alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (Nondeterminism.scala)

This example Scala source code file (Nondeterminism.scala) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Scala by Example" TM.

Learn more about this Scala project at its project page.

Java - Scala tags/keywords

a\,b, a\,b\,c\,d\,e\,ff, applicative, monoid, nondeterminism, nonemptylist, parallel, semigroup, seq

The Nondeterminism.scala Scala example source code

package scalaz

////
/**
 * A context supporting nondeterministic choice. Unlike `Monad.bind`,
 * which imposes a total order on the sequencing of effects throughout a
 * computation, the `choose` and `chooseAny` operations let us
 * partially order the sequencing of effects. Canonical instances are
 * `concurrent.Future` and `concurrent.Task`, which run their arguments
 * in parallel, returning whichever comes back 'first'.
 *
 * TODO - laws
 */
////
trait Nondeterminism[F[_]] extends Monad[F] { self =>
  ////

  import scalaz.Tags.Parallel
  import scalaz.std.anyVal._

  /**
   * A commutative operation which chooses nondeterministically to obtain
   * a value from either `a` or `b`. If `a` 'wins', a 'residual' context
   * for `b` is returned; if `b` wins, a residual context for `a` is
   * returned. The residual is useful for various instances like `Future`,
   * which may race the two computations and require a residual to ensure
   * the result of the 'losing' computation is not discarded.
   *
   * This function can be defined in terms of `chooseAny` or vice versa.
   * The default implementation calls `chooseAny` with a
   * two-element list and uses the `Functor` for `F` to fix up types.
   */
  def choose[A,B](a: F[A], b: F[B]): F[(  A,  F[B]) \/
                                       (F[A],   B )] =
    map(chooseAny(List[F[A \/ B]](map(a)(\/.left), map(b)(\/.right))).get) {
      (x: (A \/ B, Seq[F[A \/ B]])) => x match {
        case (-\/(a), Seq(br)) =>
          -\/((a, map(br) {
            case \/-(b) => b
            case _ => sys.error("broken residual handling in a Nondeterminism instance")
          }))
        case (\/-(b), Seq(ar)) =>
          \/-((map(ar) {
            case -\/(a) => a
            case _ => sys.error("broken residual handling in a Nondeterminism instance")
          }, b))
        case _ => sys.error("broken Nondeterminism instance tossed out a residual")
      }
    }

  /**
   * A commutative operation which chooses nondeterministically to obtain
   * a value from any of the elements of `as`. In the language of posets, this
   * constructs an antichain (a set of elements which are all incomparable) in
   * the effect poset for this computation.
   *
   * @return `None`, if the input is empty.
   */
  def chooseAny[A](a: Seq[F[A]]): Option[F[(A, Seq[F[A]])]] =
    if (a.isEmpty) None
    else Some(chooseAny(a.head, a.tail))

  def chooseAny[A](head: F[A], tail: Seq[F[A]]): F[(A, Seq[F[A]])]

  // derived functions

  /**
   * Apply a function to the results of `a` and `b`, nondeterminstically
   * ordering their effects.
   */
  def mapBoth[A,B,C](a: F[A], b: F[B])(f: (A,B) => C): F[C] =
    bind(choose(a, b)) {
      case -\/((a,rb)) => map(rb)(b => f(a,b))
      case \/-((ra,b)) => map(ra)(a => f(a,b))
    }


  /**
   * Apply a function to 2 results, nondeterminstically ordering their effects, alias of mapBoth
   */
  def nmap2[A,B,C](a: F[A], b: F[B])(f: (A,B) => C): F[C] =
    mapBoth(a,b)(f)

  /**
   * Apply a function to 3 results, nondeterminstically ordering their effects
   */
  def nmap3[A,B,C,R](a: F[A], b: F[B], c: F[C])(f: (A,B,C) => R): F[R] =
    nmap2(nmap2(a, b)((_,_)), c)((ab,c) => f(ab._1, ab._2, c))

  /**
   * Apply a function to 4 results, nondeterminstically ordering their effects
   */
  def nmap4[A,B,C,D,R](a: F[A], b: F[B], c: F[C], d: F[D])(f: (A,B,C,D) => R): F[R] =
    nmap2(nmap2(a, b)((_,_)), nmap2(c,d)((_,_)))((ab,cd) => f(ab._1, ab._2, cd._1, cd._2))

  /**
   * Apply a function to 5 results, nondeterminstically ordering their effects
   */
  def nmap5[A,B,C,D,E,R](a: F[A], b: F[B], c: F[C], d: F[D], e: F[E])(f: (A,B,C,D,E) => R): F[R] =
    nmap2(nmap2(a, b)((_,_)), nmap3(c,d,e)((_,_,_)))((ab,cde) => f(ab._1, ab._2, cde._1, cde._2, cde._3))

