|
Scala example source code file (ParIterableLike.scala)
The ParIterableLike.scala Scala example source code/* __ *\ ** ________ ___ / / ___ Scala API ** ** / __/ __// _ | / / / _ | (c) 2003-2013, LAMP/EPFL ** ** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ ** ** /____/\___/_/ |_/____/_/ | | ** ** |/ ** \* */ package scala package collection.parallel import scala.collection.mutable.Builder import scala.collection.mutable.ArrayBuffer import scala.collection.IterableLike import scala.collection.Parallel import scala.collection.Parallelizable import scala.collection.CustomParallelizable import scala.collection.generic._ import scala.collection.GenIterableLike import scala.collection.GenIterable import scala.collection.GenTraversableOnce import scala.collection.GenTraversable import immutable.HashMapCombiner import scala.reflect.{ClassTag, classTag} import java.util.concurrent.atomic.AtomicBoolean import scala.annotation.unchecked.uncheckedVariance import scala.annotation.unchecked.uncheckedStable import scala.language.{ higherKinds, implicitConversions } import scala.collection.parallel.ParallelCollectionImplicits._ /** A template trait for parallel collections of type `ParIterable[T]`. * * $paralleliterableinfo * * $sideeffects * * @tparam T the element type of the collection * @tparam Repr the type of the actual collection containing the elements * * @define paralleliterableinfo * This is a base trait for Scala parallel collections. It defines behaviour * common to all parallel collections. Concrete parallel collections should * inherit this trait and `ParIterable` if they want to define specific combiner * factories. * * Parallel operations are implemented with divide and conquer style algorithms that * parallelize well. The basic idea is to split the collection into smaller parts until * they are small enough to be operated on sequentially. * * All of the parallel operations are implemented as tasks within this trait. Tasks rely * on the concept of splitters, which extend iterators. Every parallel collection defines: * * {{{ * def splitter: IterableSplitter[T] * }}} * * which returns an instance of `IterableSplitter[T]`, which is a subtype of `Splitter[T]`. * Splitters have a method `remaining` to check the remaining number of elements, * and method `split` which is defined by splitters. Method `split` divides the splitters * iterate over into disjunct subsets: * * {{{ * def split: Seq[Splitter] * }}} * * which splits the splitter into a sequence of disjunct subsplitters. This is typically a * very fast operation which simply creates wrappers around the receiver collection. * This can be repeated recursively. * * Tasks are scheduled for execution through a * [[scala.collection.parallel.TaskSupport]] object, which can be changed * through the `tasksupport` setter of the collection. * * Method `newCombiner` produces a new combiner. Combiners are an extension of builders. * They provide a method `combine` which combines two combiners and returns a combiner * containing elements of both combiners. * This method can be implemented by aggressively copying all the elements into the new combiner * or by lazily binding their results. It is recommended to avoid copying all of * the elements for performance reasons, although that cost might be negligible depending on * the use case. Standard parallel collection combiners avoid copying when merging results, * relying either on a two-step lazy construction or specific data-structure properties. * * Methods: * * {{{ * def seq: Sequential * def par: Repr * }}} * * produce the sequential or parallel implementation of the collection, respectively. * Method `par` just returns a reference to this parallel collection. * Method `seq` is efficient - it will not copy the elements. Instead, * it will create a sequential version of the collection using the same underlying data structure. * Note that this is not the case for sequential collections in general - they may copy the elements * and produce a different underlying data structure. * * The combination of methods `toMap`, `toSeq` or `toSet` along with `par` and `seq` is a flexible * way to change between different collection types. * * Since this trait extends the `GenIterable` trait, methods like `size` must also * be implemented in concrete collections, while `iterator` forwards to `splitter` by * default. * * Each parallel collection is bound to a specific fork/join pool, on which dormant worker * threads are kept. The fork/join pool contains other information such as the parallelism * level, that is, the number of processors used. When a collection is created, it is assigned the * default fork/join pool found in the `scala.parallel` package object. * * Parallel collections are not necessarily ordered in terms of the `foreach` * operation (see `Traversable`). Parallel sequences have a well defined order for iterators - creating * an iterator and traversing the elements linearly will always yield the same order. * However, bulk operations such as `foreach`, `map` or `filter` always occur in undefined orders for all * parallel collections. * * Existing parallel collection implementations provide strict parallel iterators. Strict parallel iterators are aware * of the number of elements they have yet to traverse. It's also possible to provide non-strict parallel iterators, * which do not know the number of elements remaining. To do this, the new collection implementation must override * `isStrictSplitterCollection` to `false`. This will make some operations unavailable. * * To create a new parallel collection, extend the `ParIterable` trait, and implement `size`, `splitter`, * `newCombiner` and `seq`. Having an implicit combiner factory requires extending this trait in addition, as * well as providing a companion object, as with regular collections. * * Method `size` is implemented as a constant time operation for parallel collections, and parallel collection * operations rely on this assumption. * * @author Aleksandar Prokopec * @since 2.9 * * @define sideeffects * The higher-order functions passed to certain operations may contain side-effects. Since implementations * of bulk operations may not be sequential, this means that side-effects may not be predictable and may * produce data-races, deadlocks or invalidation of state if care is not taken. It is up to the programmer * to either avoid using side-effects or to use some form of synchronization when accessing mutable data. * * @define pbfinfo * An implicit value of class `CanCombineFrom` which determines the * result class `That` from the current representation type `Repr` and * and the new element type `B`. This builder factory can provide a parallel * builder for the resulting collection. * * @define abortsignalling * This method will use `abort` signalling capabilities. This means * that splitters may send and read `abort` signals. * * @define indexsignalling * This method will use `indexFlag` signalling capabilities. This means * that splitters may set and read the `indexFlag` state. * */ trait ParIterableLike[+T, +Repr <: ParIterable[T], +Sequential <: Iterable[T] with IterableLike[T, Sequential]] extends GenIterableLike[T, Repr] with CustomParallelizable[T, Repr] with Parallel with HasNewCombiner[T, Repr] { self: ParIterableLike[T, Repr, Sequential] => @transient @volatile private var _tasksupport = defaultTaskSupport protected def initTaskSupport() { _tasksupport = defaultTaskSupport } /** The task support object which is responsible for scheduling and * load-balancing tasks to processors. * * @see [[scala.collection.parallel.TaskSupport]] */ def tasksupport = { val ts = _tasksupport if (ts eq null) { _tasksupport = defaultTaskSupport defaultTaskSupport } else ts } /** Changes the task support object which is responsible for scheduling and * load-balancing tasks to processors. * * A task support object can be changed in a parallel collection after it * has been created, but only during a quiescent period, i.e. while there * are no concurrent invocations to parallel collection methods. * * Here is a way to change the task support of a parallel collection: * * {{{ * import scala.collection.parallel._ * val pc = mutable.ParArray(1, 2, 3) * pc.tasksupport = new ForkJoinTaskSupport( * new scala.concurrent.forkjoin.ForkJoinPool(2)) * }}} * * @see [[scala.collection.parallel.TaskSupport]] */ def tasksupport_=(ts: TaskSupport) = _tasksupport = ts def seq: Sequential def repr: Repr = this.asInstanceOf[Repr] final def isTraversableAgain = true def hasDefiniteSize = true def isEmpty = size == 0 def nonEmpty = size != 0 def head = iterator.next() def headOption = if (nonEmpty) Some(head) else None def tail = drop(1) def last = { var lst = head for (x <- this.seq) lst = x lst } def lastOption = if (nonEmpty) Some(last) else None def init = take(size - 1) /** Creates a new parallel iterator used to traverse the elements of this parallel collection. * This iterator is more specific than the iterator of the returned by `iterator`, and augmented * with additional accessor and transformer methods. * * @return a parallel iterator */ protected[parallel] def splitter: IterableSplitter[T] /** Creates a new split iterator used to traverse the elements of this collection. * * By default, this method is implemented in terms of the protected `splitter` method. * * @return a split iterator */ def iterator: Splitter[T] = splitter override def par: Repr = repr /** Denotes whether this parallel collection has strict splitters. * * This is true in general, and specific collection instances may choose to * override this method. Such collections will fail to execute methods * which rely on splitters being strict, i.e. returning a correct value * in the `remaining` method. * * This method helps ensure that such failures occur on method invocations, * rather than later on and in unpredictable ways. */ def isStrictSplitterCollection = true /** The `newBuilder` operation returns a parallel builder assigned to this collection's fork/join pool. * This method forwards the call to `newCombiner`. */ //protected[this] def newBuilder: scala.collection.mutable.Builder[T, Repr] = newCombiner /** Optionally reuses an existing combiner for better performance. By default it doesn't - subclasses may override this behaviour. * The provided combiner `oldc` that can potentially be reused will be either some combiner from the previous computational task, or `None` if there * was no previous phase (in which case this method must return `newc`). * * @param oldc The combiner that is the result of the previous task, or `None` if there was no previous task. * @param newc The new, empty combiner that can be used. * @return Either `newc` or `oldc`. */ protected def reuse[S, That](oldc: Option[Combiner[S, That]], newc: Combiner[S, That]): Combiner[S, That] = newc type SSCTask[R, Tp] = StrictSplitterCheckTask[R, Tp] /* helper traits - to avoid structural invocations */ trait TaskOps[R, Tp] { def mapResult[R1](mapping: R => R1): ResultMapping[R, Tp, R1] // public method with inaccessible types in parameters def compose[R3, R2, Tp2](t2: SSCTask[R2, Tp2])(resCombiner: (R, R2) => R3): SeqComposite[R, R2, R3, SSCTask[R, Tp], SSCTask[R2, Tp2]] def parallel[R3, R2, Tp2](t2: SSCTask[R2, Tp2])(resCombiner: (R, R2) => R3): ParComposite[R, R2, R3, SSCTask[R, Tp], SSCTask[R2, Tp2]] } trait BuilderOps[Elem, To] { trait Otherwise[Cmb] { def otherwise(notbody: => Unit)(implicit t: ClassTag[Cmb]): Unit } def ifIs[Cmb](isbody: Cmb => Unit): Otherwise[Cmb] def isCombiner: Boolean def asCombiner: Combiner[Elem, To] } trait SignallingOps[PI <: DelegatedSignalling] { def assign(cntx: Signalling): PI } /* convenience task operations wrapper */ protected implicit def task2ops[R, Tp](tsk: SSCTask[R, Tp]) = new TaskOps[R, Tp] { def mapResult[R1](mapping: R => R1): ResultMapping[R, Tp, R1] = new ResultMapping[R, Tp, R1](tsk) { def map(r: R): R1 = mapping(r) } def compose[R3, R2, Tp2](t2: SSCTask[R2, Tp2])(resCombiner: (R, R2) => R3) = new SeqComposite[R, R2, R3, SSCTask[R, Tp], SSCTask[R2, Tp2]](tsk, t2) { def combineResults(fr: R, sr: R2): R3 = resCombiner(fr, sr) } def parallel[R3, R2, Tp2](t2: SSCTask[R2, Tp2])(resCombiner: (R, R2) => R3) = new ParComposite[R, R2, R3, SSCTask[R, Tp], SSCTask[R2, Tp2]](tsk, t2) { def combineResults(fr: R, sr: R2): R3 = resCombiner(fr, sr) } } protected def wrap[R](body: => R) = new NonDivisible[R] { def leaf(prevr: Option[R]) = result = body @volatile var result: R = null.asInstanceOf[R] } /* convenience signalling operations wrapper */ protected implicit def delegatedSignalling2ops[PI <: DelegatedSignalling](it: PI) = new SignallingOps[PI] { def assign(cntx: Signalling): PI = { it.signalDelegate = cntx it } } protected implicit def builder2ops[Elem, To](cb: Builder[Elem, To]) = new BuilderOps[Elem, To] { def ifIs[Cmb](isbody: Cmb => Unit) = new Otherwise[Cmb] { def otherwise(notbody: => Unit)(implicit t: ClassTag[Cmb]) { if (cb.getClass == t.runtimeClass) isbody(cb.asInstanceOf[Cmb]) else notbody } } def isCombiner = cb.isInstanceOf[Combiner[_, _]] def asCombiner = cb.asInstanceOf[Combiner[Elem, To]] } protected[this] def bf2seq[S, That](bf: CanBuildFrom[Repr, S, That]) = new CanBuildFrom[Sequential, S, That] { def apply(from: Sequential) = bf.apply(from.par.asInstanceOf[Repr]) // !!! we only use this on `this.seq`, and know that `this.seq.par.getClass == this.getClass` def apply() = bf.apply() } protected[this] def sequentially[S, That <: Parallel](b: Sequential => Parallelizable[S, That]) = b(seq).par.asInstanceOf[Repr] def mkString(start: String, sep: String, end: String): String = seq.mkString(start, sep, end) def mkString(sep: String): String = seq.mkString("", sep, "") def mkString: String = seq.mkString("") override def toString = seq.mkString(stringPrefix + "(", ", ", ")") def canEqual(other: Any) = true /** Reduces the elements of this sequence using the specified associative binary operator. * * $undefinedorder * * Note this method has a different signature than the `reduceLeft` * and `reduceRight` methods of the trait `Traversable`. * The result of reducing may only be a supertype of this parallel collection's * type parameter `T`. * * @tparam U A type parameter for the binary operator, a supertype of `T`. * @param op A binary operator that must be associative. * @return The result of applying reduce operator `op` between all the elements if the collection is nonempty. * @throws UnsupportedOperationException * if this $coll is empty. */ def reduce[U >: T](op: (U, U) => U): U = { tasksupport.executeAndWaitResult(new Reduce(op, splitter) mapResult { _.get }) } /** Optionally reduces the elements of this sequence using the specified associative binary operator. * * $undefinedorder * * Note this method has a different signature than the `reduceLeftOption` * and `reduceRightOption` methods of the trait `Traversable`. * The result of reducing may only be a supertype of this parallel collection's * type parameter `T`. * * @tparam U A type parameter for the binary operator, a supertype of `T`. * @param op A binary operator that must be associative. * @return An option value containing result of applying reduce operator `op` between all * the elements if the collection is nonempty, and `None` otherwise. */ def reduceOption[U >: T](op: (U, U) => U): Option[U] = if (isEmpty) None else Some(reduce(op)) /** Folds the elements of this sequence using the specified associative binary operator. * The order in which the elements are reduced