|
Scala example source code file (Foldable.scala)
The Foldable.scala Scala example source codepackage scalaz //// /** * A type parameter implying the ability to extract zero or more * values of that type. */ //// trait Foldable[F[_]] { self => //// import collection.generic.CanBuildFrom /** Map each element of the structure to a [[scalaz.Monoid]], and combine the results. */ def foldMap[A,B](fa: F[A])(f: A => B)(implicit F: Monoid[B]): B /** As `foldMap` but returning `None` if the foldable is empty and `Some` otherwise */ def foldMap1Opt[A,B](fa: F[A])(f: A => B)(implicit F: Semigroup[B]): Option[B] = { import std.option._ foldMap(fa)(x => some(f(x))) } /**Right-associative fold of a structure. */ def foldRight[A, B](fa: F[A], z: => B)(f: (A, => B) => B): B /**The composition of Foldables `F` and `G`, `[x]F[G[x]]`, is a Foldable */ def compose[G[_]](implicit G0: Foldable[G]): Foldable[λ[α => F[G[α]]]] = new CompositionFoldable[F, G] { implicit def F = self implicit def G = G0 } /** The composition of Foldable `F` and Bifoldable `G`, `[x, y]F[G[x, y]]`, is a Bifoldable */ def bicompose[G[_, _]: Bifoldable]: Bifoldable[λ[(α, β) => F[G[α, β]]]] = new CompositionFoldableBifoldable[F, G] { def F = self def G = implicitly } /**The product of Foldables `F` and `G`, `[x](F[x], G[x]])`, is a Foldable */ def product[G[_]](implicit G0: Foldable[G]): Foldable[λ[α => (F[α], G[α])]] = new ProductFoldable[F, G] { implicit def F = self implicit def G = G0 } /**The product of Foldable `F` and Foldable1 `G`, `[x](F[x], G[x]])`, is a Foldable1 */ def product0[G[_]](implicit G0: Foldable1[G]): Foldable1[λ[α => (F[α], G[α])]] = new ProductFoldable1R[F, G] { def F = self def G = G0 } /**Left-associative fold of a structure. */ def foldLeft[A, B](fa: F[A], z: B)(f: (B, A) => B): B = { import Dual._, Endo._, syntax.std.all._ Tag.unwrap(foldMap(fa)((a: A) => Dual(Endo.endo(f.flip.curried(a))))(dualMonoid)) apply (z) } /**Right-associative, monadic fold of a structure. */ def foldRightM[G[_], A, B](fa: F[A], z: => B)(f: (A, => B) => G[B])(implicit M: Monad[G]): G[B] = foldLeft[A, B => G[B]](fa, M.point(_))((b, a) => w => M.bind(f(a, w))(b))(z) /**Left-associative, monadic fold of a structure. */ def foldLeftM[G[_], A, B](fa: F[A], z: B)(f: (B, A) => G[B])(implicit M: Monad[G]): G[B] = foldRight[A, B => G[B]](fa, M.point(_))((a, b) => w => M.bind(f(w, a))(b))(z) /** Specialization of foldRightM when `B` has a `Monoid`. */ def foldMapM[G[_], A, B](fa: F[A])(f: A => G[B])(implicit B: Monoid[B], G: Monad[G]): G[B] = foldRightM[G, A, B](fa, B.zero)((a, b2) => G.map(f(a))(b1 => B.append(b1, b2))) /** Combine the elements of a structure using a monoid. */ def fold[M: Monoid](t: F[M]): M = foldMap[M, M](t)(x => x) /** Like `fold` but returning `None` if the foldable is empty and `Some` otherwise */ def fold1Opt[A: Semigroup](fa: F[A]): Option[A] = foldMap1Opt(fa)(a => a) /** Strict traversal in an applicative functor `M` that ignores the result of `f`. */ def traverse_[M[_], A, B](fa: F[A])(f: A => M[B])(implicit a: Applicative[M]): M[Unit] = foldLeft(fa, a.pure(()))((x, y) => a.ap(f(y))(a.map(x)(_ => _ => ()))) /** A version of `traverse_` that infers the type constructor `M`. */ final def traverseU_[A, GB](fa: F[A])(f: A => GB)(implicit G: Unapply[Applicative, GB]): G.M[Unit] = traverse_[G.M, A, G.A](fa)(G.leibniz.onF(f))(G.TC) /** `traverse_` specialized to `State` **/ def traverseS_[S, A, B](fa: F[A])(f: A => State[S, B]): State[S, Unit] = State{s: S => (foldLeft(fa, s)((s, a) => f(a)(s)._1), ()) } /** Strict sequencing in an applicative functor `M` that ignores the value in `fa`. */ def sequence_[M[_], A](fa: F[M[A]])(implicit a: Applicative[M]): M[Unit] = traverse_(fa)(x => x) /** `sequence_` specialized to `State` **/ def sequenceS_[S, A](fga: F[State[S, A]]): State[S, Unit] = traverseS_(fga)(x => x) /** `sequence_` for Free. collapses into a single Free **/ def sequenceF_[M[_], A](ffa: F[Free[M, A]]): Free[M, Unit] = foldLeft[Free[M,A],Free[M,Unit]](ffa, Free.pure[M, Unit](()))((c,d) => c.flatMap(_ => d.map(_ => ()))) /**Curried version of `foldRight` */ final def foldr[A, B](fa: F[A], z: => B)(f: A => (=> B) => B): B = foldRight(fa, z)((a, b) => f(a)(b)) def foldMapRight1Opt[A, B](fa: F[A])(z: A => B)(f: (A, => B) => B): Option[B] = foldRight(fa, None: Option[B])((a, optB) => optB map (f(a, _)) orElse Some(z(a))) def foldRight1Opt[A](fa: F[A])(f: (A, => A) => A): Option[A] = foldMapRight1Opt(fa)(identity)(f) def foldr1Opt[A](fa: F[A])(f: A => (=> A) => A): Option[A] = foldRight(fa, None: Option[A])((a, optA) => optA map (aa => f(a)(aa)) orElse Some(a)) /**Curried version of `foldLeft` */ final def foldl[A, B](fa: F[A], z: B)(f: B => A => B) = foldLeft(fa, z)((b, a) => f(b)(a)) def foldMapLeft1Opt[A, B](fa: F[A])(z: A => B)(f: (B, A) => B): Option[B] = foldLeft(fa, None: Option[B])((optB, a) => optB map (f(_, a)) orElse Some(z(a))) def foldLeft1Opt[A](fa: F[A])(f: (A, A) => A): Option[A] = foldMapLeft1Opt(fa)(identity)(f) def foldl1Opt[A](fa: F[A])(f: A => A => A): Option[A] = foldLeft(fa, None: Option[A])((optA, a) => optA map (aa => f(aa)(a)) orElse Some(a)) /**Curried version of `foldRightM` */ final def foldrM[G[_], A, B](fa: F[A], z: => B)(f: A => ( => B) => G[B])(implicit M: Monad[G]): G[B] = foldRightM(fa, z)((a, b) => f(a)(b)) /**Curried version of `foldLeftM` */ final def foldlM[G[_], A, B](fa: F[A], z: => B)(f: B => A => G[B])(implicit M: Monad[G]): G[B] = foldLeftM(fa, z)((b, a) => f(b)(a)) /** map elements in a Foldable with a monadic function and return the first element that is mapped successfully */ final def findMapM[M[_]: Monad, A, B](fa: F[A])(f: A => M[Option[B]]): M[Option[B]] = toEphemeralStream(fa) findMapM f def findLeft[A](fa: F[A])(f: A => Boolean): Option[A] = foldLeft[A, Option[A]](fa, None)((b, a) => b.orElse(if(f(a)) Some(a) else None)) def findRight[A](fa: F[A])(f: A => Boolean): Option[A] = foldRight[A, Option[A]](fa, None)((a, b) => b.orElse(if(f(a)) Some(a) else None)) /** Alias