|
Akka/Scala example source code file (reference.conf)
The reference.conf Akka example source code#################################### # Akka Actor Reference Config File # #################################### # This is the reference config file that contains all the default settings. # Make your edits/overrides in your application.conf. akka { # Akka version, checked against the runtime version of Akka. version = "2.4-SNAPSHOT" # Home directory of Akka, modules in the deploy directory will be loaded home = "" # Loggers to register at boot time (akka.event.Logging$DefaultLogger logs # to STDOUT) loggers = ["akka.event.Logging$DefaultLogger"] # Loggers are created and registered synchronously during ActorSystem # start-up, and since they are actors, this timeout is used to bound the # waiting time logger-startup-timeout = 5s # Log level used by the configured loggers (see "loggers") as soon # as they have been started; before that, see "stdout-loglevel" # Options: OFF, ERROR, WARNING, INFO, DEBUG loglevel = "INFO" # Log level for the very basic logger activated during ActorSystem startup. # This logger prints the log messages to stdout (System.out). # Options: OFF, ERROR, WARNING, INFO, DEBUG stdout-loglevel = "WARNING" # Log the complete configuration at INFO level when the actor system is started. # This is useful when you are uncertain of what configuration is used. log-config-on-start = off # Log at info level when messages are sent to dead letters. # Possible values: # on: all dead letters are logged # off: no logging of dead letters # n: positive integer, number of dead letters that will be logged log-dead-letters = 10 # Possibility to turn off logging of dead letters while the actor system # is shutting down. Logging is only done when enabled by 'log-dead-letters' # setting. log-dead-letters-during-shutdown = on # List FQCN of extensions which shall be loaded at actor system startup. # Should be on the format: 'extensions = ["foo", "bar"]' etc. # See the Akka Documentation for more info about Extensions extensions = [] # Toggles whether threads created by this ActorSystem should be daemons or not daemonic = off # JVM shutdown, System.exit(-1), in case of a fatal error, # such as OutOfMemoryError jvm-exit-on-fatal-error = on actor { # FQCN of the ActorRefProvider to be used; the below is the built-in default, # another one is akka.remote.RemoteActorRefProvider in the akka-remote bundle. provider = "akka.actor.LocalActorRefProvider" # The guardian "/user" will use this class to obtain its supervisorStrategy. # It needs to be a subclass of akka.actor.SupervisorStrategyConfigurator. # In addition to the default there is akka.actor.StoppingSupervisorStrategy. guardian-supervisor-strategy = "akka.actor.DefaultSupervisorStrategy" # Timeout for ActorSystem.actorOf creation-timeout = 20s # Frequency with which stopping actors are prodded in case they had to be # removed from their parents reaper-interval = 5s # Serializes and deserializes (non-primitive) messages to ensure immutability, # this is only intended for testing. serialize-messages = off # Serializes and deserializes creators (in Props) to ensure that they can be # sent over the network, this is only intended for testing. Purely local deployments # as marked with deploy.scope == LocalScope are exempt from verification. serialize-creators = off # Timeout for send operations to top-level actors which are in the process # of being started. This is only relevant if using a bounded mailbox or the # CallingThreadDispatcher for a top-level actor. unstarted-push-timeout = 10s typed { # Default timeout for typed actor methods with non-void return type timeout = 5s } # Mapping between ´deployment.router' short names to fully qualified class names router.type-mapping { from-code = "akka.routing.NoRouter" round-robin-pool = "akka.routing.RoundRobinPool" round-robin-group = "akka.routing.RoundRobinGroup" random-pool = "akka.routing.RandomPool" random-group = "akka.routing.RandomGroup" balancing-pool = "akka.routing.BalancingPool" smallest-mailbox-pool = "akka.routing.SmallestMailboxPool" broadcast-pool = "akka.routing.BroadcastPool" broadcast-group = "akka.routing.BroadcastGroup" scatter-gather-pool = "akka.routing.ScatterGatherFirstCompletedPool" scatter-gather-group = "akka.routing.ScatterGatherFirstCompletedGroup" consistent-hashing-pool = "akka.routing.ConsistentHashingPool" consistent-hashing-group = "akka.routing.ConsistentHashingGroup" } deployment { # deployment id pattern - on the format: /parent/child etc. default { # The id of the dispatcher to use for this actor. # If undefined or empty the dispatcher specified in