alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (Scopes.scala)

This example Scala source code file (Scopes.scala) is included in my "Source Code Warehouse" project. The intent of this project is to help you more easily find Scala source code examples by using tags.

All credit for the original source code belongs to scala-lang.org; I'm just trying to make examples easier to find. (For my Scala work, see my Scala examples and tutorials.)

Scala tags/keywords

annotation, boolean, hashmask, iterator, list, name, namelookup, scope, scopeentry, string, symbol

The Scopes.scala Scala example source code

/* NSC -- new Scala compiler
 * Copyright 2005-2013 LAMP/EPFL
 * @author  Martin Odersky
 */

package scala
package reflect
package internal

import scala.annotation.tailrec

trait Scopes extends api.Scopes { self: SymbolTable =>

  /** An ADT to represent the results of symbol name lookups.
   */
  sealed trait NameLookup { def symbol: Symbol ; def isSuccess = false }
  case class LookupSucceeded(qualifier: Tree, symbol: Symbol) extends NameLookup { override def isSuccess = true }
  case class LookupAmbiguous(msg: String) extends NameLookup { def symbol = NoSymbol }
  case class LookupInaccessible(symbol: Symbol, msg: String) extends NameLookup
  case object LookupNotFound extends NameLookup { def symbol = NoSymbol }

  class ScopeEntry(val sym: Symbol, val owner: Scope) {
    /** the next entry in the hash bucket
     */
    var tail: ScopeEntry = null

    /** the next entry in this scope
     */
    var next: ScopeEntry = null

    def depth = owner.nestingLevel
    override def hashCode(): Int = sym.name.start
    override def toString() = s"$sym (depth=$depth)"
  }

  private def newScopeEntry(sym: Symbol, owner: Scope): ScopeEntry = {
    val e = new ScopeEntry(sym, owner)
    e.next = owner.elems
    owner.elems = e
    e
  }

  object Scope {
    def unapplySeq(decls: Scope): Some[Seq[Symbol]] = Some(decls.toList)
  }

  /** Note: constructor is protected to force everyone to use the factory methods newScope or newNestedScope instead.
   *  This is necessary because when run from reflection every scope needs to have a
   *  SynchronizedScope as mixin.
   */
  class Scope protected[Scopes] (initElems: ScopeEntry = null, initFingerPrints: Long = 0L) extends ScopeApi with MemberScopeApi {

    protected[Scopes] def this(base: Scope) = {
      this(base.elems)
      nestinglevel = base.nestinglevel + 1
    }

    private[scala] var elems: ScopeEntry = initElems

    /** The number of times this scope is nested in another
     */
    private var nestinglevel = 0

    /** the hash table
     */
    private var hashtable: Array[ScopeEntry] = null

    /** a cache for all elements, to be used by symbol iterator.
     */
    private var elemsCache: List[Symbol] = null
    private var cachedSize = -1
    private def flushElemsCache() {
      elemsCache = null
      cachedSize = -1
    }

    /** size and mask of hash tables
     *  todo: make hashtables grow?
     */
    private val HASHSIZE = 0x80
    private val HASHMASK = 0x7f

    /** the threshold number of entries from which a hashtable is constructed.
     */
    private val MIN_HASH = 8

    if (size >= MIN_HASH) createHash()

    /** Returns a new scope with the same content as this one. */
    def cloneScope: Scope = newScopeWith(this.toList: _*)

    /** is the scope empty? */
    override def isEmpty: Boolean = elems eq null

    /** the number of entries in this scope */
    override def size: Int = {
      if (cachedSize < 0)
        cachedSize = directSize

      cachedSize
    }
    private def directSize: Int = {
      var s = 0
      var e = elems
      while (e ne null) {
        s += 1
        e = e.next
      }
      s
    }

    /** enter a scope entry
     */
    protected def enterEntry(e: ScopeEntry) {
      flushElemsCache()
      if (hashtable ne null)
        enterInHash(e)
      else if (size >= MIN_HASH)
        createHash()
    }

    private def enterInHash(e: ScopeEntry): Unit = {
      val i = e.sym.name.start & HASHMASK
      e.tail = hashtable(i)
      hashtable(i) = e
    }

