, _]) = if (tree eq null) 0 else tree.count /** * Count all the nodes with keys greater than or equal to the lower bound and less than the upper bound. * The two bounds are optional. */ def countInRange[A](tree: Tree[A, _], from: Option[A], to:Option[A])(implicit ordering: Ordering[A]) : Int = if (tree eq null) 0 else (from, to) match { // with no bounds use this node's count case (None, None) => tree.count // if node is less than the lower bound, try the tree on the right, it might be in range case (Some(lb), _) if ordering.lt(tree.key, lb) => countInRange(tree.right, from, to) // if node is greater than or equal to the upper bound, try the tree on the left, it might be in range case (_, Some(ub)) if ordering.gteq(tree.key, ub) => countInRange(tree.left, from, to) // node is in range so the tree on the left will all be less than the upper bound and the tree on the // right will all be greater than or equal to the lower bound. So 1 for this node plus // count the subtrees by stripping off the bounds that we don't need any more case _ => 1 + countInRange(tree.left, from, None) + countInRange(tree.right, None, to) } def update[A: Ordering, B, B1 >: B](tree: Tree[A, B], k: A, v: B1, overwrite: Boolean): Tree[A, B1] = blacken(upd(tree, k, v, overwrite)) def delete[A: Ordering, B](tree: Tree[A, B], k: A): Tree[A, B] = blacken(del(tree, k)) def rangeImpl[A: Ordering, B](tree: Tree[A, B], from: Option[A], until: Option[A]): Tree[A, B] = (from, until) match { case (Some(from), Some(until)) => this.range(tree, from, until) case (Some(from), None) => this.from(tree, from) case (None, Some(until)) => this.until(tree, until) case (None, None) => tree } def range[A: Ordering, B](tree: Tree[A, B], from: A, until: A): Tree[A, B] = blacken(doRange(tree, from, until)) def from[A: Ordering, B](tree: Tree[A, B], from: A): Tree[A, B] = blacken(doFrom(tree, from)) def to[A: Ordering, B](tree: Tree[A, B], to: A): Tree[A, B] = blacken(doTo(tree, to)) def until[A: Ordering, B](tree: Tree[A, B], key: A): Tree[A, B] = blacken(doUntil(tree, key)) def drop[A: Ordering, B](tree: Tree[A, B], n: Int): Tree[A, B] = blacken(doDrop(tree, n)) def take[A: Ordering, B](tree: Tree[A, B], n: Int): Tree[A, B] = blacken(doTake(tree, n)) def slice[A: Ordering, B](tree: Tree[A, B], from: Int, until: Int): Tree[A, B] = blacken(doSlice(tree, from, until)) def smallest[A, B](tree: Tree[A, B]): Tree[A, B] = { if (tree eq null) throw new NoSuchElementException("empty map") var result = tree while (result.left ne null) result = result.left result } def greatest[A, B](tree: Tree[A, B]): Tree[A, B] = { if (tree eq null) throw new NoSuchElementException("empty map") var result = tree while (result.right ne null) result = result.right result } def foreach[A,B,U](tree:Tree[A,B], f:((A,B)) => U):Unit = if (tree ne null) _foreach(tree,f) private[this] def _foreach[A, B, U](tree: Tree[A, B], f: ((A, B)) => U) { if (tree.left ne null) _foreach(tree.left, f) f((tree.key, tree.value)) if (tree.right ne null) _foreach(tree.right, f) } def foreachKey[A, U](tree:Tree[A,_], f: A => U):Unit = if (tree ne null) _foreachKey(tree,f) private[this] def _foreachKey[A, U](tree: Tree[A, _], f: A => U) { if (tree.left ne null) _foreachKey(tree.left, f) f((tree.key)) if (tree.right ne null) _foreachKey(tree.right, f) } def iterator[A: Ordering, B](tree: Tree[A, B], start: Option[A] = None): Iterator[(A, B)] = new EntriesIterator(tree, start) def keysIterator[A: Ordering](tree: Tree[A, _], start: Option[A] = None): Iterator[A] = new KeysIterator(tree, start) def valuesIterator[A: Ordering, B](tree: Tree[A, B], start: Option[A] = None): Iterator[B] = new ValuesIterator(tree, start) @tailrec def nth[A, B](tree: Tree[A, B], n: Int): Tree[A, B] = { val