is unspecified and may be nondeterministic. * * Note this method has a different signature than the `foldLeft` * and `foldRight` methods of the trait `Traversable`. * The result of folding may only be a supertype of this parallel collection's * type parameter `T`. * * @tparam U a type parameter for the binary operator, a supertype of `T`. * @param z a neutral element for the fold operation, it may be added to the result * an arbitrary number of times, not changing the result (e.g. `Nil` for list concatenation, * 0 for addition, or 1 for multiplication) * @param op a binary operator that must be associative * @return the result of applying fold operator `op` between all the elements and `z` */ def fold[U >: T](z: U)(op: (U, U) => U): U = { tasksupport.executeAndWaitResult(new Fold(z, op, splitter)) } /** Aggregates the results of applying an operator to subsequent elements. * * This is a more general form of `fold` and `reduce`. It has similar semantics, but does * not require the result to be a supertype of the element type. It traverses the elements in * different partitions sequentially, using `seqop` to update the result, and then * applies `combop` to results from different partitions. The implementation of this * operation may operate on an arbitrary number of collection partitions, so `combop` * may be invoked arbitrary number of times. * * For example, one might want to process some elements and then produce a `Set`. In this * case, `seqop` would process an element and append it to the set, while `combop` * would concatenate two sets from different partitions together. The initial value * `z` would be an empty set. * * {{{ * pc.aggregate(Set[Int]())(_ += process(_), _ ++ _) * }}} * * Another example is calculating geometric mean from a collection of doubles * (one would typically require big doubles for this). * * @tparam S the type of accumulated results * @param z the initial value for the accumulated result of the partition - this * will typically be the neutral element for the `seqop` operator (e.g. * `Nil` for list concatenation or `0` for summation) and may be evaluated * more than once * @param seqop an operator used to accumulate results within a partition * @param combop an associative operator used to combine results from different partitions */ def aggregate[S](z: =>S)(seqop: (S, T) => S, combop: (S, S) => S): S = { tasksupport.executeAndWaitResult(new Aggregate(() => z, seqop, combop, splitter)) } def foldLeft[S](z: S)(op: (S, T) => S): S = seq.foldLeft(z)(op) def foldRight[S](z: S)(op: (T, S) => S): S = seq.foldRight(z)(op) def reduceLeft[U >: T](op: (U, T) => U): U = seq.reduceLeft(op) def reduceRight[U >: T](op: (T, U) => U): U = seq.reduceRight(op) def reduceLeftOption[U >: T](op: (U, T) => U): Option[U] = seq.reduceLeftOption(op) def reduceRightOption[U >: T](op: (T, U) => U): Option[U] = seq.reduceRightOption(op) /** Applies a function `f` to all the elements of $coll in an undefined order. * * @tparam U the result type of the function applied to each element, which is always discarded * @param f function applied to each element */ def foreach[U](f: T => U) = { tasksupport.executeAndWaitResult(new Foreach(f, splitter)) } def count(p: T => Boolean): Int = { tasksupport.executeAndWaitResult(new Count(p, splitter)) } def sum[U >: T](implicit num: Numeric[U]): U = { tasksupport.executeAndWaitResult(new Sum[U](num, splitter)) } def product[U >: T](implicit num: Numeric[U]): U = { tasksupport.executeAndWaitResult(new Product[U](num, splitter)) } def min[U >: T](implicit ord: Ordering[U]): T = { tasksupport.executeAndWaitResult(new Min(ord, splitter) mapResult { _.get }).asInstanceOf[T] } def max[U >: T](implicit ord: Ordering[U]): T = { tasksupport.executeAndWaitResult(new Max(ord, splitter) mapResult { _.get }).asInstanceOf[T] } def maxBy[S](f: T => S)(implicit cmp: Ordering[S]): T = { if (isEmpty) throw new UnsupportedOperationException("empty.maxBy") reduce((x, y) => if (cmp.gteq(f(x), f(y))) x else y) } def minBy[S](f: T => S)(implicit cmp: Ordering[S]): T = { if (isEmpty) throw new UnsupportedOperationException("empty.minBy") reduce((x, y) => if (cmp.lteq(f(x), f(y))) x else y) } def map[S, That](f: T => S)(implicit bf: CanBuildFrom[Repr, S, That]): That = if (bf(repr).isCombiner) { tasksupport.executeAndWaitResult(new Map[S, That](f, combinerFactory(() => bf(repr).asCombiner), splitter) mapResult { _.resultWithTaskSupport }) } else setTaskSupport(seq.map(f)(bf2seq(bf)), tasksupport) /*bf ifParallel { pbf => tasksupport.executeAndWaitResult(new Map[S, That](f, pbf, splitter) mapResult { _.result }) } otherwise seq.map(f)(bf2seq(bf))*/ def collect[S, That](pf: PartialFunction[T, S])(implicit bf: CanBuildFrom[Repr, S, That]): That = if (bf(repr).isCombiner) { tasksupport.executeAndWaitResult(new Collect[S, That](pf, combinerFactory(() => bf(repr).asCombiner), splitter) mapResult { _.resultWithTaskSupport }) } else setTaskSupport(seq.collect(pf)(bf2seq(bf)), tasksupport) /*bf ifParallel { pbf => tasksupport.executeAndWaitResult(new Collect[S, That](pf, pbf, splitter) mapResult { _.result }) } otherwise seq.collect(pf)(bf2seq(bf))*/ def flatMap[S, That](f: T => GenTraversableOnce[S])(implicit bf: CanBuildFrom[Repr, S, That]): That = if (bf(repr).isCombiner) { tasksupport.executeAndWaitResult(new FlatMap[S, That](f, combinerFactory(() => bf(repr).asCombiner), splitter) mapResult { _.resultWithTaskSupport }) } else setTaskSupport(seq.flatMap(f)(bf2seq(bf)), tasksupport) /*bf ifParallel { pbf => tasksupport.executeAndWaitResult(new FlatMap[S, That](f, pbf, splitter) mapResult { _.result }) } otherwise seq.flatMap(f)(bf2seq(bf))*/ /** Tests whether a predicate holds for all elements of this $coll. * * $abortsignalling * * @param pred a predicate used to test elements * @return true if `p` holds for all elements, false otherwise */ def forall(pred: T => Boolean): Boolean = { tasksupport.executeAndWaitResult(new Forall(pred, splitter assign new DefaultSignalling with VolatileAbort)) } /** Tests whether a predicate holds for some element of this $coll. * * $abortsignalling * * @param pred a predicate used to test elements * @return true if `p` holds for some element, false otherwise */ def exists(pred: T => Boolean): Boolean = { tasksupport.executeAndWaitResult(new Exists(pred, splitter assign new DefaultSignalling with VolatileAbort)) } /** Finds some element in the collection for which the predicate holds, if such * an element exists. The element may not necessarily be the first such element * in the iteration order. * * If there are multiple elements obeying the predicate, the choice is nondeterministic. * * $abortsignalling * * @param pred predicate used to test the elements * @return an option value with the element if such an element exists, or `None` otherwise */ def find(pred: T => Boolean): Option[T] = { tasksupport.executeAndWaitResult(new Find(pred, splitter assign new DefaultSignalling with VolatileAbort)) } /** Creates a combiner factory. Each combiner factory instance is used * once per invocation of a parallel transformer method for a single * collection. * * The default combiner factory creates a new combiner every time it * is requested, unless the combiner is thread-safe as indicated by its * `canBeShared` method. In this case, the method returns a factory which * returns the same combiner each time. This is typically done for * concurrent parallel collections, the combiners of which allow * thread safe access. */ protected[this] def combinerFactory = { val combiner = newCombiner combiner.combinerTaskSupport = tasksupport if (combiner.canBeShared) new CombinerFactory[T, Repr] { val shared = combiner def apply() = shared def doesShareCombiners = true } else new CombinerFactory[T, Repr] { def