    /** enter a symbol
     */
    def enter[T <: Symbol](sym: T): T = {
      enterEntry(newScopeEntry(sym, this))
      sym
    }

    /** enter a symbol, asserting that no symbol with same name exists in scope
     */
    def enterUnique(sym: Symbol) {
      assert(lookup(sym.name) == NoSymbol, (sym.fullLocationString, lookup(sym.name).fullLocationString))
      enter(sym)
    }

    def enterIfNew[T <: Symbol](sym: T): T = {
      val existing = lookupEntry(sym.name)
      if (existing == null) enter(sym)
      else existing.sym.asInstanceOf[T]
    }

    private def createHash() {
      hashtable = new Array[ScopeEntry](HASHSIZE)
      enterAllInHash(elems)
    }

    private def enterAllInHash(e: ScopeEntry, n: Int = 0) {
      if (e ne null) {
        if (n < maxRecursions) {
          enterAllInHash(e.next, n + 1)
          enterInHash(e)
        } else {
          var entries: List[ScopeEntry] = List()
          var ee = e
          while (ee ne null) {
            entries = ee :: entries
            ee = ee.next
          }
          entries foreach enterInHash
        }
      }
    }

    def rehash(sym: Symbol, newname: Name) {
      if (hashtable ne null) {
        val index = sym.name.start & HASHMASK
        var e1 = hashtable(index)
        var e: ScopeEntry = null
        if (e1 != null) {
          if (e1.sym == sym) {
            hashtable(index) = e1.tail
            e = e1
          } else {
            while (e1.tail != null && e1.tail.sym != sym) e1 = e1.tail
            if (e1.tail != null) {
              e = e1.tail
              e1.tail = e.tail
            }
          }
        }
        if (e != null) {
          val newindex = newname.start & HASHMASK
          e.tail = hashtable(newindex)
          hashtable(newindex) = e
        }
      }
    }

    /** remove entry
     */
    def unlink(e: ScopeEntry) {
      if (elems == e) {
        elems = e.next
      } else {
        var e1 = elems
        while (e1.next != e) e1 = e1.next
        e1.next = e.next
      }
      if (hashtable ne null) {
        val index = e.sym.name.start & HASHMASK
        var e1 = hashtable(index)
        if (e1 == e) {
          hashtable(index) = e.tail
        } else {
          while (e1.tail != e) e1 = e1.tail
          e1.tail = e.tail
        }
      }
      flushElemsCache()
    }

    /** remove symbol */
    def unlink(sym: Symbol) {
      var e = lookupEntry(sym.name)
      while (e ne null) {
        if (e.sym == sym) unlink(e)
        e = lookupNextEntry(e)
      }
    }

    /** Lookup a module or a class, filtering out matching names in scope
     *  which do not match that requirement.
     */
    def lookupModule(name: Name): Symbol = findSymbol(lookupAll(name.toTermName))(_.isModule)
    def lookupClass(name: Name): Symbol  = findSymbol(lookupAll(name.toTypeName))(_.isClass)

    /** True if the name exists in this scope, false otherwise. */
    def containsName(name: Name) = lookupEntry(name) != null