count = this.count(tree.left) if (n < count) nth(tree.left, n) else if (n > count) nth(tree.right, n - count - 1) else tree } def isBlack(tree: Tree[_, _]) = (tree eq null) || isBlackTree(tree) private[this] def isRedTree(tree: Tree[_, _]) = tree.isInstanceOf[RedTree[_, _]] private[this] def isBlackTree(tree: Tree[_, _]) = tree.isInstanceOf[BlackTree[_, _]] private[this] def blacken[A, B](t: Tree[A, B]): Tree[A, B] = if (t eq null) null else t.black private[this] def mkTree[A, B](isBlack: Boolean, k: A, v: B, l: Tree[A, B], r: Tree[A, B]) = if (isBlack) BlackTree(k, v, l, r) else RedTree(k, v, l, r) private[this] def balanceLeft[A, B, B1 >: B](isBlack: Boolean, z: A, zv: B, l: Tree[A, B1], d: Tree[A, B1]): Tree[A, B1] = { if (isRedTree(l) && isRedTree(l.left)) RedTree(l.key, l.value, BlackTree(l.left.key, l.left.value, l.left.left, l.left.right), BlackTree(z, zv, l.right, d)) else if (isRedTree(l) && isRedTree(l.right)) RedTree(l.right.key, l.right.value, BlackTree(l.key, l.value, l.left, l.right.left), BlackTree(z, zv, l.right.right, d)) else mkTree(isBlack, z, zv, l, d) } private[this] def balanceRight[A, B, B1 >: B](isBlack: Boolean, x: A, xv: B, a: Tree[A, B1], r: Tree[A, B1]): Tree[A, B1] = { if (isRedTree(r) && isRedTree(r.left)) RedTree(r.left.key, r.left.value, BlackTree(x, xv, a, r.left.left), BlackTree(r.key, r.value, r.left.right, r.right)) else if (isRedTree(r) && isRedTree(r.right)) RedTree(r.key, r.value, BlackTree(x, xv, a, r.left), BlackTree(r.right.key, r.right.value, r.right.left, r.right.right)) else mkTree(isBlack, x, xv, a, r) } private[this] def upd[A, B, B1 >: B](tree: Tree[A, B], k: A, v: B1, overwrite: Boolean)(implicit ordering: Ordering[A]): Tree[A, B1] = if (tree eq null) { RedTree(k, v, null, null) } else { val cmp = ordering.compare(k, tree.key) if (cmp < 0) balanceLeft(isBlackTree(tree), tree.key, tree.value, upd(tree.left, k, v, overwrite), tree.right) else if (cmp > 0) balanceRight(isBlackTree(tree), tree.key, tree.value, tree.left, upd(tree.right, k, v, overwrite)) else if (overwrite || k != tree.key) mkTree(isBlackTree(tree), k, v, tree.left, tree.right) else tree } private[this] def updNth[A, B, B1 >: B](tree: Tree[A, B], idx: Int, k: A, v: B1, overwrite: Boolean): Tree[A, B1] = if (tree eq null) { RedTree(k, v, null, null) } else { val rank = count(tree.left) + 1 if (idx < rank) balanceLeft(isBlackTree(tree), tree.key, tree.value, updNth(tree.left, idx, k, v, overwrite), tree.right) else if (idx > rank) balanceRight(isBlackTree(tree), tree.key, tree.value, tree.left, updNth(tree.right, idx - rank, k, v, overwrite)) else if (overwrite) mkTree(isBlackTree(tree), k, v, tree.left, tree.right) else tree } /* Based on Stefan Kahrs' Haskell version of Okasaki's Red&Black Trees * http://www.cse.unsw.edu.au/~dons/data/RedBlackTree.html */ private[this] def del[A, B](tree: Tree[A, B], k: A)(implicit ordering: Ordering[A]): Tree[A, B] = if (tree eq null) null else { def balance(x: A, xv: B, tl: Tree[A, B], tr: Tree[A, B]) = if (isRedTree(tl)) { if (isRedTree(tr)) { RedTree(x, xv, tl.black, tr.black) } else if (isRedTree(tl.left)) { RedTree(tl.key, tl.value, tl.left.black, BlackTree(x, xv, tl.right, tr)) } else if (isRedTree(tl.right)) { RedTree(tl.right.key, tl.right.value, BlackTree(tl.key, tl.value, tl.left, tl.right.left), BlackTree(x, xv, tl.right.right, tr)) } else { BlackTree(x, xv, tl, tr) } } else if (isRedTree(tr)) { if (isRedTree(tr.right)) { RedTree(tr.key, tr.value, BlackTree(x, xv, tl, tr.left), tr.right.black) } else if (isRedTree(tr.left)) { RedTree(tr.left.key, tr.left.value, BlackTree(x, xv, tl, tr.left.left), BlackTree(tr.key, tr.value, tr.left.right, tr.right)) } else { BlackTree(x, xv, tl, tr) } } else { BlackTree(x, xv, tl, tr) } def