alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (RedBlackTree.scala)

This example Scala source code file (RedBlackTree.scala) is included in my "Source Code Warehouse" project. The intent of this project is to help you more easily find Scala source code examples by using tags.

All credit for the original source code belongs to scala-lang.org; I'm just trying to make examples easier to find. (For my Scala work, see my Scala examples and tutorials.)

Scala tags/keywords

a, annotation, b, b1, blacktree, boolean, int, nlist, ordering, redtree, tree

The RedBlackTree.scala Scala example source code

/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2005-2013, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://scala-lang.org/               **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */



package scala
package collection
package immutable

import scala.annotation.tailrec
import scala.annotation.meta.getter

/** An object containing the RedBlack tree implementation used by for `TreeMaps` and `TreeSets`.
 *
 *  Implementation note: since efficiency is important for data structures this implementation
 *  uses `null` to represent empty trees. This also means pattern matching cannot
 *  easily be used. The API represented by the RedBlackTree object tries to hide these
 *  optimizations behind a reasonably clean API.
 *
 *  @since 2.10
 */
private[collection]
object RedBlackTree {

  def isEmpty(tree: Tree[_, _]): Boolean = tree eq null

  def contains[A: Ordering](tree: Tree[A, _], x: A): Boolean = lookup(tree, x) ne null
  def get[A: Ordering, B](tree: Tree[A, B], x: A): Option[B] = lookup(tree, x) match {
    case null => None
    case tree => Some(tree.value)
  }

  @tailrec
  def lookup[A, B](tree: Tree[A, B], x: A)(implicit ordering: Ordering[A]): Tree[A, B] = if (tree eq null) null else {
    val cmp = ordering.compare(x, tree.key)
    if (cmp < 0) lookup(tree.left, x)
    else if (cmp > 0) lookup(tree.right, x)
    else tree
  }

  def count(tree: Tree[_, _]) = if (tree eq null) 0 else tree.count
  /**
   * Count all the nodes with keys greater than or equal to the lower bound and less than the upper bound.
   * The two bounds are optional.
   */
  def countInRange[A](tree: Tree[A, _], from: Option[A], to:Option[A])(implicit ordering: Ordering[A]) : Int =
    if (tree eq null) 0 else
    (from, to) match {
      // with no bounds use this node's count
      case (None, None) => tree.count
      // if node is less than the lower bound, try the tree on the right, it might be in range
      case (Some(lb), _) if ordering.lt(tree.key, lb) => countInRange(tree.right, from, to)
      // if node is greater than or equal to the upper bound, try the tree on the left, it might be in range
      case (_, Some(ub)) if ordering.gteq(tree.key, ub) => countInRange(tree.left, from, to)
      // node is in range so the tree on the left will all be less than the upper bound and the tree on the
      // right will all be greater than or equal to the lower bound. So 1 for this node plus
      // count the subtrees by stripping off the bounds that we don't need any more
      case _ => 1 + countInRange(tree.left, from, None) + countInRange(tree.right, None, to)

    }
  def update[A: Ordering, B, B1 >: B](tree: Tree[A, B], k: A, v: B1, overwrite: Boolean): Tree[A, B1] = blacken(upd(tree, k, v, overwrite))
  def delete[A: Ordering, B](tree: Tree[A, B], k: A): Tree[A, B] = blacken(del(tree, k))
  def rangeImpl[A: Ordering, B](tree: Tree[A, B], from: Option[A], until: Option[A]): Tree[A, B] = (from, until) match {
    case (Some(from), Some(until)) => this.range(tree, from, until)
    case (Some(from), None)        => this.from(tree, from)
    case (None,       Some(until)) => this.until(tree, until)
    case (None,       None)        => tree
  }
  def range[A: Ordering, B](tree: Tree[A, B], from: A, until: A): Tree[A, B] = blacken(doRange(tree, from, until))
  def from[A: Ordering, B](tree: Tree[A, B], from: A): Tree[A, B] = blacken(doFrom(tree, from))
  def to[A: Ordering, B](tree: Tree[A, B], to: A): Tree[A, B] = blacken(doTo(tree, to))
  def until[A: Ordering, B](tree: Tree[A, B], key: A): Tree[A, B] = blacken(doUntil(tree, key))