    /** Lookup a symbol.
     */
    def lookup(name: Name): Symbol = {
      val e = lookupEntry(name)
      if (e eq null) NoSymbol
      else if (lookupNextEntry(e) eq null) e.sym
      else {
        // We shouldn't get here: until now this method was picking a random
        // symbol when there was more than one with the name, so this should
        // only be called knowing that there are 0-1 symbols of interest. So, we
        // can safely return an overloaded symbol rather than throwing away the
        // rest of them. Most likely we still break, but at least we will break
        // in an understandable fashion (unexpectedly overloaded symbol) rather
        // than a non-deterministic bizarre one (see any bug involving overloads
        // in package objects.)
        val alts = lookupAll(name).toList
        def alts_s = alts map (s => s.defString) mkString " <and> "
        devWarning(s"scope lookup of $name found multiple symbols: $alts_s")
        // FIXME - how is one supposed to create an overloaded symbol without
        // knowing the correct owner? Using the symbol owner is not correct;
        // say for instance this is List's scope and the symbols are its three
        // mkString members. Those symbols are owned by TraversableLike, which
        // is no more meaningful an owner than NoSymbol given that we're in
        // List. Maybe it makes no difference who owns the overloaded symbol, in
        // which case let's establish that and have a canonical creation method.
        //
        // FIXME - a similar question for prefix, although there are more
        // clues from the symbols on that one, as implemented here. In general
        // the distinct list is one type and lub becomes the identity.
        // val prefix = lub(alts map (_.info.prefix) distinct)
        // Now using NoSymbol and NoPrefix always to avoid forcing info (SI-6664)
        NoSymbol.newOverloaded(NoPrefix, alts)
      }
    }

    /** Returns an iterator yielding every symbol with given name in this scope.
     */
    def lookupAll(name: Name): Iterator[Symbol] = new Iterator[Symbol] {
      var e = lookupEntry(name)
      def hasNext: Boolean = e ne null
      def next(): Symbol = try e.sym finally e = lookupNextEntry(e)
    }

    def lookupAllEntries(name: Name): Iterator[ScopeEntry] = new Iterator[ScopeEntry] {
      var e = lookupEntry(name)
      def hasNext: Boolean = e ne null
      def next(): ScopeEntry = try e finally e = lookupNextEntry(e)
    }

    def lookupUnshadowedEntries(name: Name): Iterator[ScopeEntry] = {
      lookupEntry(name) match {
        case null => Iterator.empty
        case e    => lookupAllEntries(name) filter (e1 => (e eq e1) || (e.depth == e1.depth && e.sym != e1.sym))
      }
    }

    /** lookup a symbol entry matching given name.
     *  @note from Martin: I believe this is a hotspot or will be one
     *  in future versions of the type system. I have reverted the previous
     *  change to use iterators as too costly.
     */
    def lookupEntry(name: Name): ScopeEntry = {
      var e: ScopeEntry = null
      if (hashtable ne null) {
        e = hashtable(name.start & HASHMASK)
        while ((e ne null) && e.sym.name != name) {
          e = e.tail
        }
      } else {
        e = elems
        while ((e ne null) && e.sym.name != name) {
          e = e.next
        }
      }
      e
    }

    /** lookup next entry with same name as this one
     *  @note from Martin: I believe this is a hotspot or will be one
     *  in future versions of the type system. I have reverted the previous
     *  change to use iterators as too costly.
     */
    def lookupNextEntry(entry: ScopeEntry): ScopeEntry = {
      var e = entry
      if (hashtable ne null)
        do { e = e.tail } while ((e ne null) && e.sym.name != entry.sym.name)
      else
        do { e = e.next } while ((e ne null) && e.sym.name != entry.sym.name)
      e
    }

    /** TODO - we can test this more efficiently than checking isSubScope
     *  in both directions. However the size test might be enough to quickly
     *  rule out most failures.
     */
    def isSameScope(other: Scope) = (
         (size == other.size)     // optimization - size is cached
      && (this isSubScope other)
      && (other isSubScope this)
    )

    def isSubScope(other: Scope) = {
      def scopeContainsSym(sym: Symbol): Boolean = {
        @tailrec def entryContainsSym(e: ScopeEntry): Boolean = e match {
          case null => false
          case _    =>
            val comparableInfo = sym.info.substThis(sym.owner, e.sym.owner)
            (e.sym.info =:= comparableInfo) || entryContainsSym(lookupNextEntry(e))
        }
        entryContainsSym(this lookupEntry sym.name)
      }
      other.toList forall scopeContainsSym
    }