subl(t: Tree[A, B]) = if (t.isInstanceOf[BlackTree[_, _]]) t.red else sys.error("Defect: invariance violation; expected black, got "+t) def balLeft(x: A, xv: B, tl: Tree[A, B], tr: Tree[A, B]) = if (isRedTree(tl)) { RedTree(x, xv, tl.black, tr) } else if (isBlackTree(tr)) { balance(x, xv, tl, tr.red) } else if (isRedTree(tr) && isBlackTree(tr.left)) { RedTree(tr.left.key, tr.left.value, BlackTree(x, xv, tl, tr.left.left), balance(tr.key, tr.value, tr.left.right, subl(tr.right))) } else { sys.error("Defect: invariance violation") } def balRight(x: A, xv: B, tl: Tree[A, B], tr: Tree[A, B]) = if (isRedTree(tr)) { RedTree(x, xv, tl, tr.black) } else if (isBlackTree(tl)) { balance(x, xv, tl.red, tr) } else if (isRedTree(tl) && isBlackTree(tl.right)) { RedTree(tl.right.key, tl.right.value, balance(tl.key, tl.value, subl(tl.left), tl.right.left), BlackTree(x, xv, tl.right.right, tr)) } else { sys.error("Defect: invariance violation") } def delLeft = if (isBlackTree(tree.left)) balLeft(tree.key, tree.value, del(tree.left, k), tree.right) else RedTree(tree.key, tree.value, del(tree.left, k), tree.right) def delRight = if (isBlackTree(tree.right)) balRight(tree.key, tree.value, tree.left, del(tree.right, k)) else RedTree(tree.key, tree.value, tree.left, del(tree.right, k)) def append(tl: Tree[A, B], tr: Tree[A, B]): Tree[A, B] = if (tl eq null) { tr } else if (tr eq null) { tl } else if (isRedTree(tl) && isRedTree(tr)) { val bc = append(tl.right, tr.left) if (isRedTree(bc)) { RedTree(bc.key, bc.value, RedTree(tl.key, tl.value, tl.left, bc.left), RedTree(tr.key, tr.value, bc.right, tr.right)) } else { RedTree(tl.key, tl.value, tl.left, RedTree(tr.key, tr.value, bc, tr.right)) } } else if (isBlackTree(tl) && isBlackTree(tr)) { val bc = append(tl.right, tr.left) if (isRedTree(bc)) { RedTree(bc.key, bc.value, BlackTree(tl.key, tl.value, tl.left, bc.left), BlackTree(tr.key, tr.value, bc.right, tr.right)) } else { balLeft(tl.key, tl.value, tl.left, BlackTree(tr.key, tr.value, bc, tr.right)) } } else if (isRedTree(tr)) { RedTree(tr.key, tr.value, append(tl, tr.left), tr.right) } else if (isRedTree(tl)) { RedTree(tl.key, tl.value, tl.left, append(tl.right, tr)) } else { sys.error("unmatched tree on append: " + tl + ", " + tr) } val cmp = ordering.compare(k, tree.key) if (cmp < 0) delLeft else if (cmp > 0) delRight else append(tree.left, tree.right) } private[this] def doFrom[A, B](tree: Tree[A, B], from: A)(implicit ordering: Ordering[A]): Tree[A, B] = { if (tree eq null) return null if (ordering.lt(tree.key, from)) return doFrom(tree.right, from) val newLeft = doFrom(tree.left, from) if (newLeft eq tree.left) tree else if (newLeft eq null) upd(tree.right, tree.key, tree.value, overwrite = false) else rebalance(tree, newLeft, tree.right) } private[this] def doTo[A, B](tree: Tree[A, B], to: A)(implicit ordering: Ordering[A]): Tree[A, B] = { if (tree eq null) return null if (ordering.lt(to, tree.key)) return doTo(tree.left, to) val newRight = doTo(tree.right, to) if (newRight eq tree.right) tree else if (newRight eq null) upd(tree.left, tree.key, tree.value, overwrite = false) else rebalance(tree, tree.left, newRight) } private[this] def doUntil[A, B](tree: Tree[A, B], until: A)(implicit ordering: Ordering[A]): Tree[A, B] = { if (tree eq null) return null if (ordering.lteq(until, tree.key)) return doUntil(tree.left, until) val newRight = doUntil(tree.right, until) if (newRight eq tree.right) tree else if (newRight eq null) upd(tree.left, tree.key, tree.value, overwrite = false) else rebalance(tree, tree.left, newRight) } private[this] def doRange[A, B](tree: Tree[A, B], from: A, until: A)(implicit ordering: Ordering[A]): Tree[A, B] = { if (tree eq null) return null if (ordering.lt(tree.key, from)) return doRange(tree.right, from, until) if (ordering.lteq(until, tree.key)) return doRange(tree.left, from, until) val newLeft = doFrom(tree.left, from) val newRight = doUntil(tree.right, until) if ((newLeft eq tree.left) && (newRight eq tree.right)) tree else if (newLeft eq null) upd(newRight, tree.key, tree.value, overwrite = false) else if (newRight eq null) upd(newLeft, tree.key, tree.value, overwrite = false) else rebalance(tree, newLeft, newRight) } private[this] def doDrop[A, B](tree: Tree[A, B], n: Int): Tree[A, B] = { if (n <= 0) return tree if (n >= this.count(tree)) return null val count = this.count(tree.left) if (n > count) return doDrop(tree.right, n - count - 1) val newLeft = doDrop(tree.left, n) if (newLeft eq tree.left) tree else if (newLeft eq null) updNth(tree.right, n - count - 1, tree.key, tree.value, overwrite = false) else rebalance(tree, newLeft, tree.right) } private[this] def doTake[A, B](tree: Tree[A, B], n: Int): Tree[A, B] = { if (n <= 0) return null if (n >= this.count(tree)) return tree val count = this.count(tree.left) if (n <= count) return doTake(tree.left, n) val newRight = doTake(tree.right, n - count - 1) if (newRight eq tree.right) tree else if (newRight eq null) updNth(tree.left, n, tree.key, tree.value, overwrite = false) else rebalance(tree, tree.left, newRight) } private[this] def doSlice[A, B](tree: Tree[A, B], from: Int, until: Int): Tree[A, B] = { if (tree eq null) return null val count = this.count(tree.left) if (from > count) return doSlice(tree.right, from - count - 1, until - count - 1) if (until <= count) return doSlice(tree.left, from, until) val newLeft = doDrop(tree.left, from) val newRight = doTake(tree.right, until - count - 1) if ((newLeft eq tree.left) && (newRight eq tree.right)) tree else if (newLeft eq null) updNth(newRight, from - count - 1, tree.key, tree.value, overwrite = false) else if (newRight eq null) updNth(newLeft, until, tree.key, tree.value, overwrite = false) else rebalance(tree, newLeft, newRight) } // The zipper returned might have been traversed left-most (always the left child) // or right-most (always the right child). Left trees are traversed right-most, // and right trees are traversed leftmost. // Returns the zipper for the side with deepest black nodes depth, a flag // indicating whether the trees were unbalanced at all, and a flag indicating // whether the zipper was traversed left-most or right-most. // If the trees were balanced, returns an empty zipper private[this] def compareDepth[A, B](left: Tree[A, B], right: Tree[A, B]): (NList[Tree[A, B]], Boolean, Boolean, Int) = { import NList.cons // Once a side is found to be deeper, unzip it to the bottom def unzip(zipper: NList[Tree[A, B]], leftMost: Boolean): NList[Tree[A, B]] = { val next = if (leftMost) zipper.head.left else zipper.head.right if (next eq null) zipper else unzip(cons(next, zipper), leftMost) } // Unzip left tree on the rightmost side and right tree on the leftmost side until one is // found to be deeper, or the bottom is reached def unzipBoth(left: Tree[A, B], right: Tree[A, B], leftZipper: NList[Tree[A, B]], rightZipper: NList[Tree[A, B]], smallerDepth: Int): (NList[Tree[A, B]], Boolean, Boolean, Int) = { if (isBlackTree(left) && isBlackTree(right)) { unzipBoth(left.right, right.left, cons(left, leftZipper), cons(right, rightZipper), smallerDepth + 1) } else if (isRedTree(left) && isRedTree(right)) { unzipBoth(left.right, right.left, cons(left, leftZipper), cons(right, rightZipper), smallerDepth) } else if (isRedTree(right)) { unzipBoth(left, right.left, leftZipper, cons(right, rightZipper), smallerDepth) } else if (isRedTree(left)) { unzipBoth(left.right, right, cons(left, leftZipper), rightZipper, smallerDepth) } else