|
Commons Math example source code file (Complex.java)
The Commons Math Complex.java source code/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.complex; import java.io.Serializable; import java.util.ArrayList; import java.util.List; import org.apache.commons.math.FieldElement; import org.apache.commons.math.MathRuntimeException; import org.apache.commons.math.util.MathUtils; /** * Representation of a Complex number - a number which has both a * real and imaginary part. * <p> * Implementations of arithmetic operations handle <code>NaN and * infinite values according to the rules for {@link java.lang.Double} * arithmetic, applying definitional formulas and returning <code>NaN or * infinite values in real or imaginary parts as these arise in computation. * See individual method javadocs for details.</p> * <p> * {@link #equals} identifies all values with <code>NaN in either real * or imaginary part - e.g., <pre> * <code>1 + NaNi == NaN + i == NaN + NaNi.* * implements Serializable since 2.0 * * @version $Revision: 922713 $ $Date: 2010-03-13 20:26:13 -0500 (Sat, 13 Mar 2010) $ */ public class Complex implements FieldElement<Complex>, Serializable { /** The square root of -1. A number representing "0.0 + 1.0i" */ public static final Complex I = new Complex(0.0, 1.0); // CHECKSTYLE: stop ConstantName /** A complex number representing "NaN + NaNi" */ public static final Complex NaN = new Complex(Double.NaN, Double.NaN); // CHECKSTYLE: resume ConstantName /** A complex number representing "+INF + INFi" */ public static final Complex INF = new Complex(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY); /** A complex number representing "1.0 + 0.0i" */ public static final Complex ONE = new Complex(1.0, 0.0); /** A complex number representing "0.0 + 0.0i" */ public static final Complex ZERO = new Complex(0.0, 0.0); /** Serializable version identifier */ private static final long serialVersionUID = -6195664516687396620L; /** The imaginary part. */ private final double imaginary; /** The real part. */ private final double real; /** Record whether this complex number is equal to NaN. */ private final transient boolean isNaN; /** Record whether this complex number is infinite. */ private final transient boolean isInfinite; /** * Create a complex number given the real and imaginary parts. * * @param real the real part * @param imaginary the imaginary part */ public Complex(double real, double imaginary) { super(); this.real = real; this.imaginary = imaginary; isNaN = Double.isNaN(real) || Double.isNaN(imaginary); isInfinite = !isNaN && (Double.isInfinite(real) || Double.isInfinite(imaginary)); } /** * Return the absolute value of this complex number. * <p> * Returns <code>NaN if either real or imaginary part is * <code>NaN and Double.POSITIVE_INFINITY if
* neither part is <code>NaN, but at least one part takes an infinite
* value.</p>
*
* @return the absolute value
*/
public double abs() {
if (isNaN()) {
return Double.NaN;
}
if (isInfinite()) {
return Double.POSITIVE_INFINITY;
}
if (Math.abs(real) < Math.abs(imaginary)) {
if (imaginary == 0.0) {
return Math.abs(real);
}
double q = real / imaginary;
return Math.abs(imaginary) * Math.sqrt(1 + q * q);
} else {
if (real == 0.0) {
return Math.abs(imaginary);
}
double q = imaginary / real;
return Math.abs(real) * Math.sqrt(1 + q * q);
}
}
/**
* Return the sum of this complex number and the given complex number.
* <p>
* Uses the definitional formula
* <pre>
* (a + bi) + (c + di) = (a+c) + (b+d)i
* </pre>
* <p>
* If either this or <code>rhs has a NaN value in either part,
* {@link #NaN} is returned; otherwise Inifinite and NaN values are
* returned in the parts of the result according to the rules for
* {@link java.lang.Double} arithmetic.</p>
*
* @param rhs the other complex number
* @return the complex number sum
* @throws NullPointerException if <code>rhs is null
*/
public Complex add(Complex rhs) {
return createComplex(real + rhs.getReal(),
imaginary + rhs.getImaginary());
}
/**
* Return the conjugate of this complex number. The conjugate of
* "A + Bi" is "A - Bi".