    /** Return all symbols as a list in the order they were entered in this scope.
     */
    override def toList: List[Symbol] = {
      if (elemsCache eq null) {
        var symbols: List[Symbol] = Nil
        var count = 0
        var e = elems
        while ((e ne null) && e.owner == this) {
          count += 1
          symbols ::= e.sym
          e = e.next
        }
        elemsCache = symbols
        cachedSize = count
      }
      elemsCache
    }

    /** Vanilla scope - symbols are stored in declaration order.
     */
    def sorted: List[Symbol] = toList

    /** Return the nesting level of this scope, i.e. the number of times this scope
     *  was nested in another */
    def nestingLevel = nestinglevel

    /** Return all symbols as an iterator in the order they were entered in this scope.
     */
    def iterator: Iterator[Symbol] = toList.iterator

    override def foreach[U](p: Symbol => U): Unit = toList foreach p

    override def filterNot(p: Symbol => Boolean): Scope = (
      if (toList exists p) newScopeWith(toList filterNot p: _*)
      else this
    )
    override def filter(p: Symbol => Boolean): Scope = (
      if (toList forall p) this
      else newScopeWith(toList filter p: _*)
    )
    @deprecated("Use `toList.reverse` instead", "2.10.0") // Used in SBT 0.12.4
    def reverse: List[Symbol] = toList.reverse

    override def mkString(start: String, sep: String, end: String) =
      toList.map(_.defString).mkString(start, sep, end)

    override def toString(): String = mkString("Scope{\n  ", ";\n  ", "\n}")
  }

  implicit val ScopeTag = ClassTag[Scope](classOf[Scope])

  type MemberScope = Scope

  implicit val MemberScopeTag = ClassTag[MemberScope](classOf[MemberScope])

  /** Create a new scope */
  def newScope: Scope = new Scope()

  /** Create a new scope to be used in `findMembers`.
   *
   *  But why do we need a special scope for `findMembers`?
   *  Let me tell you a story.
   *
   * `findMembers` creates a synthetic scope and then iterates over
   *  base classes in linearization order, and for every scrutinized class
   *  iterates over `decls`, the collection of symbols declared in that class.
   *  Declarations that fit the filter get appended to the created scope.
   *
   *  The problem is that `decls` returns a Scope, and to iterate a scope performantly
   *  one needs to go from its end to its beginning.
   *
   *  Hence the `findMembers` scope is populated in a wicked order:
   *  symbols that belong to the same declaring class come in reverse order of their declaration,
   *  however, the scope itself is ordered w.r.t the linearization of the target type.
   *
   *  Once `members` became a public API, this has been confusing countless numbers of users.
   *  Therefore we introduce a special flavor of scopes to accommodate this quirk of `findMembers`
   */
  private[scala] def newFindMemberScope: Scope = new Scope() {
    override def sorted = {
      val members = toList
      val owners = members.map(_.owner).distinct
      val grouped = members groupBy (_.owner)
      owners.flatMap(owner => grouped(owner).reverse)
    }
  }

  /** Create a new scope nested in another one with which it shares its elements */
  def newNestedScope(outer: Scope): Scope = new Scope(outer)

  /** Create a new scope with given initial elements */
  def newScopeWith(elems: Symbol*): Scope = {
    val scope = newScope
    elems foreach scope.enter
    scope
  }

  /** Create new scope for the members of package `pkg` */
  def newPackageScope(pkgClass: Symbol): Scope = newScope

  /** Transform scope of members of `owner` using operation `op`
   *  This is overridden by the reflective compiler to avoid creating new scopes for packages
   */
  def scopeTransform(owner: Symbol)(op: => Scope): Scope = op


  /** The empty scope (immutable).
   */
  object EmptyScope extends Scope {
    override def enterEntry(e: ScopeEntry) {
      abort("EmptyScope.enter")
    }
  }

  /** The error scope.
   */
  class ErrorScope(owner: Symbol) extends Scope

  private final val maxRecursions = 1000
}

Other Scala source code examples

Here is a short list of links related to this Scala Scopes.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.