for `length`. */ final def count[A](fa: F[A]): Int = length(fa) /** Deforested alias for `toStream(fa).size`. */ def length[A](fa: F[A]): Int = foldLeft(fa, 0)((b, _) => b + 1) /** * @return the element at index `i` in a `Some`, or `None` if the given index falls outside of the range */ def index[A](fa: F[A], i: Int): Option[A] = foldLeft[A, (Int, Option[A])](fa, (0, None)) { case ((idx, elem), curr) => (idx + 1, elem orElse { if (idx == i) Some(curr) else None }) }._2 /** * @return the element at index `i`, or `default` if the given index falls outside of the range */ def indexOr[A](fa: F[A], default: => A, i: Int): A = index(fa, i) getOrElse default def toList[A](fa: F[A]): List[A] = foldLeft(fa, scala.List[A]())((t, h) => h :: t).reverse def toVector[A](fa: F[A]): Vector[A] = foldLeft(fa, Vector[A]())(_ :+ _) def toSet[A](fa: F[A]): Set[A] = foldLeft(fa, Set[A]())(_ + _) def toStream[A](fa: F[A]): Stream[A] = foldRight[A, Stream[A]](fa, Stream.empty)(Stream.cons(_, _)) def to[A, G[_]](fa: F[A])(implicit c: CanBuildFrom[Nothing, A, G[A]]): G[A] = foldLeft(fa, c())(_ += _).result def toIList[A](fa: F[A]): IList[A] = foldLeft(fa, IList.empty[A])((t, h) => h :: t).reverse def toEphemeralStream[A](fa: F[A]): EphemeralStream[A] = foldRight(fa, EphemeralStream.emptyEphemeralStream[A])(EphemeralStream.cons(_, _)) /** Whether all `A`s in `fa` yield true from `p`. */ def all[A](fa: F[A])(p: A => Boolean): Boolean = foldRight(fa, true)(p(_) && _) /** `all` with monadic traversal. */ def allM[G[_], A](fa: F[A])(p: A => G[Boolean])(implicit G: Monad[G]): G[Boolean] = foldRight(fa, G.point(true))((a, b) => G.bind(p(a))(q => if(q) b else G.point(false))) /** Whether any `A`s in `fa` yield true from `p`. */ def any[A](fa: F[A])(p: A => Boolean): Boolean = foldRight(fa, false)(p(_) || _) /** `any` with monadic traversal. */ def anyM[G[_], A](fa: F[A])(p: A => G[Boolean])(implicit G: Monad[G]): G[Boolean] = foldRight(fa, G.point(false))((a, b) => G.bind(p(a))(q => if(q) G.point(true) else b)) def filterLength[A](fa: F[A])(f: A => Boolean): Int = foldLeft(fa, 0)((b, a) => (if (f(a)) 1 else 0) + b) import Ordering.{GT, LT} import std.option.{some, none} /** The greatest element of `fa`, or None if `fa` is empty. */ def maximum[A: Order](fa: F[A]): Option[A] = foldLeft(fa, none[A]) { case (None, y) => some(y) case (Some(x), y) => some(if (Order[A].order(x, y) == GT) x else y) } /** The greatest value of `f(a)` for each element `a` of `fa`, or None if `fa` is empty. */ def maximumOf[A, B: Order](fa: F[A])(f: A => B): Option[B] = foldLeft(fa, none[B]) { case (None, a) => some(f(a)) case (Some(b), aa) => val bb = f(aa); some(if (Order[B].order(b, bb) == GT) b else bb) } /** The element `a` of `fa` which yields the greatest value of `f(a)`, or None if `fa` is empty. */ def maximumBy[A, B: Order](fa: F[A])(f: A => B): Option[A] = foldLeft(fa, none[(A, B)]) { case (None, a) => some(a -> f(a)) case (Some(x @ (a, b)), aa) => val bb = f(aa); some(if (Order[B].order(b, bb) == GT) x