  def drop[A: Ordering, B](tree: Tree[A, B], n: Int): Tree[A, B] = blacken(doDrop(tree, n))
  def take[A: Ordering, B](tree: Tree[A, B], n: Int): Tree[A, B] = blacken(doTake(tree, n))
  def slice[A: Ordering, B](tree: Tree[A, B], from: Int, until: Int): Tree[A, B] = blacken(doSlice(tree, from, until))

  def smallest[A, B](tree: Tree[A, B]): Tree[A, B] = {
    if (tree eq null) throw new NoSuchElementException("empty map")
    var result = tree
    while (result.left ne null) result = result.left
    result
  }
  def greatest[A, B](tree: Tree[A, B]): Tree[A, B] = {
    if (tree eq null) throw new NoSuchElementException("empty map")
    var result = tree
    while (result.right ne null) result = result.right
    result
  }


  def foreach[A,B,U](tree:Tree[A,B], f:((A,B)) => U):Unit = if (tree ne null) _foreach(tree,f)

  private[this] def _foreach[A, B, U](tree: Tree[A, B], f: ((A, B)) => U) {
    if (tree.left ne null) _foreach(tree.left, f)
    f((tree.key, tree.value))
    if (tree.right ne null) _foreach(tree.right, f)
  }

  def foreachKey[A, U](tree:Tree[A,_], f: A => U):Unit = if (tree ne null) _foreachKey(tree,f)

  private[this] def _foreachKey[A, U](tree: Tree[A, _], f: A => U) {
    if (tree.left ne null) _foreachKey(tree.left, f)
    f((tree.key))
    if (tree.right ne null) _foreachKey(tree.right, f)
  }

  def iterator[A: Ordering, B](tree: Tree[A, B], start: Option[A] = None): Iterator[(A, B)] = new EntriesIterator(tree, start)
  def keysIterator[A: Ordering](tree: Tree[A, _], start: Option[A] = None): Iterator[A] = new KeysIterator(tree, start)
  def valuesIterator[A: Ordering, B](tree: Tree[A, B], start: Option[A] = None): Iterator[B] = new ValuesIterator(tree, start)

  @tailrec
  def nth[A, B](tree: Tree[A, B], n: Int): Tree[A, B] = {
    val count = this.count(tree.left)
    if (n < count) nth(tree.left, n)
    else if (n > count) nth(tree.right, n - count - 1)
    else tree
  }

  def isBlack(tree: Tree[_, _]) = (tree eq null) || isBlackTree(tree)

  private[this] def isRedTree(tree: Tree[_, _]) = tree.isInstanceOf[RedTree[_, _]]
  private[this] def isBlackTree(tree: Tree[_, _]) = tree.isInstanceOf[BlackTree[_, _]]

  private[this] def blacken[A, B](t: Tree[A, B]): Tree[A, B] = if (t eq null) null else t.black

  private[this] def mkTree[A, B](isBlack: Boolean, k: A, v: B, l: Tree[A, B], r: Tree[A, B]) =
    if (isBlack) BlackTree(k, v, l, r) else RedTree(k, v, l, r)