apply() = newCombiner def doesShareCombiners = false } } protected[this] def combinerFactory[S, That](cbf: () => Combiner[S, That]) = { val combiner = cbf() combiner.combinerTaskSupport = tasksupport if (combiner.canBeShared) new CombinerFactory[S, That] { val shared = combiner def apply() = shared def doesShareCombiners = true } else new CombinerFactory[S, That] { def apply() = cbf() def doesShareCombiners = false } } def withFilter(pred: T => Boolean): Repr = filter(pred) def filter(pred: T => Boolean): Repr = { tasksupport.executeAndWaitResult(new Filter(pred, combinerFactory, splitter) mapResult { _.resultWithTaskSupport }) } def filterNot(pred: T => Boolean): Repr = { tasksupport.executeAndWaitResult(new FilterNot(pred, combinerFactory, splitter) mapResult { _.resultWithTaskSupport }) } def ++[U >: T, That](that: GenTraversableOnce[U])(implicit bf: CanBuildFrom[Repr, U, That]): That = { if (that.isParallel && bf.isParallel) { // println("case both are parallel") val other = that.asParIterable val pbf = bf.asParallel val cfactory = combinerFactory(() => pbf(repr)) val copythis = new Copy(cfactory, splitter) val copythat = wrap { val othtask = new other.Copy(cfactory, other.splitter) tasksupport.executeAndWaitResult(othtask) } val task = (copythis parallel copythat) { _ combine _ } mapResult { _.resultWithTaskSupport } tasksupport.executeAndWaitResult(task) } else if (bf(repr).isCombiner) { // println("case parallel builder, `that` not parallel") val copythis = new Copy(combinerFactory(() => bf(repr).asCombiner), splitter) val copythat = wrap { val cb = bf(repr).asCombiner for (elem <- that.seq) cb += elem cb } tasksupport.executeAndWaitResult((copythis parallel copythat) { _ combine _ } mapResult { _.resultWithTaskSupport }) } else { // println("case not a parallel builder") val b = bf(repr) this.splitter.copy2builder[U, That, Builder[U, That]](b) for (elem <- that.seq) b += elem setTaskSupport(b.result(), tasksupport) } } def partition(pred: T => Boolean): (Repr, Repr) = { tasksupport.executeAndWaitResult( new Partition(pred, combinerFactory, combinerFactory, splitter) mapResult { p => (p._1.resultWithTaskSupport, p._2.resultWithTaskSupport) } ) } def groupBy[K](f: T => K): immutable.ParMap[K, Repr] = { val r = tasksupport.executeAndWaitResult(new GroupBy(f, () => HashMapCombiner[K, T], splitter) mapResult { rcb => rcb.groupByKey(() => combinerFactory()) }) setTaskSupport(r, tasksupport) } def take(n: Int): Repr = { val actualn = if (size > n) n else size if (actualn < MIN_FOR_COPY) take_sequential(actualn) else tasksupport.executeAndWaitResult(new Take(actualn, combinerFactory, splitter) mapResult { _.resultWithTaskSupport }) } private def take_sequential(n: Int) = { val cb = newCombiner cb.sizeHint(n) val it = splitter var left = n while (left > 0) { cb += it.next left -= 1 } cb.resultWithTaskSupport } def drop(n: Int): Repr = { val actualn = if (size > n) n else size if ((size - actualn) < MIN_FOR_COPY) drop_sequential(actualn) else tasksupport.executeAndWaitResult(new Drop(actualn, combinerFactory, splitter) mapResult { _.resultWithTaskSupport }) } private def drop_sequential(n: Int) = { val it = splitter drop n val cb = newCombiner cb.sizeHint(size - n) while (it.hasNext) cb += it.next cb.resultWithTaskSupport } override def slice(unc_from: Int, unc_until: Int): Repr = { val from = unc_from min size max 0 val until = unc_until min size max from if ((until - from) <= MIN_FOR_COPY) slice_sequential(from, until) else tasksupport.executeAndWaitResult(new Slice(from, until, combinerFactory, splitter) mapResult { _.resultWithTaskSupport }) } private def slice_sequential(from: Int, until: Int): Repr = { val cb = newCombiner var left = until - from val it = splitter drop from while (left > 0) { cb += it.next left -= 1 } cb.resultWithTaskSupport } def splitAt(n: Int): (Repr, Repr) = { tasksupport.executeAndWaitResult( new SplitAt(n, combinerFactory, combinerFactory, splitter) mapResult { p => (p._1.resultWithTaskSupport, p._2.resultWithTaskSupport) } ) } /** Computes a prefix scan of the elements of the collection. * * Note: The neutral element `z` may be applied more than once. * * @tparam U element type of the resulting collection * @tparam That type of the resulting collection * @param z neutral element for the operator `op` * @param op the associative operator for the scan * @param bf $bfinfo * @return a collection containing the prefix scan of the elements in the original collection * * @usecase def scan(z: T)(op: (T, T) => T): $Coll[T] * @inheritdoc * * @return a new $coll containing the prefix scan of the elements in this $coll */ def scan[U >: T, That](z: U)(op: (U, U) => U)(implicit bf: CanBuildFrom[Repr, U, That]): That = if (bf(repr).isCombiner) { if (tasksupport.parallelismLevel > 1) { if (size > 0) tasksupport.executeAndWaitResult(new CreateScanTree(0, size, z, op, splitter) mapResult { tree => tasksupport.executeAndWaitResult(new FromScanTree(tree, z, op, combinerFactory(() => bf(repr).asCombiner)) mapResult { cb => cb.resultWithTaskSupport }) }) else setTaskSupport((bf(repr) += z).result(), tasksupport) } else setTaskSupport(seq.scan(z)(op)(bf2seq(bf)), tasksupport) } else setTaskSupport(seq.scan(z)(op)(bf2seq(bf)), tasksupport) def scanLeft[S, That](z: S)(op: (S, T) => S)(implicit bf: CanBuildFrom[Repr, S, That]) = setTaskSupport(seq.scanLeft(z)(op)(bf2seq(bf)), tasksupport) def scanRight[S, That](z: S)(op: (T, S) => S)(implicit bf: CanBuildFrom[Repr, S, That]) = setTaskSupport(seq.scanRight(z)(op)(bf2seq(bf)), tasksupport) /** Takes the longest prefix of elements that satisfy the predicate. * * $indexsignalling * The index flag is initially set to maximum integer value. * * @param pred the predicate used to test the elements * @return the longest prefix of this $coll of elements that satisy the predicate `pred` */ def takeWhile(pred: T => Boolean): Repr = { val cbf = combinerFactory if (cbf.doesShareCombiners) { val parseqspan = toSeq.takeWhile(pred) tasksupport.executeAndWaitResult(new Copy(combinerFactory, parseqspan.splitter) mapResult { _.resultWithTaskSupport }) } else { val cntx = new DefaultSignalling with AtomicIndexFlag cntx.setIndexFlag(Int.MaxValue) tasksupport.executeAndWaitResult(new TakeWhile(0, pred, combinerFactory, splitter assign cntx) mapResult { _._1.resultWithTaskSupport }) } } /** Splits this $coll into a prefix/suffix pair according to a predicate. * * $indexsignalling * The index flag is initially set to maximum integer value. * * @param pred the predicate used to test the elements * @return a pair consisting of the longest prefix of the collection for which all * the elements satisfy `pred`, and the rest of the collection */ def span(pred: T => Boolean): (Repr, Repr) = { val cbf = combinerFactory if (cbf.doesShareCombiners) { val (xs, ys) = toSeq.span(pred) val copyxs = new Copy(combinerFactory, xs.splitter) mapResult { _.resultWithTaskSupport } val copyys = new Copy(combinerFactory, ys.splitter) mapResult { _.resultWithTaskSupport } val copyall = (copyxs parallel copyys) { (xr, yr) => (xr, yr) } tasksupport.executeAndWaitResult(copyall) } else { val cntx = new DefaultSignalling with AtomicIndexFlag cntx.setIndexFlag(Int.MaxValue) tasksupport.executeAndWaitResult(new Span(0, pred, combinerFactory, combinerFactory, splitter assign cntx) mapResult { p => (p._1.resultWithTaskSupport, p._2.resultWithTaskSupport) }) } } /** Drops all elements in the longest prefix of elements that satisfy the predicate, * and returns a collection composed of the remaining elements. * * $indexsignalling * The index flag is initially set to maximum integer value. * * @param pred the predicate used to test the elements * @return a collection composed of all the elements after the longest prefix