else aa -> bb) } map (_._1) /** The smallest element of `fa`, or None if `fa` is empty. */ def minimum[A: Order](fa: F[A]): Option[A] = foldLeft(fa, none[A]) { case (None, y) => some(y) case (Some(x), y) => some(if (Order[A].order(x, y) == LT) x else y) } /** The smallest value of `f(a)` for each element `a` of `fa`, or None if `fa` is empty. */ def minimumOf[A, B: Order](fa: F[A])(f: A => B): Option[B] = foldLeft(fa, none[B]) { case (None, a) => some(f(a)) case (Some(b), aa) => val bb = f(aa); some(if (Order[B].order(b, bb) == LT) b else bb) } /** The element `a` of `fa` which yields the smallest value of `f(a)`, or None if `fa` is empty. */ def minimumBy[A, B: Order](fa: F[A])(f: A => B): Option[A] = foldLeft(fa, none[(A, B)]) { case (None, a) => some(a -> f(a)) case (Some(x @ (a, b)), aa) => val bb = f(aa); some(if (Order[B].order(b, bb) == LT) x else aa -> bb) } map (_._1) def sumr[A](fa: F[A])(implicit A: Monoid[A]): A = foldRight(fa, A.zero)(A.append) def sumr1Opt[A](fa: F[A])(implicit A: Semigroup[A]): Option[A] = foldRight1Opt(fa)(A.append(_, _)) def suml[A](fa: F[A])(implicit A: Monoid[A]): A = foldLeft(fa, A.zero)(A.append(_, _)) def suml1Opt[A](fa: F[A])(implicit A: Semigroup[A]): Option[A] = foldLeft1Opt(fa)(A.append(_, _)) def msuml[G[_], A](fa: F[G[A]])(implicit G: PlusEmpty[G]): G[A] = foldLeft(fa, G.empty[A])(G.plus[A](_, _)) def msumlU[GA](fa: F[GA])(implicit G: Unapply[PlusEmpty, GA]): G.M[G.A] = msuml[G.M, G.A](G.leibniz.subst[F](fa))(G.TC) def longDigits[A](fa: F[A])(implicit d: A <:< Digit): Long = foldLeft(fa, 0L)((n, a) => n * 10L + (a: Digit)) /** Deforested alias for `toStream(fa).isEmpty`. */ def empty[A](fa: F[A]): Boolean = all(fa)(_ => false) /** Whether `a` is an element of `fa`. */ def element[A: Equal](fa: F[A], a: A): Boolean = any(fa)(Equal[A].equal(a, _)) /** Insert an `A` between every A, yielding the sum. */ def intercalate[A](fa: F[A], a: A)(implicit A: Monoid[A]): A = (foldRight(fa, none[A]) {(l, oa) => some(A.append(l, oa map (A.append(a, _)) getOrElse A.zero)) }).getOrElse(A.zero) /** * Splits the elements into groups that alternatively satisfy and don't satisfy the predicate p. */ def splitWith[A](fa: F[A])(p: A => Boolean): List[NonEmptyList[A]] = foldRight(fa, (List[NonEmptyList[A]](), None : Option[Boolean]))((a, b) => { val pa = p(a) (b match { case (_, None) => NonEmptyList(a) :: Nil case (x, Some(q)) => if (pa == q) (a <:: x.head) :: x.tail else NonEmptyList(a) :: x }, Some(pa)) })._1 /** * Splits the elements into groups that produce the same result by a function f. */ def splitBy[A, B: Equal](fa: F[A])(f: A => B): IList[(B, NonEmptyList[A])] = foldRight(fa, IList[(B, NonEmptyList[A])]())((a, bas) => { val fa = f(a) bas match { case INil() => IList.single((fa, NonEmptyList.nel(a, IList.empty))) case ICons((b, as), tail) => if (Equal[B].equal(fa, b)) ICons((b, a <:: as), tail) else ICons((fa, NonEmptyList.nel(a, IList.empty)), bas) } }) /** * Splits into groups of elements that are