  private[this] def balanceLeft[A, B, B1 >: B](isBlack: Boolean, z: A, zv: B, l: Tree[A, B1], d: Tree[A, B1]): Tree[A, B1] = {
    if (isRedTree(l) && isRedTree(l.left))
      RedTree(l.key, l.value, BlackTree(l.left.key, l.left.value, l.left.left, l.left.right), BlackTree(z, zv, l.right, d))
    else if (isRedTree(l) && isRedTree(l.right))
      RedTree(l.right.key, l.right.value, BlackTree(l.key, l.value, l.left, l.right.left), BlackTree(z, zv, l.right.right, d))
    else
      mkTree(isBlack, z, zv, l, d)
  }
  private[this] def balanceRight[A, B, B1 >: B](isBlack: Boolean, x: A, xv: B, a: Tree[A, B1], r: Tree[A, B1]): Tree[A, B1] = {
    if (isRedTree(r) && isRedTree(r.left))
      RedTree(r.left.key, r.left.value, BlackTree(x, xv, a, r.left.left), BlackTree(r.key, r.value, r.left.right, r.right))
    else if (isRedTree(r) && isRedTree(r.right))
      RedTree(r.key, r.value, BlackTree(x, xv, a, r.left), BlackTree(r.right.key, r.right.value, r.right.left, r.right.right))
    else
      mkTree(isBlack, x, xv, a, r)
  }
  private[this] def upd[A, B, B1 >: B](tree: Tree[A, B], k: A, v: B1, overwrite: Boolean)(implicit ordering: Ordering[A]): Tree[A, B1] = if (tree eq null) {
    RedTree(k, v, null, null)
  } else {
    val cmp = ordering.compare(k, tree.key)
    if (cmp < 0) balanceLeft(isBlackTree(tree), tree.key, tree.value, upd(tree.left, k, v, overwrite), tree.right)
    else if (cmp > 0) balanceRight(isBlackTree(tree), tree.key, tree.value, tree.left, upd(tree.right, k, v, overwrite))
    else if (overwrite || k != tree.key) mkTree(isBlackTree(tree), k, v, tree.left, tree.right)
    else tree
  }
  private[this] def updNth[A, B, B1 >: B](tree: Tree[A, B], idx: Int, k: A, v: B1, overwrite: Boolean): Tree[A, B1] = if (tree eq null) {
    RedTree(k, v, null, null)
  } else {
    val rank = count(tree.left) + 1
    if (idx < rank) balanceLeft(isBlackTree(tree), tree.key, tree.value, updNth(tree.left, idx, k, v, overwrite), tree.right)
    else if (idx > rank) balanceRight(isBlackTree(tree), tree.key, tree.value, tree.left, updNth(tree.right, idx - rank, k, v, overwrite))
    else if (overwrite) mkTree(isBlackTree(tree), k, v, tree.left, tree.right)
    else tree
  }

  /* Based on Stefan Kahrs' Haskell version of Okasaki's Red&Black Trees
   * http://www.cse.unsw.edu.au/~dons/data/RedBlackTree.html */
  private[this] def del[A, B](tree: Tree[A, B], k: A)(implicit ordering: Ordering[A]): Tree[A, B] = if (tree eq null) null else {
    def balance(x: A, xv: B, tl: Tree[A, B], tr: Tree[A, B]) = if (isRedTree(tl)) {
      if (isRedTree(tr)) {
        RedTree(x, xv, tl.black, tr.black)
      } else if (isRedTree(tl.left)) {
        RedTree(tl.key, tl.value, tl.left.black, BlackTree(x, xv, tl.right, tr))
      } else if (isRedTree(tl.right)) {
        RedTree(tl.right.key, tl.right.value, BlackTree(tl.key, tl.value, tl.left, tl.right.left), BlackTree(x, xv, tl.right.right, tr))
      } else {
        BlackTree(x, xv, tl, tr)
      }
    } else if (isRedTree(tr)) {
      if (isRedTree(tr.right)) {
        RedTree(tr.key, tr.value, BlackTree(x, xv, tl, tr.left), tr.right.black)
      } else if (isRedTree(tr.left)) {
        RedTree(tr.left.key, tr.left.value, BlackTree(x, xv, tl, tr.left.left), BlackTree(tr.key, tr.value, tr.left.right, tr.right))
      } else {
        BlackTree(x, xv, tl, tr)
      }
    } else {
      BlackTree(x, xv, tl, tr)
    }
    def subl(t: Tree[A, B]) =
      if (t.isInstanceOf[BlackTree[_, _]]) t.red
      else sys.error("Defect: invariance violation; expected black, got "+t)