of elements * in this $coll that satisfy the predicate `pred` */ def dropWhile(pred: T => Boolean): Repr = { val cntx = new DefaultSignalling with AtomicIndexFlag cntx.setIndexFlag(Int.MaxValue) tasksupport.executeAndWaitResult( new Span(0, pred, combinerFactory, combinerFactory, splitter assign cntx) mapResult { _._2.resultWithTaskSupport } ) } def copyToArray[U >: T](xs: Array[U]) = copyToArray(xs, 0) def copyToArray[U >: T](xs: Array[U], start: Int) = copyToArray(xs, start, xs.length - start) def copyToArray[U >: T](xs: Array[U], start: Int, len: Int) = if (len > 0) { tasksupport.executeAndWaitResult(new CopyToArray(start, len, xs, splitter)) } def sameElements[U >: T](that: GenIterable[U]) = seq.sameElements(that) def zip[U >: T, S, That](that: GenIterable[S])(implicit bf: CanBuildFrom[Repr, (U, S), That]): That = if (bf(repr).isCombiner && that.isParSeq) { val thatseq = that.asParSeq tasksupport.executeAndWaitResult(new Zip(combinerFactory(() => bf(repr).asCombiner), splitter, thatseq.splitter) mapResult { _.resultWithTaskSupport }) } else setTaskSupport(seq.zip(that)(bf2seq(bf)), tasksupport) def zipWithIndex[U >: T, That](implicit bf: CanBuildFrom[Repr, (U, Int), That]): That = this zip immutable.ParRange(0, size, 1, inclusive = false) def zipAll[S, U >: T, That](that: GenIterable[S], thisElem: U, thatElem: S)(implicit bf: CanBuildFrom[Repr, (U, S), That]): That = if (bf(repr).isCombiner && that.isParSeq) { val thatseq = that.asParSeq tasksupport.executeAndWaitResult( new ZipAll(size max thatseq.length, thisElem, thatElem, combinerFactory(() => bf(repr).asCombiner), splitter, thatseq.splitter) mapResult { _.resultWithTaskSupport } ) } else setTaskSupport(seq.zipAll(that, thisElem, thatElem)(bf2seq(bf)), tasksupport) protected def toParCollection[U >: T, That](cbf: () => Combiner[U, That]): That = { tasksupport.executeAndWaitResult(new ToParCollection(combinerFactory(cbf), splitter) mapResult { _.resultWithTaskSupport }) } protected def toParMap[K, V, That](cbf: () => Combiner[(K, V), That])(implicit ev: T <:< (K, V)): That = { tasksupport.executeAndWaitResult(new ToParMap(combinerFactory(cbf), splitter)(ev) mapResult { _.resultWithTaskSupport }) } @deprecated("Use .seq.view instead", "2.11.0") def view = seq.view override def toArray[U >: T: ClassTag]: Array[U] = { val arr = new Array[U](size) copyToArray(arr) arr } override def toList: List[T] = seq.toList override def toIndexedSeq: scala.collection.immutable.IndexedSeq[T] = seq.toIndexedSeq override def toStream: Stream[T] = seq.toStream override def toIterator: Iterator[T] = splitter // the methods below are overridden override def toBuffer[U >: T]: scala.collection.mutable.Buffer[U] = seq.toBuffer // have additional, parallel buffers? override def toTraversable: GenTraversable[T] = this.asInstanceOf[GenTraversable[T]] override def toIterable: ParIterable[T] = this.asInstanceOf[ParIterable[T]] override def toSeq: ParSeq[T] = toParCollection[T, ParSeq[T]](() => ParSeq.newCombiner[T]) override def toSet[U >: T]: immutable.ParSet[U] = toParCollection[U, immutable.ParSet[U]](() => immutable.ParSet.newCombiner[U]) override def toMap[K, V](implicit ev: T <:< (K, V)): immutable.ParMap[K, V] = toParMap[K, V, immutable.ParMap[K, V]](() => immutable.ParMap.newCombiner[K, V]) override def toVector: Vector[T] = to[Vector] override def to[Col[_]](implicit cbf: CanBuildFrom[Nothing, T, Col[T @uncheckedVariance]]): Col[T @uncheckedVariance] = if (cbf().isCombiner) { toParCollection[T, Col[T]](() => cbf().asCombiner) } else seq.to(cbf) /* tasks */ protected trait StrictSplitterCheckTask[R, Tp] extends Task[R, Tp] { def requiresStrictSplitters = false if (requiresStrictSplitters && !isStrictSplitterCollection) throw new UnsupportedOperationException("This collection does not provide strict splitters.") } /** Standard accessor task that iterates over the elements of the collection. * * @tparam R type of the result of this method (`R` for result). * @tparam Tp the representation type of the task at hand. */ protected trait Accessor[R, Tp] extends StrictSplitterCheckTask[R, Tp] { protected[this] val pit: IterableSplitter[T] protected[this] def newSubtask(p: IterableSplitter[T]): Accessor[R, Tp] def shouldSplitFurther = pit.shouldSplitFurther(self.repr, tasksupport.parallelismLevel) def split = pit.splitWithSignalling.map(newSubtask(_)) // default split procedure private[parallel] override def signalAbort = pit.abort() override def toString = this.getClass.getSimpleName + "(" + pit.toString + ")(" + result + ")(supername: " + super.toString + ")" } protected[this] trait NonDivisibleTask[R, Tp] extends StrictSplitterCheckTask[R, Tp] { def shouldSplitFurther = false def split = throw new UnsupportedOperationException("Does not split.") } protected[this] trait NonDivisible[R] extends NonDivisibleTask[R, NonDivisible[R]] protected[this] abstract class Composite[FR, SR, R, First <: StrictSplitterCheckTask[FR, _], Second <: StrictSplitterCheckTask[SR, _]] (val ft: First, val st: Second) extends NonDivisibleTask[R, Composite[FR, SR, R, First, Second]] { def combineResults(fr: FR, sr: SR): R @volatile var result: R = null.asInstanceOf[R] private[parallel] override def signalAbort() { ft.signalAbort() st.signalAbort() } protected def mergeSubtasks() { ft mergeThrowables st if (throwable eq null) result = combineResults(ft.result, st.result) } override def requiresStrictSplitters = ft.requiresStrictSplitters || st.requiresStrictSplitters } /** Sequentially performs one task after another. */ protected[this] abstract class SeqComposite[FR, SR, R, First <: StrictSplitterCheckTask[FR, _], Second <: StrictSplitterCheckTask[SR, _]] (f: First, s: Second) extends Composite[FR, SR, R, First, Second](f, s) { def leaf(prevr: Option[R]) = { tasksupport.executeAndWaitResult(ft) : Any tasksupport.executeAndWaitResult(st) : Any mergeSubtasks() } } /** Performs two tasks in parallel, and waits for both to finish. */ protected[this] abstract class ParComposite[FR, SR, R, First <: StrictSplitterCheckTask[FR, _], Second <: StrictSplitterCheckTask[SR, _]] (f: First, s: Second) extends Composite[FR, SR, R, First, Second](f, s) { def leaf(prevr: Option[R]) = { val ftfuture: () => Any = tasksupport.execute(ft) tasksupport.executeAndWaitResult(st) : Any ftfuture() mergeSubtasks() } } protected[this] abstract class ResultMapping[R, Tp, R1](val inner: StrictSplitterCheckTask[R, Tp]) extends NonDivisibleTask[R1, ResultMapping[R, Tp, R1]] { @volatile var result: R1 = null.asInstanceOf[R1] def map(r: R): R1 def leaf(prevr: Option[R1]) = { val initialResult = tasksupport.executeAndWaitResult(inner) result = map(initialResult) } private[parallel] override def signalAbort() { inner.signalAbort() } override def requiresStrictSplitters = inner.requiresStrictSplitters } protected trait Transformer[R, Tp] extends Accessor[R, Tp] protected[this] class Foreach[S](op: T => S, protected[this] val pit: IterableSplitter[T]) extends Accessor[Unit, Foreach[S]] { @volatile var result: Unit = () def leaf(prevr: Option[Unit]) = pit.foreach(op) protected[this] def newSubtask(p: IterableSplitter[T]) = new Foreach[S](op, p) } protected[this] class Count(pred: T => Boolean, protected[this] val pit: IterableSplitter[T]) extends Accessor[Int, Count] { // val pittxt = pit.toString @volatile var result: Int = 0 def leaf(prevr: Option[Int]) = result = pit.count(pred) protected[this] def newSubtask(p: IterableSplitter[T]) = new Count(pred, p) override def merge(that: Count) = result = result + that.result // override def toString = "CountTask(" + pittxt + ")" } protected[this] class Reduce[U >: T](op: (U, U) => U, protected[this] val pit: IterableSplitter[T]) extends Accessor[Option[U], Reduce[U]] { @volatile var result: Option[U] = None def