if ((left eq null) && (right eq null)) { (null, true, false, smallerDepth) } else if ((left eq null) && isBlackTree(right)) { val leftMost = true (unzip(cons(right, rightZipper), leftMost), false, leftMost, smallerDepth) } else if (isBlackTree(left) && (right eq null)) { val leftMost = false (unzip(cons(left, leftZipper), leftMost), false, leftMost, smallerDepth) } else { sys.error("unmatched trees in unzip: " + left + ", " + right) } } unzipBoth(left, right, null, null, 0) } private[this] def rebalance[A, B](tree: Tree[A, B], newLeft: Tree[A, B], newRight: Tree[A, B]) = { // This is like drop(n-1), but only counting black nodes @tailrec def findDepth(zipper: NList[Tree[A, B]], depth: Int): NList[Tree[A, B]] = if (zipper eq null) { sys.error("Defect: unexpected empty zipper while computing range") } else if (isBlackTree(zipper.head)) { if (depth == 1) zipper else findDepth(zipper.tail, depth - 1) } else { findDepth(zipper.tail, depth) } // Blackening the smaller tree avoids balancing problems on union; // this can't be done later, though, or it would change the result of compareDepth val blkNewLeft = blacken(newLeft) val blkNewRight = blacken(newRight) val (zipper, levelled, leftMost, smallerDepth) = compareDepth(blkNewLeft, blkNewRight) if (levelled) { BlackTree(tree.key, tree.value, blkNewLeft, blkNewRight) } else { val zipFrom = findDepth(zipper, smallerDepth) val union = if (leftMost) { RedTree(tree.key, tree.value, blkNewLeft, zipFrom.head) } else { RedTree(tree.key, tree.value, zipFrom.head, blkNewRight) } val zippedTree = NList.foldLeft(zipFrom.tail, union: Tree[A, B]) { (tree, node) => if (leftMost) balanceLeft(isBlackTree(node), node.key, node.value, tree, node.right) else balanceRight(isBlackTree(node), node.key, node.value, node.left, tree) } zippedTree } } // Null optimized list implementation for tree rebalancing. null presents Nil. private[this] final class NList[A](val head: A, val tail: NList[A]) private[this] final object NList { def cons[B](x: B, xs: NList[B]): NList[B] = new NList(x, xs) def foldLeft[A, B](xs: NList[A], z: B)(f: (B, A) => B): B = { var acc = z var these = xs while (these ne null) { acc = f(acc, these.head) these = these.tail } acc } } /* * Forcing direct fields access using the @inline annotation helps speed up * various operations (especially smallest/greatest and update/delete). * * Unfortunately the direct field access is not guaranteed to work (but * works on the current implementation of the Scala compiler). * * An alternative is to implement the these classes using plain old Java code... */ sealed abstract class Tree[A, +B]( @(inline @getter) final val key: A, @(inline @getter) final val value: B, @(inline @getter) final val left: Tree[A, B], @(inline @getter) final val right: Tree[A, B]) extends Serializable { @(inline @getter) final val count: Int = 1 + RedBlackTree.count(left) + RedBlackTree.count(right) def black: Tree[A, B] def red: Tree[A, B] } final class RedTree[A, +B](key: A, value: B, left: Tree[A, B], right: Tree[A, B]) extends Tree[A, B](key, value, left, right) { override def black: Tree[A, B] = BlackTree(key, value, left, right) override def red: Tree[A, B] = this override def toString: String = "RedTree(" + key + ", " + value + ", " + left + ", " + right + ")" } final class BlackTree[A, +B](key: A, value: B, left: Tree[A, B], right: Tree[A, B]) extends Tree[A, B](key, value, left, right) { override def black: Tree[A, B] = this override def red: Tree[A, B] = RedTree(key, value, left, right) override def toString: String = "BlackTree(" + key + ", " + value + ", " + left + ", " + right + ")" } object RedTree { @inline def apply[A, B](key: A, value: B, left: Tree[A, B], right: Tree[A, B]) = new