    def balLeft(x: A, xv: B, tl: Tree[A, B], tr: Tree[A, B]) = if (isRedTree(tl)) {
      RedTree(x, xv, tl.black, tr)
    } else if (isBlackTree(tr)) {
      balance(x, xv, tl, tr.red)
    } else if (isRedTree(tr) && isBlackTree(tr.left)) {
      RedTree(tr.left.key, tr.left.value, BlackTree(x, xv, tl, tr.left.left), balance(tr.key, tr.value, tr.left.right, subl(tr.right)))
    } else {
      sys.error("Defect: invariance violation")
    }
    def balRight(x: A, xv: B, tl: Tree[A, B], tr: Tree[A, B]) = if (isRedTree(tr)) {
      RedTree(x, xv, tl, tr.black)
    } else if (isBlackTree(tl)) {
      balance(x, xv, tl.red, tr)
    } else if (isRedTree(tl) && isBlackTree(tl.right)) {
      RedTree(tl.right.key, tl.right.value, balance(tl.key, tl.value, subl(tl.left), tl.right.left), BlackTree(x, xv, tl.right.right, tr))
    } else {
      sys.error("Defect: invariance violation")
    }
    def delLeft = if (isBlackTree(tree.left)) balLeft(tree.key, tree.value, del(tree.left, k), tree.right) else RedTree(tree.key, tree.value, del(tree.left, k), tree.right)
    def delRight = if (isBlackTree(tree.right)) balRight(tree.key, tree.value, tree.left, del(tree.right, k)) else RedTree(tree.key, tree.value, tree.left, del(tree.right, k))
    def append(tl: Tree[A, B], tr: Tree[A, B]): Tree[A, B] = if (tl eq null) {
      tr
    } else if (tr eq null) {
      tl
    } else if (isRedTree(tl) && isRedTree(tr)) {
      val bc = append(tl.right, tr.left)
      if (isRedTree(bc)) {
        RedTree(bc.key, bc.value, RedTree(tl.key, tl.value, tl.left, bc.left), RedTree(tr.key, tr.value, bc.right, tr.right))
      } else {
        RedTree(tl.key, tl.value, tl.left, RedTree(tr.key, tr.value, bc, tr.right))
      }
    } else if (isBlackTree(tl) && isBlackTree(tr)) {
      val bc = append(tl.right, tr.left)
      if (isRedTree(bc)) {
        RedTree(bc.key, bc.value, BlackTree(tl.key, tl.value, tl.left, bc.left), BlackTree(tr.key, tr.value, bc.right, tr.right))
      } else {
        balLeft(tl.key, tl.value, tl.left, BlackTree(tr.key, tr.value, bc, tr.right))
      }
    } else if (isRedTree(tr)) {
      RedTree(tr.key, tr.value, append(tl, tr.left), tr.right)
    } else if (isRedTree(tl)) {
      RedTree(tl.key, tl.value, tl.left, append(tl.right, tr))
    } else {
      sys.error("unmatched tree on append: " + tl + ", " + tr)
    }

    val cmp = ordering.compare(k, tree.key)
    if (cmp < 0) delLeft
    else if (cmp > 0) delRight
    else append(tree.left, tree.right)
  }

  private[this] def doFrom[A, B](tree: Tree[A, B], from: A)(implicit ordering: Ordering[A]): Tree[A, B] = {
    if (tree eq null) return null
    if (ordering.lt(tree.key, from)) return doFrom(tree.right, from)
    val newLeft = doFrom(tree.left, from)
    if (newLeft eq tree.left) tree
    else if (newLeft eq null) upd(tree.right, tree.key, tree.value, overwrite = false)
    else rebalance(tree, newLeft, tree.right)
  }
  private[this] def doTo[A, B](tree: Tree[A, B], to: A)(implicit ordering: Ordering[A]): Tree[A, B] = {
    if (tree eq null) return null
    if (ordering.lt(to, tree.key)) return doTo(tree.left, to)
    val newRight = doTo(tree.right, to)
    if (newRight eq tree.right) tree
    else if (newRight eq null) upd(tree.left, tree.key, tree.value, overwrite = false)
    else rebalance(tree, tree.left, newRight)
  }
  private[this] def doUntil[A, B](tree: Tree[A, B], until: A)(implicit ordering: Ordering[A]): Tree[A, B] = {
    if (tree eq null) return null
    if (ordering.lteq(until, tree.key)) return doUntil(tree.left, until)
    val newRight = doUntil(tree.right, until)
    if (newRight eq tree.right) tree
    else if (newRight eq null) upd(tree.left, tree.key, tree.value, overwrite = false)
    else rebalance(tree, tree.left, newRight)
  }
  private[this] def doRange[A, B](tree: Tree[A, B], from: A, until: A)(implicit ordering: Ordering[A]): Tree[A, B] = {
    if (tree eq null) return null
    if (ordering.lt(tree.key, from)) return doRange(tree.right, from, until)
    if (ordering.lteq(until, tree.key)) return doRange(tree.left, from, until)
    val newLeft = doFrom(tree.left, from)
    val newRight = doUntil(tree.right, until)
    if ((newLeft eq tree.left) && (newRight eq tree.right)) tree
    else if (newLeft eq null) upd(newRight, tree.key, tree.value, overwrite = false)
    else if (newRight eq null) upd(newLeft, tree.key, tree.value, overwrite = false)
    else rebalance(tree, newLeft, newRight)
  }