leaf(prevr: Option[Option[U]]) = if (pit.remaining > 0) result = Some(pit.reduce(op)) protected[this] def newSubtask(p: IterableSplitter[T]) = new Reduce(op, p) override def merge(that: Reduce[U]) = if (this.result == None) result = that.result else if (that.result != None) result = Some(op(result.get, that.result.get)) override def requiresStrictSplitters = true } protected[this] class Fold[U >: T](z: U, op: (U, U) => U, protected[this] val pit: IterableSplitter[T]) extends Accessor[U, Fold[U]] { @volatile var result: U = null.asInstanceOf[U] def leaf(prevr: Option[U]) = result = pit.fold(z)(op) protected[this] def newSubtask(p: IterableSplitter[T]) = new Fold(z, op, p) override def merge(that: Fold[U]) = result = op(result, that.result) } protected[this] class Aggregate[S](z: () => S, seqop: (S, T) => S, combop: (S, S) => S, protected[this] val pit: IterableSplitter[T]) extends Accessor[S, Aggregate[S]] { @volatile var result: S = null.asInstanceOf[S] def leaf(prevr: Option[S]) = result = pit.foldLeft(z())(seqop) protected[this] def newSubtask(p: IterableSplitter[T]) = new Aggregate(z, seqop, combop, p) override def merge(that: Aggregate[S]) = result = combop(result, that.result) } protected[this] class Sum[U >: T](num: Numeric[U], protected[this] val pit: IterableSplitter[T]) extends Accessor[U, Sum[U]] { @volatile var result: U = null.asInstanceOf[U] def leaf(prevr: Option[U]) = result = pit.sum(num) protected[this] def newSubtask(p: IterableSplitter[T]) = new Sum(num, p) override def merge(that: Sum[U]) = result = num.plus(result, that.result) } protected[this] class Product[U >: T](num: Numeric[U], protected[this] val pit: IterableSplitter[T]) extends Accessor[U, Product[U]] { @volatile var result: U = null.asInstanceOf[U] def leaf(prevr: Option[U]) = result = pit.product(num) protected[this] def newSubtask(p: IterableSplitter[T]) = new Product(num, p) override def merge(that: Product[U]) = result = num.times(result, that.result) } protected[this] class Min[U >: T](ord: Ordering[U], protected[this] val pit: IterableSplitter[T]) extends Accessor[Option[U], Min[U]] { @volatile var result: Option[U] = None def leaf(prevr: Option[Option[U]]) = if (pit.remaining > 0) result = Some(pit.min(ord)) protected[this] def newSubtask(p: IterableSplitter[T]) = new Min(ord, p) override def merge(that: Min[U]) = if (this.result == None) result = that.result else if (that.result != None) result = if (ord.lteq(result.get, that.result.get)) result else that.result override def requiresStrictSplitters = true } protected[this] class Max[U >: T](ord: Ordering[U], protected[this] val pit: IterableSplitter[T]) extends Accessor[Option[U], Max[U]] { @volatile var result: Option[U] = None def leaf(prevr: Option[Option[U]]) = if (pit.remaining > 0) result = Some(pit.max(ord)) protected[this] def newSubtask(p: IterableSplitter[T]) = new Max(ord, p) override def merge(that: Max[U]) = if (this.result == None) result = that.result else if (that.result != None) result = if (ord.gteq(result.get, that.result.get)) result else that.result override def requiresStrictSplitters = true } protected[this] class Map[S, That](f: T => S, cbf: CombinerFactory[S, That], protected[this] val pit: IterableSplitter[T]) extends Transformer[Combiner[S, That], Map[S, That]] { @volatile var result: Combiner[S, That] = null def leaf(prev: Option[Combiner[S, That]]) = result = pit.map2combiner(f, reuse(prev, cbf())) protected[this] def newSubtask(p: IterableSplitter[T]) = new Map(f, cbf, p) override def merge(that: Map[S, That]) = result = result combine that.result } protected[this] class Collect[S, That] (pf: PartialFunction[T, S], pbf: CombinerFactory[S, That], protected[this] val pit: IterableSplitter[T]) extends Transformer[Combiner[S, That], Collect[S, That]] { @volatile var result: Combiner[S, That] = null def leaf(prev: Option[Combiner[S, That]]) = result = pit.collect2combiner[S, That](pf, pbf()) protected[this] def newSubtask(p: IterableSplitter[T]) = new Collect(pf, pbf, p) override def merge(that: Collect[S, That]) = result = result combine that.result } protected[this] class FlatMap[S, That] (f: T => GenTraversableOnce[S], pbf: CombinerFactory[S, That], protected[this] val pit: IterableSplitter[T]) extends Transformer[Combiner[S, That], FlatMap[S, That]] { @volatile var result: Combiner[S, That] = null def leaf(prev: Option[Combiner[S, That]]) = result = pit.flatmap2combiner(f, pbf()) protected[this] def newSubtask(p: IterableSplitter[T]) = new FlatMap(f, pbf, p) override def merge(that: FlatMap[S, That]) = { //debuglog("merging " + result + " and " + that.result) result = result combine that.result //debuglog("merged into " + result) } } protected[this] class Forall(pred: T => Boolean, protected[this] val pit: IterableSplitter[T]) extends Accessor[Boolean, Forall] { @volatile var result: Boolean = true def leaf(prev: Option[Boolean]) = { if (!pit.isAborted) result = pit.forall(pred); if (result == false) pit.abort() } protected[this] def newSubtask(p: IterableSplitter[T]) = new Forall(pred, p) override def merge(that: Forall) = result = result && that.result } protected[this] class Exists(pred: T => Boolean, protected[this] val pit: IterableSplitter[T]) extends Accessor[Boolean, Exists] { @volatile var result: Boolean = false def leaf(prev: Option[Boolean]) = { if (!pit.isAborted) result = pit.exists(pred); if (result == true) pit.abort() } protected[this] def newSubtask(p: IterableSplitter[T]) = new Exists(pred, p) override def merge(that: Exists) = result = result || that.result } protected[this] class Find[U >: T](pred: T => Boolean, protected[this] val pit: IterableSplitter[T]) extends Accessor[Option[U], Find[U]] { @volatile var result: Option[U] = None def leaf(prev: Option[Option[U]]) = { if (!pit.isAborted) result = pit.find(pred); if (result != None) pit.abort() } protected[this] def newSubtask(p: IterableSplitter[T]) = new Find(pred, p) override def merge(that: Find[U]) = if (this.result == None) result = that.result } protected[this] class Filter[U >: T, This >: Repr](pred: T => Boolean, cbf: CombinerFactory[U, This], protected[this] val pit: IterableSplitter[T]) extends Transformer[Combiner[U, This], Filter[U, This]] { @volatile var result: Combiner[U, This] = null def leaf(prev: Option[Combiner[U, This]]) = { result = pit.filter2combiner(pred, reuse(prev, cbf())) } protected[this] def newSubtask(p: IterableSplitter[T]) = new Filter(pred, cbf, p) override def merge(that: Filter[U, This]) = result = result combine that.result } protected[this] class FilterNot[U >: T, This >: Repr](pred: T => Boolean, cbf: CombinerFactory[U, This], protected[this] val pit: IterableSplitter[T]) extends Transformer[Combiner[U, This], FilterNot[U, This]] { @volatile var result: Combiner[U, This] = null def leaf(prev: Option[Combiner[U, This]]) = { result = pit.filterNot2combiner(pred, reuse(prev, cbf())) } protected[this] def newSubtask(p: IterableSplitter[T]) = new FilterNot(pred, cbf, p) override def merge(that: FilterNot[U, This]) = result = result combine that.result } protected class Copy[U >: T, That](cfactory: CombinerFactory[U, That], protected[this] val pit: IterableSplitter[T]) extends Transformer[Combiner[U, That], Copy[U, That]] { @volatile var result: Combiner[U, That] = null def leaf(prev: Option[Combiner[U, That]]) = result = pit.copy2builder[U, That, Combiner[U, That]](reuse(prev, cfactory())) protected[this] def newSubtask(p: IterableSplitter[T]) = new Copy[U, That](cfactory, p) override def merge(that: Copy[U, That]) = result = result combine that.result } protected[this] class Partition[U >: T, This >: Repr] (pred: T => Boolean, cbfTrue: CombinerFactory[U, This], cbfFalse: CombinerFactory[U, This], protected[this] val pit: IterableSplitter[T]) extends