alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (Adjunction.scala)

This example Scala source code file (Adjunction.scala) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Scala by Example" TM.

Learn more about this Scala project at its project page.

Java - Scala tags/keywords

adjunction, function0

The Adjunction.scala Scala example source code

package scalaz

/**
 * An adjunction formed by two functors `F` and `G` such that `F` is left-adjoint to `G`.
 * The composite functor GF is a monad and the composite functor FG is a comonad.
 *
 * The minimal defition is either (unit, counit) or (leftAdjunct, rightAdjunct)
 */
abstract class Adjunction[F[_], G[_]](implicit val F: Functor[F], val G: Functor[G]) { self =>

  /** Puts a value into the monad. */
  def unit[A](a: => A): G[F[A]] = leftAdjunct(a)(x => x)

  /** Extracts a value out of the comonad. */
  def counit[A](a: F[G[A]]): A = rightAdjunct(a)(x => x)

  /** Every `F`-algebra maps to a `G`-coalgebra. */
  def leftAdjunct[A, B](a: => A)(f: F[A] => B): G[B] = G.map(unit(a))(f)

  /** Every `G`-coalgebra maps to an `F`-algebra. */
  def rightAdjunct[A, B](a: F[A])(f: A => G[B]): B = counit(F.map(a)(f))

  /** Adjoint functors annihilate each other. */
  implicit val zapFG: Zap[F, G] = new Zap[F, G] {
    def zapWith[A, B, C](a: F[A], b: G[B])(f: (A, B) => C): C =
      f.tupled(counit(F.map(F.strengthR(a, b))(p => G.strengthL(p._1, p._2))))
  }

  /** Adjoint functors annihilate each other. */
  implicit val zapGF: Zap[G, F] = new Zap[G, F] {
    def zapWith[A, B, C](a: G[A], b: F[B])(f: (A, B) => C): C =
      f.tupled(counit(F.map(F.strengthL(a, b))(p => G.strengthR(p._1, p._2))))
  }

  /** Every adjunction is representable. */
  implicit val representable: Representable[G, F[Unit]] = new Representable[G, F[Unit]] {
    def rep[A](f: F[Unit] => A): G[A] = leftAdjunct(())(f)
    def unrep[A](g: G[A]): F[Unit] => A = fu => rightAdjunct(fu)(u => g)
  }

  /** Every adjunction gives rise to a monad. */
  implicit val monad: Monad[λ[α => G[F[α]]]] = new Monad[λ[α => G[F[α]]]] {
    def point[A](a: => A) = unit(a)
    def bind[A,B](a: G[F[A]])(f: A => G[F[B]]) = G.map(a)(rightAdjunct(_)(f))
  }

  /** Every adjunction gives rise to a comonad. */
  implicit val comonad: Comonad[λ[α => F[G[α]]]] = new Comonad[λ[α => F[G[α]]]] {
    def copoint[A](a: F[G[A]]) = counit(a)
    def cobind[A,B](a: F[G[A]])(f: F[G[A]] => B): F[G[B]] = F.map(a)(leftAdjunct(_)(f))
    def map[A,B](a: F[G[A]])(f: A => B) = cobind(a)(x => f(counit(x)))
    override def cojoin[A](a: F[G[A]]) = cobind(a)(x => x)
  }

  import Adjunction.-|

  /**
   * Adjunctions compose in a natural fashion. If `F -| G` is an adjunction, and `P -| Q` is an
   * adjunction, then PF -| GQ is an adjunction. In fact, adjunctions in Scala form a monoid.
   */
  def compose[P[_], Q[_]](implicit A: P -| Q): λ[α => P[F[α]]] -| λ[α => G[Q[α]]] = {
    implicit val P = A.F
    implicit val Q = A.G
    implicit val PF = P compose F
    implicit val GQ = G compose Q
    new (λ[α => P[F[α]]] -| λ[α => G[Q[α]]]) {
      override def unit[A](a: => A): G[Q[P[F[A]]]] = self.G.map(self.unit(a))(x => A.unit(x))
      override def counit[A](a: P[F[G[Q[A]]]]): A = A.counit(P.map(a)(self.counit))
    }
  }
}

object Adjunction extends AdjunctionInstances {
  type -|[F[_], G[_]] = Adjunction[F, G]

  def apply[F[_], G[_]](implicit A: F -| G, F: Functor[F], G: Functor[F]): F -| G = A
}

sealed abstract class AdjunctionInstances {
  import Adjunction.-|

  implicit def compositeAdjunction[F[_], P[_], G[_], Q[_]](implicit A1: F -| G, A2: P -| Q): λ[α => P[F[α]]] -| λ[α => G[Q[α]]] =
    A1 compose A2

  import Id._
  import std.tuple._
  import std.function._

  implicit def curryUncurryAdjunction[S]: (S, ?) -| (S => ?) =
    new Adjunction[(S, ?), (S => ?)] {
      override def leftAdjunct[A, B](a: => A)(f: ((S, A)) => B): S => B = s => f(s, a)
      override def rightAdjunct[A, B](a: (S, A))(f: A => S => B): B = f(a._2)(a._1)
    }

  implicit val identityAdjunction: Id -| Id =
    new Adjunction[Id, Id] {
      override def leftAdjunct[A, B](a: => A)(f: A => B): B = f(a)
      override def rightAdjunct[A, B](a: A)(f: A => B): B = f(a)
    }

  implicit val f0Adjunction: Function0 -| Function0 =
    new Adjunction[Function0, Function0] {
      override def leftAdjunct[A, B](a: => A)(f: (() => A) => B): () => B = () => f(() => a)
      override def rightAdjunct[A, B](a: () => A)(f: A => () => B): B = f(a())()
    }

  implicit val idF0Adjunction: Id -| Function0 =
    new Adjunction[Id, Function0] {
      override def leftAdjunct[A, B](a: => A)(f: A => B): () => B = () => f(a)
      override def rightAdjunct[A, B](a: A)(f: A => () => B): B = f(a)()
    }

  implicit val f0IdAdjunction: Function0 -| Id =
    new Adjunction[Function0, Id] {
      override def leftAdjunct[A, B](a: => A)(f: (() => A) => B): B = f(() => a)
      override def rightAdjunct[A, B](a: () => A)(f: A => B): B = f(a())
    }

  implicit def writerReaderAdjunction[E]: Adjunction[Writer[E, ?], Reader[E, ?]] =
    new Adjunction[Writer[E, ?], Reader[E, ?]] {
      override def leftAdjunct[A, B](a: => A)(f: Writer[E, A] => B): Reader[E, B] =
        Reader(e => f(Writer(e, a)))
      override def rightAdjunct[A, B](w: Writer[E, A])(f: A => Reader[E, B]): B = {
        val (e, a) = w.run
        f(a)(e)
      }
    }
}

Other Scala examples (source code examples)

Here is a short list of links related to this Scala Adjunction.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.