  private[this] def doDrop[A, B](tree: Tree[A, B], n: Int): Tree[A, B] = {
    if (n <= 0) return tree
    if (n >= this.count(tree)) return null
    val count = this.count(tree.left)
    if (n > count) return doDrop(tree.right, n - count - 1)
    val newLeft = doDrop(tree.left, n)
    if (newLeft eq tree.left) tree
    else if (newLeft eq null) updNth(tree.right, n - count - 1, tree.key, tree.value, overwrite = false)
    else rebalance(tree, newLeft, tree.right)
  }
  private[this] def doTake[A, B](tree: Tree[A, B], n: Int): Tree[A, B] = {
    if (n <= 0) return null
    if (n >= this.count(tree)) return tree
    val count = this.count(tree.left)
    if (n <= count) return doTake(tree.left, n)
    val newRight = doTake(tree.right, n - count - 1)
    if (newRight eq tree.right) tree
    else if (newRight eq null) updNth(tree.left, n, tree.key, tree.value, overwrite = false)
    else rebalance(tree, tree.left, newRight)
  }
  private[this] def doSlice[A, B](tree: Tree[A, B], from: Int, until: Int): Tree[A, B] = {
    if (tree eq null) return null
    val count = this.count(tree.left)
    if (from > count) return doSlice(tree.right, from - count - 1, until - count - 1)
    if (until <= count) return doSlice(tree.left, from, until)
    val newLeft = doDrop(tree.left, from)
    val newRight = doTake(tree.right, until - count - 1)
    if ((newLeft eq tree.left) && (newRight eq tree.right)) tree
    else if (newLeft eq null) updNth(newRight, from - count - 1, tree.key, tree.value, overwrite = false)
    else if (newRight eq null) updNth(newLeft, until, tree.key, tree.value, overwrite = false)
    else rebalance(tree, newLeft, newRight)
  }

  // The zipper returned might have been traversed left-most (always the left child)
  // or right-most (always the right child). Left trees are traversed right-most,
  // and right trees are traversed leftmost.

  // Returns the zipper for the side with deepest black nodes depth, a flag
  // indicating whether the trees were unbalanced at all, and a flag indicating
  // whether the zipper was traversed left-most or right-most.

  // If the trees were balanced, returns an empty zipper
  private[this] def compareDepth[A, B](left: Tree[A, B], right: Tree[A, B]): (NList[Tree[A, B]], Boolean, Boolean, Int) = {
    import NList.cons
    // Once a side is found to be deeper, unzip it to the bottom
    def unzip(zipper: NList[Tree[A, B]], leftMost: Boolean): NList[Tree[A, B]] = {
      val next = if (leftMost) zipper.head.left else zipper.head.right
      if (next eq null) zipper
      else unzip(cons(next, zipper), leftMost)
    }

    // Unzip left tree on the rightmost side and right tree on the leftmost side until one is
    // found to be deeper, or the bottom is reached
    def unzipBoth(left: Tree[A, B],
                  right: Tree[A, B],
                  leftZipper: NList[Tree[A, B]],
                  rightZipper: NList[Tree[A, B]],
                  smallerDepth: Int): (NList[Tree[A, B]], Boolean, Boolean, Int) = {
      if (isBlackTree(left) && isBlackTree(right)) {
        unzipBoth(left.right, right.left, cons(left, leftZipper), cons(right, rightZipper), smallerDepth + 1)
      } else if (isRedTree(left) && isRedTree(right)) {
        unzipBoth(left.right, right.left, cons(left, leftZipper), cons(right, rightZipper), smallerDepth)
      } else if (isRedTree(right)) {
        unzipBoth(left, right.left, leftZipper, cons(right, rightZipper), smallerDepth)
      } else if (isRedTree(left)) {
        unzipBoth(left.right, right, cons(left, leftZipper), rightZipper, smallerDepth)
      } else if ((left eq null) && (right eq null)) {
        (null, true, false, smallerDepth)
      } else if ((left eq null) && isBlackTree(right)) {
        val leftMost = true
        (unzip(cons(right, rightZipper), leftMost), false, leftMost, smallerDepth)
      } else if (isBlackTree(left) && (right eq null)) {
        val leftMost = false
        (unzip(cons(left, leftZipper), leftMost), false, leftMost, smallerDepth)
      } else {
        sys.error("unmatched trees in unzip: " + left + ", " + right)
      }
    }
    unzipBoth(left, right, null, null, 0)
  }