code # (Props.withDispatcher) is used, or default-dispatcher if not # specified at all. dispatcher = "" # The id of the mailbox to use for this actor. # If undefined or empty the default mailbox of the configured dispatcher # is used or if there is no mailbox configuration the mailbox specified # in code (Props.withMailbox) is used. # If there is a mailbox defined in the configured dispatcher then that # overrides this setting. mailbox = "" # routing (load-balance) scheme to use # - available: "from-code", "round-robin", "random", "smallest-mailbox", # "scatter-gather", "broadcast" # - or: Fully qualified class name of the router class. # The class must extend akka.routing.CustomRouterConfig and # have a public constructor with com.typesafe.config.Config # and optional akka.actor.DynamicAccess parameter. # - default is "from-code"; # Whether or not an actor is transformed to a Router is decided in code # only (Props.withRouter). The type of router can be overridden in the # configuration; specifying "from-code" means that the values specified # in the code shall be used. # In case of routing, the actors to be routed to can be specified # in several ways: # - nr-of-instances: will create that many children # - routees.paths: will route messages to these paths using ActorSelection, # i.e. will not create children # - resizer: dynamically resizable number of routees as specified in # resizer below router = "from-code" # number of children to create in case of a router; # this setting is ignored if routees.paths is given nr-of-instances = 1 # within is the timeout used for routers containing future calls within = 5 seconds # number of virtual nodes per node for consistent-hashing router virtual-nodes-factor = 10 routees { # Alternatively to giving nr-of-instances you can specify the full # paths of those actors which should be routed to. This setting takes # precedence over nr-of-instances paths = [] } # To use a dedicated dispatcher for the routees of the pool you can # define the dispatcher configuration inline with the property name # 'pool-dispatcher' in the deployment section of the router. # For example: # pool-dispatcher { # fork-join-executor.parallelism-min = 5 # fork-join-executor.parallelism-max = 5 # } # Routers with dynamically resizable number of routees; this feature is # enabled by including (parts of) this section in the deployment resizer { enabled = off # The fewest number of routees the router should ever have. lower-bound = 1 # The most number of routees the router should ever have. # Must be greater than or equal to lower-bound. upper-bound = 10 # Threshold used to evaluate if a routee is considered to be busy # (under pressure). Implementation depends on this value (default is 1). # 0: number of routees currently processing a message. # 1: number of routees currently processing a message has # some messages in mailbox. # > 1: number of routees with at least the configured pressure-threshold # messages in their mailbox. Note that estimating mailbox size of # default UnboundedMailbox is O(N) operation. pressure-threshold = 1 # Percentage to increase capacity whenever all routees are busy. # For example, 0.2 would increase 20% (rounded up), i.e. if current # capacity is 6 it will request an increase of 2 more routees. rampup-rate = 0.2 # Minimum fraction of busy routees before backing off. # For example, if this is 0.3, then we'll remove some routees only when # less than 30% of routees are busy, i.e. if current capacity is 10 and # 3 are busy then the capacity is unchanged, but if 2 or less are busy # the capacity is decreased. # Use 0.0 or negative to avoid removal of routees. backoff-threshold = 0.3 # Fraction of routees to be removed when the resizer reaches the # backoffThreshold. # For example, 0.1 would decrease 10% (rounded up), i.e. if current # capacity is 9 it will request an decrease of 1 routee. backoff-rate = 0.1 # Number of messages between resize operation. # Use 1 to resize before each message. messages-per-resize = 10 } } } default-dispatcher { # Must be one of the following # Dispatcher, PinnedDispatcher, or a FQCN to a class inheriting # MessageDispatcherConfigurator with a public constructor with # both com.typesafe.config.Config parameter and # akka.dispatch.DispatcherPrerequisites parameters. # PinnedDispatcher must be used together with executor=thread-pool-executor. type = "Dispatcher" # Which kind of ExecutorService to use for this dispatcher # Valid options: # - "default-executor" requires a "default-executor" section # - "fork-join-executor" requires a "fork-join-executor" section # - "thread-pool-executor" requires a "thread-pool-executor" section # - A FQCN of a class extending ExecutorServiceConfigurator executor = "default-executor" # This will be used if you have set "executor = "default-executor"". # If an ActorSystem is created with a given ExecutionContext, this # ExecutionContext will be used as the default executor for all # dispatchers in the ActorSystem configured with # executor = "default-executor". Note that "default-executor" # is the default value for executor, and therefore used if not # specified otherwise. If no ExecutionContext is given, # the executor configured in "fallback" will be used. default-executor { fallback = "fork-join-executor" } # This will be used if you have set "executor = "fork-join-executor"" fork-join-executor { # Min number of threads to cap factor-based parallelism number to parallelism-min = 8 # The parallelism factor is used to determine thread pool size using the # following formula: ceil(available processors * factor). Resulting size # is then bounded by the parallelism-min and parallelism-max values. parallelism-factor = 3.0 # Max number of threads to cap factor-based parallelism number to parallelism-max = 64 } # This will be used if you have set "executor = "thread-pool-executor"" thread-pool-executor { # Keep alive time for threads keep-alive-time = 60s # Min number of threads to cap factor-based core number to core-pool-size-min = 8 # The core pool size factor is used to determine thread pool core size # using the following formula: ceil(available processors * factor). # Resulting size is then bounded by the core-pool-size-min and # core-pool-size-max values. core-pool-size-factor = 3.0 # Max number of threads to cap factor-based number to core-pool-size-max = 64 # Minimum number of threads to cap factor-based max number to # (if using a bounded task queue) max-pool-size-min = 8 # Max no of threads (if using a bounded task queue) is determined by # calculating: ceil(available processors * factor) max-pool-size-factor = 3.0 # Max number of threads to cap factor-based max number to # (if using a bounded task queue) max-pool-size-max = 64 # Specifies the bounded capacity of the task queue (< 1 == unbounded) task-queue-size = -1 # Specifies which type of task queue will be used, can be "array" or # "linked" (default) task-queue-type = "linked" # Allow core threads to time out allow-core-timeout = on } # How long time the dispatcher will wait for new actors until it shuts down shutdown-timeout = 1s # Throughput defines the number of messages that are processed in a batch # before the thread is returned to the pool. Set to 1 for as fair as possible. throughput = 5 # Throughput deadline for Dispatcher, set to 0 or negative for no deadline throughput-deadline-time = 0ms # For BalancingDispatcher: If the balancing dispatcher should attempt to # schedule idle actors using the same dispatcher when a message comes in, # and the dispatchers ExecutorService is not fully busy already. attempt-teamwork = on # If this dispatcher requires a specific type of mailbox, specify the # fully-qualified class name here; the actually created mailbox will # be a subtype of this type. The empty string signifies no requirement. mailbox-requirement = "" } default-mailbox { # FQCN of the MailboxType. The Class of the FQCN must have a public # constructor with # (akka.actor.ActorSystem.Settings, com.typesafe.config.Config) parameters. mailbox-type = "akka.dispatch.UnboundedMailbox" # If the mailbox is bounded then it uses this setting to determine its # capacity. The provided value must be positive. # NOTICE: # Up to version 2.1 the mailbox type was determined based on this setting; # this is no longer the case, the type must explicitly be a bounded mailbox. mailbox-capacity = 1000 # If the mailbox is bounded then this is the timeout for enqueueing # in case the mailbox is full. Negative values signify infinite # timeout, which should be avoided as it bears the risk of dead-lock. mailbox-push-timeout-time = 10s # For Actor with Stash: The default capacity of the stash. # If negative (or zero) then an unbounded stash is used (default) # If positive then a bounded stash is used and the capacity is set using # the property stash-capacity = -1 } mailbox { # Mapping between message queue semantics and mailbox configurations. # Used by akka.dispatch.RequiresMessageQueue[T] to enforce different # mailbox types on actors. # If your Actor implements RequiresMessageQueue[T], then when you create # an instance of that actor its mailbox type will be decided by looking # up a mailbox configuration via T in this mapping requirements { "akka.dispatch.UnboundedMessageQueueSemantics" = akka.actor.mailbox.unbounded-queue-based "akka.dispatch.BoundedMessageQueueSemantics" = akka.actor.mailbox.bounded-queue-based "akka.dispatch.DequeBasedMessageQueueSemantics" = akka.actor.mailbox.unbounded-deque-based "akka.dispatch.UnboundedDequeBasedMessageQueueSemantics" = akka.actor.mailbox.unbounded-deque-based "akka.dispatch.BoundedDequeBasedMessageQueueSemantics" = akka.actor.mailbox.bounded-deque-based "akka.dispatch.MultipleConsumerSemantics" = akka.actor.mailbox.unbounded-queue-based "akka.dispatch.ControlAwareMessageQueueSemantics" = akka.actor.mailbox.unbounded-control-aware-queue-based "akka.dispatch.UnboundedControlAwareMessageQueueSemantics" = akka.actor.mailbox.unbounded-control-aware-queue-based "akka.dispatch.BoundedControlAwareMessageQueueSemantics" = akka.actor.mailbox.bounded-control-aware-queue-based } unbounded-queue-based { # FQCN of the MailboxType, The Class of the FQCN must have a public # constructor with (akka.actor.ActorSystem.Settings, # com.typesafe.config.Config) parameters. mailbox-type = "akka.dispatch.UnboundedMailbox" } bounded-queue-based { # FQCN of the MailboxType, The Class of the FQCN must have a public # constructor with (akka.actor.ActorSystem.Settings, # com.typesafe.config.Config) parameters. mailbox-type = "akka.dispatch.BoundedMailbox" } unbounded-deque-based { # FQCN of the MailboxType, The Class of the FQCN must have a public # constructor with (akka.actor.ActorSystem.Settings, # com.typesafe.config.Config) parameters. mailbox-type = "akka.dispatch.UnboundedDequeBasedMailbox" } bounded-deque-based { # FQCN of the MailboxType, The Class of the FQCN must have a public # constructor with (akka.actor.ActorSystem.Settings, # com.typesafe.config.Config) parameters. mailbox-type = "akka.dispatch.BoundedDequeBasedMailbox" } unbounded-control-aware-queue-based { # FQCN of the MailboxType, The Class of the FQCN must have a public # constructor with (akka.actor.ActorSystem.Settings, # com.typesafe.config.Config) parameters. mailbox-type = "akka.dispatch.UnboundedControlAwareMailbox" } bounded-control-aware-queue-based { # FQCN of the MailboxType, The Class of the FQCN must have a public # constructor with (akka.actor.ActorSystem.Settings, # com.typesafe.config.Config) parameters. mailbox-type = "akka.dispatch.BoundedControlAwareMailbox" } } debug { # enable function of Actor.loggable(), which is to log any received message # at DEBUG level, see the “Testing Actor Systems” section of the Akka # Documentation at http://akka.io/docs receive = off # enable DEBUG logging of all AutoReceiveMessages (Kill, PoisonPill et.c.) autoreceive = off # enable DEBUG logging of actor lifecycle changes lifecycle = off # enable DEBUG logging of all LoggingFSMs for events, transitions and timers fsm = off # enable DEBUG logging of subscription changes on the eventStream event-stream = off # enable DEBUG logging of unhandled messages unhandled = off # enable WARN logging of misconfigured routers router-misconfiguration = off } # Entries for pluggable serializers and their bindings. serializers { java = "akka.serialization.JavaSerializer" bytes = "akka.serialization.ByteArraySerializer" } # Class to Serializer binding. You only need to specify the name of an # interface or abstract base class of the messages. In case of ambiguity it # is using the most specific configured class, or giving a warning and # choosing the “first” one. # # To disable one of the default serializers, assign its class to "none", like # "java.io.Serializable" = none serialization-bindings { "[B" = bytes "java.io.Serializable" = java } # Configuration items which are used by the akka.actor.ActorDSL._ methods dsl { # Maximum queue size of the actor created by newInbox(); this protects # against faulty programs which use select() and consistently miss messages inbox-size = 1000 # Default timeout to assume for operations like Inbox.receive et al default-timeout = 5s } } # Used to set the behavior of the scheduler. # Changing the default values may change the system behavior drastically so make # sure you know what you're doing! See the Scheduler section of the Akka # Documentation for more details. scheduler { # The LightArrayRevolverScheduler is used as the default scheduler in the # system. It does not execute the scheduled tasks on exact time, but on every # tick, it will run everything that is (over)due. You can increase or decrease # the accuracy of the execution timing by specifying smaller or larger tick # duration. If you are scheduling a lot of tasks you should consider increasing # the ticks per wheel. # Note that it might take up to 1 tick to stop the Timer, so setting the # tick-duration