Transformer[(Combiner[U, This], Combiner[U, This]), Partition[U, This]] { @volatile var result: (Combiner[U, This], Combiner[U, This]) = null def leaf(prev: Option[(Combiner[U, This], Combiner[U, This])]) = result = pit.partition2combiners(pred, reuse(prev.map(_._1), cbfTrue()), reuse(prev.map(_._2), cbfFalse())) protected[this] def newSubtask(p: IterableSplitter[T]) = new Partition(pred, cbfTrue, cbfFalse, p) override def merge(that: Partition[U, This]) = result = (result._1 combine that.result._1, result._2 combine that.result._2) } protected[this] class GroupBy[K, U >: T]( f: U => K, mcf: () => HashMapCombiner[K, U], protected[this] val pit: IterableSplitter[T] ) extends Transformer[HashMapCombiner[K, U], GroupBy[K, U]] { @volatile var result: Result = null final def leaf(prev: Option[Result]) = { // note: HashMapCombiner doesn't merge same keys until evaluation val cb = mcf() while (pit.hasNext) { val elem = pit.next() cb += f(elem) -> elem } result = cb } protected[this] def newSubtask(p: IterableSplitter[T]) = new GroupBy(f, mcf, p) override def merge(that: GroupBy[K, U]) = { // note: this works because we know that a HashMapCombiner doesn't merge same keys until evaluation // --> we know we're not dropping any mappings result = (result combine that.result).asInstanceOf[HashMapCombiner[K, U]] } } protected[this] class Take[U >: T, This >: Repr] (n: Int, cbf: CombinerFactory[U, This], protected[this] val pit: IterableSplitter[T]) extends Transformer[Combiner[U, This], Take[U, This]] { @volatile var result: Combiner[U, This] = null def leaf(prev: Option[Combiner[U, This]]) = { result = pit.take2combiner(n, reuse(prev, cbf())) } protected[this] def newSubtask(p: IterableSplitter[T]) = throw new UnsupportedOperationException override def split = { val pits = pit.splitWithSignalling val sizes = pits.scanLeft(0)(_ + _.remaining) for ((p, untilp) <- pits zip sizes; if untilp <= n) yield { if (untilp + p.remaining < n) new Take(p.remaining, cbf, p) else new Take(n - untilp, cbf, p) } } override def merge(that: Take[U, This]) = result = result combine that.result override def requiresStrictSplitters = true } protected[this] class Drop[U >: T, This >: Repr] (n: Int, cbf: CombinerFactory[U, This], protected[this] val pit: IterableSplitter[T]) extends Transformer[Combiner[U, This], Drop[U, This]] { @volatile var result: Combiner[U, This] = null def leaf(prev: Option[Combiner[U, This]]) = result = pit.drop2combiner(n, reuse(prev, cbf())) protected[this] def newSubtask(p: IterableSplitter[T]) = throw new UnsupportedOperationException override def split = { val pits = pit.splitWithSignalling val sizes = pits.scanLeft(0)(_ + _.remaining) for ((p, withp) <- pits zip sizes.tail; if withp >= n) yield { if (withp - p.remaining > n) new Drop(0, cbf, p) else new Drop(n - withp + p.remaining, cbf, p) } } override def merge(that: Drop[U, This]) = result = result combine that.result override def requiresStrictSplitters = true } protected[this] class Slice[U >: T, This >: Repr] (from: Int, until: Int, cbf: CombinerFactory[U, This], protected[this] val pit: IterableSplitter[T]) extends Transformer[Combiner[U, This], Slice[U, This]] { @volatile var result: Combiner[U, This] = null def leaf(prev: Option[Combiner[U, This]]) = result = pit.slice2combiner(from, until, reuse(prev, cbf())) protected[this] def newSubtask(p: IterableSplitter[T]) = throw new UnsupportedOperationException override def split = { val pits = pit.splitWithSignalling val sizes = pits.scanLeft(0)(_ + _.remaining) for ((p, untilp) <- pits zip sizes; if untilp + p.remaining >= from || untilp <= until) yield { val f = (from max untilp) - untilp val u = (until min (untilp + p.remaining)) - untilp new Slice(f, u, cbf, p) } } override def merge(that: Slice[U, This]) = result = result combine that.result override def requiresStrictSplitters = true } protected[this] class SplitAt[U >: T, This >: Repr] (at: Int, cbfBefore: CombinerFactory[U, This], cbfAfter: CombinerFactory[U, This], protected[this] val pit: IterableSplitter[T]) extends Transformer[(Combiner[U, This], Combiner[U, This]), SplitAt[U, This]] { @volatile var result: (Combiner[U, This], Combiner[U, This]) = null def leaf(prev: Option[(Combiner[U, This], Combiner[U, This])]) = result = pit.splitAt2combiners(at, reuse(prev.map(_._1), cbfBefore()), reuse(prev.map(_._2), cbfAfter())) protected[this] def newSubtask(p: IterableSplitter[T]) = throw new UnsupportedOperationException override def split = { val pits = pit.splitWithSignalling val sizes = pits.scanLeft(0)(_ + _.remaining) for ((p, untilp) <- pits zip sizes) yield new SplitAt((at max untilp min (untilp + p.remaining)) - untilp, cbfBefore, cbfAfter, p) } override def merge(that: SplitAt[U, This]) = result = (result._1 combine that.result._1, result._2 combine that.result._2) override def requiresStrictSplitters = true } protected[this] class TakeWhile[U >: T, This >: Repr] (pos: Int, pred: T => Boolean, cbf: CombinerFactory[U, This], protected[this] val pit: IterableSplitter[T]) extends Transformer[(Combiner[U, This], Boolean), TakeWhile[U, This]] { @volatile var result: (Combiner[U, This], Boolean) = null def leaf(prev: Option[(Combiner[U, This], Boolean)]) = if (pos < pit.indexFlag) { result = pit.takeWhile2combiner(pred, reuse(prev.map(_._1), cbf())) if (!result._2) pit.setIndexFlagIfLesser(pos) } else result = (reuse(prev.map(_._1), cbf()), false) protected[this] def newSubtask(p: IterableSplitter[T]) = throw new UnsupportedOperationException override def split = { val pits = pit.splitWithSignalling for ((p, untilp) <- pits zip pits.scanLeft(0)(_ + _.remaining)) yield new TakeWhile(pos + untilp, pred, cbf, p) } override def merge(that: TakeWhile[U, This]) = if (result._2) { result = (result._1 combine that.result._1, that.result._2) } override def requiresStrictSplitters = true } protected[this] class Span[U >: T, This >: Repr] (pos: Int, pred: T => Boolean, cbfBefore: CombinerFactory[U, This], cbfAfter: CombinerFactory[U, This], protected[this] val pit: IterableSplitter[T]) extends Transformer[(Combiner[U, This], Combiner[U, This]), Span[U, This]] { @volatile var result: (Combiner[U, This], Combiner[U, This]) = null def leaf(prev: Option[(Combiner[U, This], Combiner[U, This])]) = if (pos < pit.indexFlag) { // val lst = pit.toList // val pa = mutable.ParArray(lst: _*) // val str = "At leaf we will iterate: " + pa.splitter.toList result = pit.span2combiners(pred, cbfBefore(), cbfAfter()) // do NOT reuse old combiners here, lest ye be surprised // println("\nAt leaf result is: " + result) if (result._2.size > 0) pit.setIndexFlagIfLesser(pos) } else { result = (reuse(prev.map(_._2), cbfBefore()), pit.copy2builder[U, This, Combiner[U, This]](reuse(prev.map(_._2), cbfAfter()))) } protected[this] def newSubtask(p: IterableSplitter[T]) = throw new UnsupportedOperationException override def split = { val pits = pit.splitWithSignalling for ((p, untilp) <- pits zip pits.scanLeft(0)(_ + _.remaining)) yield new Span(pos + untilp, pred, cbfBefore, cbfAfter, p) } override def merge(that: Span[U, This]) = result = if (result._2.size == 0) { (result._1 combine that.result._1, that.result._2) } else { (result._1, result._2 combine that.result._1 combine that.result._2) } override def requiresStrictSplitters = true } protected[this] class Zip[U >: T, S, That](pbf: CombinerFactory[(U, S), That], protected[this] val pit: IterableSplitter[T], val othpit: SeqSplitter[S]) extends Transformer[Combiner[(U, S), That], Zip[U, S, That]] { @volatile var result: Result = null def leaf(prev: Option[Result]) = result = pit.zip2combiner[U, S, That](othpit, pbf()) protected[this] def newSubtask(p: IterableSplitter[T]) = unsupported override def split = { val pits = pit.splitWithSignalling