  private[this] def rebalance[A, B](tree: Tree[A, B], newLeft: Tree[A, B], newRight: Tree[A, B]) = {
    // This is like drop(n-1), but only counting black nodes
    @tailrec
    def  findDepth(zipper: NList[Tree[A, B]], depth: Int): NList[Tree[A, B]] =
      if (zipper eq null) {
        sys.error("Defect: unexpected empty zipper while computing range")
      } else if (isBlackTree(zipper.head)) {
        if (depth == 1) zipper else findDepth(zipper.tail, depth - 1)
      } else {
        findDepth(zipper.tail, depth)
      }

    // Blackening the smaller tree avoids balancing problems on union;
    // this can't be done later, though, or it would change the result of compareDepth
    val blkNewLeft = blacken(newLeft)
    val blkNewRight = blacken(newRight)
    val (zipper, levelled, leftMost, smallerDepth) = compareDepth(blkNewLeft, blkNewRight)

    if (levelled) {
      BlackTree(tree.key, tree.value, blkNewLeft, blkNewRight)
    } else {
      val zipFrom = findDepth(zipper, smallerDepth)
      val union = if (leftMost) {
        RedTree(tree.key, tree.value, blkNewLeft, zipFrom.head)
      } else {
        RedTree(tree.key, tree.value, zipFrom.head, blkNewRight)
      }
      val zippedTree = NList.foldLeft(zipFrom.tail, union: Tree[A, B]) { (tree, node) =>
        if (leftMost)
          balanceLeft(isBlackTree(node), node.key, node.value, tree, node.right)
        else
          balanceRight(isBlackTree(node), node.key, node.value, node.left, tree)
      }
      zippedTree
    }
  }

  // Null optimized list implementation for tree rebalancing. null presents Nil.
  private[this] final class NList[A](val head: A, val tail: NList[A])

  private[this] final object NList {

    def cons[B](x: B, xs: NList[B]): NList[B] = new NList(x, xs)

    def foldLeft[A, B](xs: NList[A], z: B)(f: (B, A) => B): B = {
      var acc = z
      var these = xs
      while (these ne null) {
        acc = f(acc, these.head)
        these = these.tail
      }
      acc
    }

  }

  /*
   * Forcing direct fields access using the @inline annotation helps speed up
   * various operations (especially smallest/greatest and update/delete).
   *
   * Unfortunately the direct field access is not guaranteed to work (but
   * works on the current implementation of the Scala compiler).
   *
   * An alternative is to implement the these classes using plain old Java code...
   */
  sealed abstract class Tree[A, +B](
    @(inline @getter) final val key: A,
    @(inline @getter) final val value: B,
    @(inline @getter) final val left: Tree[A, B],
    @(inline @getter) final val right: Tree[A, B])
  extends Serializable {
    @(inline @getter) final val count: Int = 1 + RedBlackTree.count(left) + RedBlackTree.count(right)
    def black: Tree[A, B]
    def red: Tree[A, B]
  }
  final class RedTree[A, +B](key: A,
                             value: B,
                             left: Tree[A, B],
                             right: Tree[A, B]) extends Tree[A, B](key, value, left, right) {
    override def black: Tree[A, B] = BlackTree(key, value, left, right)
    override def red: Tree[A, B] = this
    override def toString: String = "RedTree(" + key + ", " + value + ", " + left + ", " + right + ")"
  }
  final class BlackTree[A, +B](key: A,
                               value: B,
                               left: Tree[A, B],
                               right: Tree[A, B]) extends Tree[A, B](key, value, left, right) {
    override def black: Tree[A, B] = this
    override def red: Tree[A, B] = RedTree(key, value, left, right)
    override def toString: String = "BlackTree(" + key + ", " + value + ", " + left + ", " + right + ")"
  }

  object RedTree {
    @inline def apply[A, B](key: A, value: B, left: Tree[A, B], right: Tree[A, B]) = new RedTree(key, value, left, right)
    def unapply[A, B](t: RedTree[A, B]) = Some((t.key, t.value, t.left, t.right))
  }
  object BlackTree {
    @inline def apply[A, B](key: A, value: B, left: Tree[A, B], right: Tree[A, B]) = new BlackTree(key, value, left, right)
    def unapply[A, B](t: BlackTree[A, B]) = Some((t.key, t.value, t.left, t.right))
  }