to a high value will make shutting down the actor system # take longer. tick-duration = 10ms # The timer uses a circular wheel of buckets to store the timer tasks. # This should be set such that the majority of scheduled timeouts (for high # scheduling frequency) will be shorter than one rotation of the wheel # (ticks-per-wheel * ticks-duration) # THIS MUST BE A POWER OF TWO! ticks-per-wheel = 512 # This setting selects the timer implementation which shall be loaded at # system start-up. # The class given here must implement the akka.actor.Scheduler interface # and offer a public constructor which takes three arguments: # 1) com.typesafe.config.Config # 2) akka.event.LoggingAdapter # 3) java.util.concurrent.ThreadFactory implementation = akka.actor.LightArrayRevolverScheduler # When shutting down the scheduler, there will typically be a thread which # needs to be stopped, and this timeout determines how long to wait for # that to happen. In case of timeout the shutdown of the actor system will # proceed without running possibly still enqueued tasks. shutdown-timeout = 5s } io { # By default the select loops run on dedicated threads, hence using a # PinnedDispatcher pinned-dispatcher { type = "PinnedDispatcher" executor = "thread-pool-executor" thread-pool-executor.allow-core-pool-timeout = off } tcp { # The number of selectors to stripe the served channels over; each of # these will use one select loop on the selector-dispatcher. nr-of-selectors = 1 # Maximum number of open channels supported by this TCP module; there is # no intrinsic general limit, this setting is meant to enable DoS # protection by limiting the number of concurrently connected clients. # Also note that this is a "soft" limit; in certain cases the implementation # will accept a few connections more or a few less than the number configured # here. Must be an integer > 0 or "unlimited". max-channels = 256000 # When trying to assign a new connection to a selector and the chosen # selector is at full capacity, retry selector choosing and assignment # this many times before giving up selector-association-retries = 10 # The maximum number of connection that are accepted in one go, # higher numbers decrease latency, lower numbers increase fairness on # the worker-dispatcher batch-accept-limit = 10 # The number of bytes per direct buffer in the pool used to read or write # network data from the kernel. direct-buffer-size = 128 KiB # The maximal number of direct buffers kept in the direct buffer pool for # reuse. direct-buffer-pool-limit = 1000 # The duration a connection actor waits for a `Register` message from # its commander before aborting the connection. register-timeout = 5s # The maximum number of bytes delivered by a `Received` message. Before # more data is read from the network the connection actor will try to # do other work. max-received-message-size = unlimited # Enable fine grained logging of what goes on inside the implementation. # Be aware that this may log more than once per message sent to the actors # of the tcp implementation. trace-logging = off # Fully qualified config path which holds the dispatcher configuration # to be used for running the select() calls in the selectors selector-dispatcher = "akka.io.pinned-dispatcher" # Fully qualified config path which holds the dispatcher configuration # for the read/write worker actors worker-dispatcher = "akka.actor.default-dispatcher" # Fully qualified config path which holds the dispatcher configuration # for the selector management actors management-dispatcher = "akka.actor.default-dispatcher" # Fully qualified config path which holds the dispatcher configuration # on which file IO tasks are scheduled file-io-dispatcher = "akka.actor.default-dispatcher" # The maximum number of bytes (or "unlimited") to transfer in one batch # when using `WriteFile` command which uses `FileChannel.transferTo` to # pipe files to a TCP socket. On some OS like Linux `FileChannel.transferTo` # may block for a long time when network IO is faster than file IO. # Decreasing the value may improve fairness while increasing may improve # throughput. file-io-transferTo-limit = 512 KiB # The number of times to retry the `finishConnect` call after being notified about # OP_CONNECT. Retries are needed if the OP_CONNECT notification doesn't imply that # `finishConnect` will succeed, which is the case on Android. finish-connect-retries = 5 } udp { # The number of selectors to stripe the served channels over; each of # these will use one select loop on the selector-dispatcher. nr-of-selectors = 1 # Maximum number of open channels supported by this UDP module Generally # UDP