val sizes = pits.map(_.remaining) val opits = othpit.psplitWithSignalling(sizes: _*) (pits zip opits) map { p => new Zip(pbf, p._1, p._2) } } override def merge(that: Zip[U, S, That]) = result = result combine that.result override def requiresStrictSplitters = true } protected[this] class ZipAll[U >: T, S, That] (len: Int, thiselem: U, thatelem: S, pbf: CombinerFactory[(U, S), That], protected[this] val pit: IterableSplitter[T], val othpit: SeqSplitter[S]) extends Transformer[Combiner[(U, S), That], ZipAll[U, S, That]] { @volatile var result: Result = null def leaf(prev: Option[Result]) = result = pit.zipAll2combiner[U, S, That](othpit, thiselem, thatelem, pbf()) protected[this] def newSubtask(p: IterableSplitter[T]) = unsupported override def split = if (pit.remaining <= len) { val pits = pit.splitWithSignalling val sizes = pits.map(_.remaining) val opits = othpit.psplitWithSignalling(sizes: _*) ((pits zip opits) zip sizes) map { t => new ZipAll(t._2, thiselem, thatelem, pbf, t._1._1, t._1._2) } } else { val opits = othpit.psplitWithSignalling(pit.remaining) val diff = len - pit.remaining Seq( new ZipAll(pit.remaining, thiselem, thatelem, pbf, pit, opits(0)), // nothing wrong will happen with the cast below - elem T is never accessed new ZipAll(diff, thiselem, thatelem, pbf, immutable.repetition(thiselem, diff).splitter.asInstanceOf[IterableSplitter[T]], opits(1)) ) } override def merge(that: ZipAll[U, S, That]) = result = result combine that.result override def requiresStrictSplitters = true } protected[this] class CopyToArray[U >: T, This >: Repr](from: Int, len: Int, array: Array[U], protected[this] val pit: IterableSplitter[T]) extends Accessor[Unit, CopyToArray[U, This]] { @volatile var result: Unit = () def leaf(prev: Option[Unit]) = pit.copyToArray(array, from, len) protected[this] def newSubtask(p: IterableSplitter[T]) = unsupported override def split = { val pits = pit.splitWithSignalling for ((p, untilp) <- pits zip pits.scanLeft(0)(_ + _.remaining); if untilp < len) yield { val plen = p.remaining min (len - untilp) new CopyToArray[U, This](from + untilp, plen, array, p) } } override def requiresStrictSplitters = true } protected[this] class ToParCollection[U >: T, That](cbf: CombinerFactory[U, That], protected[this] val pit: IterableSplitter[T]) extends Transformer[Combiner[U, That], ToParCollection[U, That]] { @volatile var result: Result = null def leaf(prev: Option[Combiner[U, That]]) { result = cbf() while (pit.hasNext) result += pit.next } protected[this] def newSubtask(p: IterableSplitter[T]) = new ToParCollection[U, That](cbf, p) override def merge(that: ToParCollection[U, That]) = result = result combine that.result } protected[this] class ToParMap[K, V, That](cbf: CombinerFactory[(K, V), That], protected[this] val pit: IterableSplitter[T])(implicit ev: T <:< (K, V)) extends Transformer[Combiner[(K, V), That], ToParMap[K, V, That]] { @volatile var result: Result = null def leaf(prev: Option[Combiner[(K, V), That]]) { result = cbf() while (pit.hasNext) result += pit.next } protected[this] def newSubtask(p: IterableSplitter[T]) = new ToParMap[K, V, That](cbf, p)(ev) override def merge(that: ToParMap[K, V, That]) = result = result combine that.result } protected[this] class CreateScanTree[U >: T](from: Int, len: Int, z: U, op: (U, U) => U, protected[this] val pit: IterableSplitter[T]) extends Transformer[ScanTree[U], CreateScanTree[U]] { @volatile var result: ScanTree[U] = null def leaf(prev: Option[ScanTree[U]]) = if (pit.remaining > 0) { val trees = ArrayBuffer[ScanTree[U]]() var i = from val until = from + len val blocksize = scanBlockSize while (i < until) { trees += scanBlock(i, scala.math.min(blocksize, pit.remaining)) i += blocksize } // merge trees result = mergeTrees(trees, 0, trees.length) } else result = null // no elements to scan (merge will take care of `null`s) private def scanBlock(from: Int, len: Int): ScanTree[U] = { val pitdup = pit.dup new ScanLeaf(pitdup, op, from, len, None, pit.reduceLeft(len, op)) } private def mergeTrees(trees: ArrayBuffer[ScanTree[U]], from: Int, howmany: Int): ScanTree[U] = if (howmany > 1) { val half = howmany / 2 ScanNode(mergeTrees(trees, from, half), mergeTrees(trees, from + half, howmany - half)) } else trees(from) protected[this] def newSubtask(pit: IterableSplitter[T]) = unsupported override def split = { val pits = pit.splitWithSignalling for ((p, untilp) <- pits zip pits.scanLeft(from)(_ + _.remaining)) yield { new CreateScanTree(untilp, p.remaining, z, op, p) } } override def merge(that: CreateScanTree[U]) = if (this.result != null) { if (that.result != null) result = ScanNode(result, that.result) } else result = that.result override def requiresStrictSplitters = true } protected[this] class FromScanTree[U >: T, That] (tree: ScanTree[U], z: U, op: (U, U) => U, cbf: CombinerFactory[U, That]) extends StrictSplitterCheckTask[Combiner[U, That], FromScanTree[U, That]] { @volatile var result: Combiner[U, That] = null def leaf(prev: Option[Combiner[U, That]]) { val cb = reuse(prev, cbf()) iterate(tree, cb) result = cb } private def iterate(tree: ScanTree[U], cb: Combiner[U, That]): Unit = tree match { case ScanNode(left, right) => iterate(left, cb) iterate(right, cb) case ScanLeaf(p, _, _, len, Some(prev), _) => p.scanToCombiner(len, prev.acc, op, cb) case ScanLeaf(p, _, _, len, None, _) => cb += z p.scanToCombiner(len, z, op, cb) } def split = tree match { case ScanNode(left, right) => Seq( new FromScanTree(left, z, op, cbf), new FromScanTree(right, z, op, cbf) ) case _ => unsupportedop("Cannot be split further") } def shouldSplitFurther = tree match { case ScanNode(_, _) => true case ScanLeaf(_, _, _, _, _, _) => false } override def merge(that: FromScanTree[U, That]) = result = result combine that.result } /* scan tree */ protected[this] def scanBlockSize = (thresholdFromSize(size, tasksupport.parallelismLevel) / 2) max 1 protected[this] trait ScanTree[U >: T] { def beginsAt: Int def pushdown(v: U): Unit def leftmost: ScanLeaf[U] def rightmost: ScanLeaf[U] def print(depth: Int = 0): Unit } protected[this] case class ScanNode[U >: T](left: ScanTree[U], right: ScanTree[U]) extends ScanTree[U] { right.pushdown(left.rightmost.acc) right.leftmost.prev = Some(left.rightmost) val leftmost = left.leftmost val rightmost = right.rightmost def beginsAt = left.beginsAt def pushdown(v: U) { left.pushdown(v) right.pushdown(v) } def print(depth: Int) { println((" " * depth) + "ScanNode, begins at " + beginsAt) left.print(depth + 1) right.print(depth + 1) } } protected[this] case class ScanLeaf[U >: T] (pit: IterableSplitter[U], op: (U, U) => U, from: Int, len: Int, var prev: Option[ScanLeaf[U]], var acc: U) extends ScanTree[U] { def beginsAt = from def pushdown(v: U) = { acc = op(v, acc) } def leftmost = this def rightmost = this def print(depth: Int) = println((" " * depth) + this) } /* alias methods */ def /:[S](z: S)(op: (S, T) => S): S = foldLeft(z)(op) def :\[S](z: S)(op: (T, S) => S): S = foldRight(z)(op) /* debug information */ private[parallel] def debugInformation = "Parallel collection: " + this.getClass private[parallel] def brokenInvariants = Seq[String]() // private val dbbuff = ArrayBuffer[String]() // def debugBuffer: ArrayBuffer[String] = dbbuff def debugBuffer: ArrayBuffer[String] = null private[parallel] def debugclear() = synchronized { debugBuffer.clear() } private[parallel] def debuglog(s: String) = synchronized { debugBuffer += s } import scala.collection.DebugUtils._ private[parallel] def printDebugBuffer() = println(buildString { append => for (s <- debugBuffer) { append(s) } }) } Other Scala source code examplesHere is a short list of links related to this Scala ParIterableLike.scala source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.