  private[this] abstract class TreeIterator[A, B, R](root: Tree[A, B], start: Option[A])(implicit ordering: Ordering[A]) extends Iterator[R] {
    protected[this] def nextResult(tree: Tree[A, B]): R

    override def hasNext: Boolean = lookahead ne null

    override def next: R = lookahead match {
      case null =>
        throw new NoSuchElementException("next on empty iterator")
      case tree =>
        lookahead = findLeftMostOrPopOnEmpty(goRight(tree))
        nextResult(tree)
    }

    @tailrec
    private[this] def findLeftMostOrPopOnEmpty(tree: Tree[A, B]): Tree[A, B] =
      if (tree eq null) popNext()
      else if (tree.left eq null) tree
      else findLeftMostOrPopOnEmpty(goLeft(tree))

    private[this] def pushNext(tree: Tree[A, B]) {
      try {
        stackOfNexts(index) = tree
        index += 1
      } catch {
        case _: ArrayIndexOutOfBoundsException =>
          /*
           * Either the tree became unbalanced or we calculated the maximum height incorrectly.
           * To avoid crashing the iterator we expand the path array. Obviously this should never
           * happen...
           *
           * An exception handler is used instead of an if-condition to optimize the normal path.
           * This makes a large difference in iteration speed!
           */
          assert(index >= stackOfNexts.length)
          stackOfNexts :+= null
          pushNext(tree)
      }
    }
    private[this] def popNext(): Tree[A, B] = if (index == 0) null else {
      index -= 1
      stackOfNexts(index)
    }

    private[this] var stackOfNexts = if (root eq null) null else {
      /*
       * According to "Ralf Hinze. Constructing red-black trees" [http://www.cs.ox.ac.uk/ralf.hinze/publications/#P5]
       * the maximum height of a red-black tree is 2*log_2(n + 2) - 2.
       *
       * According to {@see Integer#numberOfLeadingZeros} ceil(log_2(n)) = (32 - Integer.numberOfLeadingZeros(n - 1))
       *
       * We also don't store the deepest nodes in the path so the maximum path length is further reduced by one.
       */
      val maximumHeight = 2 * (32 - Integer.numberOfLeadingZeros(root.count + 2 - 1)) - 2 - 1
      new Array[Tree[A, B]](maximumHeight)
    }
    private[this] var index = 0
    private[this] var lookahead: Tree[A, B] = start map startFrom getOrElse findLeftMostOrPopOnEmpty(root)

    /**
     * Find the leftmost subtree whose key is equal to the given key, or if no such thing,
     * the leftmost subtree with the key that would be "next" after it according
     * to the ordering. Along the way build up the iterator's path stack so that "next"
     * functionality works.
     */
    private[this] def startFrom(key: A) : Tree[A,B] = if (root eq null) null else {
      @tailrec def find(tree: Tree[A, B]): Tree[A, B] =
        if (tree eq null) popNext()
        else find(
          if (ordering.lteq(key, tree.key)) goLeft(tree)
          else goRight(tree)
        )
      find(root)
    }

    private[this] def goLeft(tree: Tree[A, B]) = {
      pushNext(tree)
      tree.left
    }

    private[this] def goRight(tree: Tree[A, B]) = tree.right
  }

  private[this] class EntriesIterator[A: Ordering, B](tree: Tree[A, B], focus: Option[A]) extends TreeIterator[A, B, (A, B)](tree, focus) {
    override def nextResult(tree: Tree[A, B]) = (tree.key, tree.value)
  }

  private[this] class KeysIterator[A: Ordering, B](tree: Tree[A, B], focus: Option[A]) extends TreeIterator[A, B, A](tree, focus) {
    override def nextResult(tree: Tree[A, B]) = tree.key
  }

  private[this] class ValuesIterator[A: Ordering, B](tree: Tree[A, B], focus: Option[A]) extends TreeIterator[A, B, B](tree, focus) {
    override def nextResult(tree: Tree[A, B]) = tree.value
  }
}

Other Scala source code examples

Here is a short list of links related to this Scala RedBlackTree.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.