does not require a large number of channels, therefore it is # recommended to keep this setting low. max-channels = 4096 # The select loop can be used in two modes: # - setting "infinite" will select without a timeout, hogging a thread # - setting a positive timeout will do a bounded select call, # enabling sharing of a single thread between multiple selectors # (in this case you will have to use a different configuration for the # selector-dispatcher, e.g. using "type=Dispatcher" with size 1) # - setting it to zero means polling, i.e. calling selectNow() select-timeout = infinite # When trying to assign a new connection to a selector and the chosen # selector is at full capacity, retry selector choosing and assignment # this many times before giving up selector-association-retries = 10 # The maximum number of datagrams that are read in one go, # higher numbers decrease latency, lower numbers increase fairness on # the worker-dispatcher receive-throughput = 3 # The number of bytes per direct buffer in the pool used to read or write # network data from the kernel. direct-buffer-size = 128 KiB # The maximal number of direct buffers kept in the direct buffer pool for # reuse. direct-buffer-pool-limit = 1000 # The maximum number of bytes delivered by a `Received` message. Before # more data is read from the network the connection actor will try to # do other work. received-message-size-limit = unlimited # Enable fine grained logging of what goes on inside the implementation. # Be aware that this may log more than once per message sent to the actors # of the tcp implementation. trace-logging = off # Fully qualified config path which holds the dispatcher configuration # to be used for running the select() calls in the selectors selector-dispatcher = "akka.io.pinned-dispatcher" # Fully qualified config path which holds the dispatcher configuration # for the read/write worker actors worker-dispatcher = "akka.actor.default-dispatcher" # Fully qualified config path which holds the dispatcher configuration # for the selector management actors management-dispatcher = "akka.actor.default-dispatcher" } udp-connected { # The number of selectors to stripe the served channels over; each of # these will use one select loop on the selector-dispatcher. nr-of-selectors = 1 # Maximum number of open channels supported by this UDP module Generally # UDP does not require a large number of channels, therefore it is # recommended to keep this setting low. max-channels = 4096 # The select loop can be used in two modes: # - setting "infinite" will select without a timeout, hogging a thread # - setting a positive timeout will do a bounded select call, # enabling sharing of a single thread between multiple selectors # (in this case you will have to use a different configuration for the # selector-dispatcher, e.g. using "type=Dispatcher" with size 1) # - setting it to zero means polling, i.e. calling selectNow() select-timeout = infinite # When trying to assign a new connection to a selector and the chosen # selector is at full capacity, retry selector choosing and assignment # this many times before giving up selector-association-retries = 10 # The maximum number of datagrams that are read in one go, # higher numbers decrease latency, lower numbers increase fairness on # the worker-dispatcher receive-throughput = 3 # The number of bytes per direct buffer in the pool used to read or write # network data from the kernel. direct-buffer-size = 128 KiB # The maximal number of direct buffers kept in the direct buffer pool for # reuse. direct-buffer-pool-limit = 1000 # The maximum number of bytes delivered by a `Received` message. Before # more data is read from the network the connection actor will try to # do other work. received-message-size-limit = unlimited # Enable fine grained logging of what goes on inside the implementation. # Be aware that this may log more than once per message sent to the actors # of the tcp implementation. trace-logging = off # Fully qualified config path which holds the dispatcher configuration # to be used for running the select() calls in the selectors selector-dispatcher = "akka.io.pinned-dispatcher" # Fully qualified config path which holds the dispatcher configuration # for the read/write worker actors worker-dispatcher = "akka.actor.default-dispatcher" # Fully qualified config path which holds the dispatcher configuration # for the selector management actors management-dispatcher = "akka.actor.default-dispatcher" } } } Other Akka source code examplesHere is a short list of links related to this Akka reference.conf source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.