  /**
   * Apply a function to 6 results, nondeterminstically ordering their effects
   */
  def nmap6[A,B,C,D,E,FF,R](a: F[A], b: F[B], c: F[C], d: F[D], e: F[E], ff:F[FF])(f: (A,B,C,D,E,FF) => R): F[R] =
    nmap2(nmap3(a, b, c)((_,_,_)), nmap3(d,e,ff)((_,_,_)))((abc,deff) => f(abc._1, abc._2, abc._3, deff._1, deff._2, deff._3))


  /**
   * Obtain results from both `a` and `b`, nondeterministically ordering
   * their effects.
   */
  def both[A,B](a: F[A], b: F[B]): F[(A,B)] = mapBoth(a,b)((_,_))

  /**
   * Nondeterministically gather results from the given sequence of actions
   * to a list. Same as calling `reduceUnordered` with the `List` `Monoid`.
   *
   * To preserve the order of the output list while allowing nondetermininstic
   * ordering of effects, use `gather`.
   */
  def gatherUnordered[A](fs: Seq[F[A]]): F[List[A]] =
    reduceUnordered[A, List[A]](fs)

  def gatherUnordered1[A](fs: NonEmptyList[F[A]]): F[NonEmptyList[A]] = {
    val R = implicitly[Reducer[A, List[A]]]
    bind(chooseAny(fs.head, fs.tail.toList)) { case (a, residuals) =>
      map(reduceUnordered(residuals)(R))(list => NonEmptyList.nels(a, list: _*))
    }
  }

  /**
   * Nondeterministically gather results from the given sequence of actions.
   * The result will be arbitrarily reordered, depending on the order
   * results come back in a sequence of calls to `chooseAny`.
   */
  def reduceUnordered[A, M](fs: Seq[F[A]])(implicit R: Reducer[A, M]): F[M] =
    if (fs.isEmpty) point(R.zero)
    else bind(chooseAny(fs.head, fs.tail)) { case (a, residuals) =>
      map(reduceUnordered(residuals))(R.cons(a, _))
    }

  /**
   * Nondeterministically gather results from the given sequence of actions.
   * This function is the nondeterministic analogue of `sequence` and should
   * behave identically to `sequence` so long as there is no interaction between
   * the effects being gathered. However, unlike `sequence`, which decides on
   * a total order of effects, the effects in a `gather` are unordered with
   * respect to each other.
   *
   * Although the effects are unordered, we ensure the order of results
   * matches the order of the input sequence. Also see `gatherUnordered`.
   */
  def gather[A](fs: Seq[F[A]]): F[List[A]] =
    map(gatherUnordered(fs.zipWithIndex.map { case (f,i) => strengthR(f,i) }))(
      ais => ais.sortBy(_._2).map(_._1))

  def gather1[A](fs: NonEmptyList[F[A]]): F[NonEmptyList[A]] =
    map(gatherUnordered1(fs.zipWithIndex.map { case (f,i) => strengthR(f,i) }))(
      ais => ais.sortBy(_._2).map(_._1))

  /**
   * Nondeterministically sequence `fs`, collecting the results using a `Monoid`.
   */
  def aggregate[A: Monoid](fs: Seq[F[A]]): F[A] =
    map(gather(fs))(_.foldLeft(implicitly[Monoid[A]].zero)((a,b) => implicitly[Monoid[A]].append(a,b)))

  def aggregate1[A: Semigroup](fs: NonEmptyList[F[A]]): F[A] =
    map(gather1(fs))(Foldable1[NonEmptyList].suml1(_))

  /**
   * Nondeterministically sequence `fs`, collecting the results using
   * a commutative `Monoid`.
   */
  def aggregateCommutative[A: Monoid](fs: Seq[F[A]]): F[A] =
    map(gatherUnordered(fs))(_.foldLeft(implicitly[Monoid[A]].zero)((a,b) => implicitly[Monoid[A]].append(a,b)))

  def aggregateCommutative1[A: Semigroup](fs: NonEmptyList[F[A]]): F[A] =
    map(gatherUnordered1(fs))(Foldable1[NonEmptyList].suml1(_))

  def parallel: Applicative[λ[α => F[α] @@ Parallel]] =
    new Applicative[λ[α => F[α] @@ Parallel]] {
      def point[A](a: => A) = Parallel(self.point(a))
      override def map[A, B](fa: F[A] @@ Parallel)(f: A => B) =
        Parallel(self.map(Tag.unwrap(fa))(f))
      def ap[A, B](fa: => F[A] @@ Parallel)(fab: => F[A => B] @@ Parallel) =
        Parallel(self.mapBoth(Tag.unwrap(fa), Tag.unwrap(fab))((a, f) => f(a)))
    }

  ////
  val nondeterminismSyntax = new scalaz.syntax.NondeterminismSyntax[F] { def F = Nondeterminism.this }
}

object Nondeterminism {
  @inline def apply[F[_]](implicit F: Nondeterminism[F]): Nondeterminism[F] = F

  ////

  ////
}

Other Scala examples (source code examples)

Here is a short list of links related to this Scala Nondeterminism.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.