RedTree(key, value, left, right) def unapply[A, B](t: RedTree[A, B]) = Some((t.key, t.value, t.left, t.right)) } object BlackTree { @inline def apply[A, B](key: A, value: B, left: Tree[A, B], right: Tree[A, B]) = new BlackTree(key, value, left, right) def unapply[A, B](t: BlackTree[A, B]) = Some((t.key, t.value, t.left, t.right)) } private[this] abstract class TreeIterator[A, B, R](root: Tree[A, B], start: Option[A])(implicit ordering: Ordering[A]) extends Iterator[R] { protected[this] def nextResult(tree: Tree[A, B]): R override def hasNext: Boolean = lookahead ne null override def next: R = lookahead match { case null => throw new NoSuchElementException("next on empty iterator") case tree => lookahead = findLeftMostOrPopOnEmpty(goRight(tree)) nextResult(tree) } @tailrec private[this] def findLeftMostOrPopOnEmpty(tree: Tree[A, B]): Tree[A, B] = if (tree eq null) popNext() else if (tree.left eq null) tree else findLeftMostOrPopOnEmpty(goLeft(tree)) private[this] def pushNext(tree: Tree[A, B]) { try { stackOfNexts(index) = tree index += 1 } catch { case _: ArrayIndexOutOfBoundsException => /* * Either the tree became unbalanced or we calculated the maximum height incorrectly. * To avoid crashing the iterator we expand the path array. Obviously this should never * happen... * * An exception handler is used instead of an if-condition to optimize the normal path. * This makes a large difference in iteration speed! */ assert(index >= stackOfNexts.length) stackOfNexts :+= null pushNext(tree) } } private[this] def popNext(): Tree[A, B] = if (index == 0) null else { index -= 1 stackOfNexts(index) } private[this] var stackOfNexts = if (root eq null) null else { /* * According to "Ralf Hinze. Constructing red-black trees" [http://www.cs.ox.ac.uk/ralf.hinze/publications/#P5] * the maximum height of a red-black tree is 2*log_2(n + 2) - 2. * * According to {@see Integer#numberOfLeadingZeros} ceil(log_2(n)) = (32 - Integer.numberOfLeadingZeros(n - 1)) * * We also don't store the deepest nodes in the path so the maximum path length is further reduced by one. */ val maximumHeight = 2 * (32 - Integer.numberOfLeadingZeros(root.count + 2 - 1)) - 2 - 1 new Array[Tree[A, B]](maximumHeight) } private[this] var index = 0 private[this] var lookahead: Tree[A, B] = start map startFrom getOrElse findLeftMostOrPopOnEmpty(root) /** * Find the leftmost subtree whose key is equal to the given key, or if no such thing, * the leftmost subtree with the key that would be "next" after it according * to the ordering. Along the way build up the iterator's path stack so that "next" * functionality works. */ private[this] def startFrom(key: A) : Tree[A,B] = if (root eq null) null else { @tailrec def find(tree: Tree[A, B]): Tree[A, B] = if (tree eq null) popNext() else find( if (ordering.lteq(key, tree.key)) goLeft(tree) else goRight(tree) ) find(root) } private[this] def goLeft(tree: Tree[A, B]) = { pushNext(tree) tree.left } private[this] def goRight(tree: Tree[A, B]) = tree.right } private[this] class EntriesIterator[A: Ordering, B](tree: Tree[A, B], focus: Option[A]) extends TreeIterator[A, B, (A, B)](tree, focus) { override def nextResult(tree: Tree[A, B]) = (tree.key, tree.value) } private[this] class KeysIterator[A: Ordering, B](tree: Tree[A, B], focus: Option[A]) extends TreeIterator[A, B, A](tree, focus) { override def nextResult(tree: Tree[A, B]) = tree.key } private[this] class ValuesIterator[A: Ordering, B](tree: Tree[A, B], focus: Option[A]) extends TreeIterator[A, B, B](tree, focus) { override def nextResult(tree: Tree[A, B]) = tree.value } } Other Scala source code examplesHere is a short list of links related to this Scala RedBlackTree.scala source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.