transitively dependant by a relation r. */ def splitByRelation[A](fa: F[A])(r: (A, A) => Boolean): IList[NonEmptyList[A]] = foldRight(fa, IList[NonEmptyList[A]]())((a, neas) => { neas match { case INil() => IList.single(NonEmptyList.nel(a, IList.empty)) case ICons(nea, tail) => if (r(a, nea.head)) ICons(a <:: nea, tail) else ICons(NonEmptyList.nel(a, IList.empty), neas) } }) /** * Selects groups of elements that satisfy p and discards others. */ def selectSplit[A](fa: F[A])(p: A => Boolean): List[NonEmptyList[A]] = foldRight(fa, (List[NonEmptyList[A]](), false))((a, xb) => xb match { case (x, b) => { val pa = p(a) (if (pa) if (b) (a <:: x.head) :: x.tail else NonEmptyList(a) :: x else x, pa) } })._1 /** ``O(n log n)`` complexity */ def distinct[A](fa: F[A])(implicit A: Order[A]): IList[A] = foldLeft(fa, (ISet.empty[A],IList.empty[A])) { case ((seen, acc), a) => if (seen.notMember(a)) (seen.insert(a), a :: acc) else (seen, acc) }._2.reverse /** ``O(n^2^)`` complexity */ def distinctE[A](fa: F[A])(implicit A: Equal[A]): IList[A] = foldLeft(fa, IList.empty[A]) { case (seen, a) => if (!IList.instances.element(seen,a)) a :: seen else seen }.reverse def collapse[X[_], A](x: F[A])(implicit A: ApplicativePlus[X]): X[A] = foldRight(x, A.empty[A])((a, b) => A.plus(A.point(a), b)) trait FoldableLaw { import std.vector._ /** Left fold is consistent with foldMap. */ def leftFMConsistent[A: Equal](fa: F[A]): Boolean = Equal[Vector[A]].equal(foldMap(fa)(Vector(_)), foldLeft(fa, Vector.empty[A])(_ :+ _)) /** Right fold is consistent with foldMap. */ def rightFMConsistent[A: Equal](fa: F[A]): Boolean = Equal[Vector[A]].equal(foldMap(fa)(Vector(_)), foldRight(fa, Vector.empty[A])(_ +: _)) } def foldableLaw = new FoldableLaw {} //// val foldableSyntax = new scalaz.syntax.FoldableSyntax[F] { def F = Foldable.this } } object Foldable { @inline def apply[F[_]](implicit F: Foldable[F]): Foldable[F] = F //// /** * Template trait to define `Foldable` in terms of `foldMap`. * * Example: * {{{ * new Foldable[Option] with Foldable.FromFoldMap[Option] { * def foldMap[A, B](fa: Option[A])(f: A => B)(implicit F: Monoid[B]) = fa match { * case Some(a) => f(a) * case None => F.zero * } * } * }}} */ trait FromFoldMap[F[_]] extends Foldable[F] { override def foldRight[A, B](fa: F[A], z: => B)(f: (A, => B) => B) = foldMap(fa)((a: A) => (Endo.endo(f(a, _: B)))) apply z } /** * Template trait to define `Foldable` in terms of `foldr` * * Example: * {{{ * new Foldable[Option] with Foldable.FromFoldr[Option] { * def foldr[A, B](fa: Option[A], z: B)(f: (A) => (=> B) => B) = fa match { * case Some(a) => f(a)(z) * case None => z * } * } * }}} */ trait FromFoldr[F[_]] extends Foldable[F] { override def foldMap[A, B](fa: F[A])(f: A => B)(implicit F: Monoid[B]) = foldr[A, B](fa, F.zero)( x => y => F.append(f(x), y)) } //// } Other Scala examples (source code examples)Here is a short list of links related to this Scala Foldable.scala source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.