* <p>
* {@link #NaN} is returned if either the real or imaginary
* part of this Complex number equals <code>Double.NaN.
* <p>
* If the imaginary part is infinite, and the real part is not NaN,
* the returned value has infinite imaginary part of the opposite
* sign - e.g. the conjugate of <code>1 + POSITIVE_INFINITY i
* is <code>1 - NEGATIVE_INFINITY i
*
* @return the conjugate of this Complex object
*/
public Complex conjugate() {
if (isNaN()) {
return NaN;
}
return createComplex(real, -imaginary);
}
/**
* Return the quotient of this complex number and the given complex number.
* <p>
* Implements the definitional formula
* <pre>
* a + bi ac + bd + (bc - ad)i
* ----------- = -------------------------
* c + di c<sup>2 + d2
* </code>
* but uses
* <a href="http://doi.acm.org/10.1145/1039813.1039814">
* prescaling of operands</a> to limit the effects of overflows and
* underflows in the computation.</p>
* <p>
* Infinite and NaN values are handled / returned according to the
* following rules, applied in the order presented:
* <ul>
* <li>If either this or is infinite (one or both parts infinite),
* {@link #ZERO} is returned.</li>
* <li>If this is infinite and rhs is finite, NaN values are
* returned in the parts of the result if the {@link java.lang.Double}
* rules applied to the definitional formula force NaN results.</li>
* </ul>
*
* @param rhs the other complex number
* @return the complex number quotient
* @throws NullPointerException if <code>rhs is null
*/
public Complex divide(Complex rhs) {
if (isNaN() || rhs.isNaN()) {
return NaN;
}
double c = rhs.getReal();
double d = rhs.getImaginary();
if (c == 0.0 && d == 0.0) {
return NaN;
}
if (rhs.isInfinite() && !isInfinite()) {
return ZERO;
}
if (Math.abs(c) < Math.abs(d)) {
double q = c / d;
double denominator = c * q + d;
return createComplex((real * q + imaginary) / denominator,
(imaginary * q - real) / denominator);
} else {
double q = d / c;
double denominator = d * q + c;
return createComplex((imaginary * q + real) / denominator,
(imaginary - real * q) / denominator);
}
}
/**
* Test for the equality of two Complex objects.
* <p>
* If both the real and imaginary parts of two Complex numbers
* are exactly the same, and neither is <code>Double.NaN, the two
* Complex objects are considered to be equal.</p>
* <p>
* All <code>NaN values are considered to be equal - i.e, if either
* (or both) real and imaginary parts of the complex number are equal
* to <code>Double.NaN, the complex number is equal to
* <code>Complex.NaN.
*
* @param other Object to test for equality to this
* @return true if two Complex objects are equal, false if
* object is null, not an instance of Complex, or
* not equal to this Complex instance
*
*/
@Override
public boolean equals(Object other) {
if (this == other) {
return true;
}
if (other instanceof Complex){
Complex rhs = (Complex)other;
if (rhs.isNaN()) {
return this.isNaN();
} else {
return (real == rhs.real) && (imaginary == rhs.imaginary);
}
}
return false;
}
/**
* Get a hashCode for the complex number.
* <p>
* All NaN values have the same hash code.</p>
*
* @return a hash code value for this object
*/
@Override
public int hashCode() {
if (isNaN()) {
return 7;
}
return 37 * (17 * MathUtils.hash(imaginary) +
MathUtils.hash(real));
}
/**
* Access the imaginary part.
*
* @return the imaginary part
*/
public double getImaginary() {
return imaginary;
}
/**
* Access the real part.
*
* @return the real part
*/
public double getReal() {
return real;
}
/**
* Returns true if either or both parts of this complex number is NaN;
* false otherwise
*
* @return true if either or both parts of this complex number is NaN;
* false otherwise
*/
public boolean isNaN() {
return isNaN;
}
/**
* Returns true if either the real or imaginary part of this complex number
* takes an infinite value (either <code>Double.POSITIVE_INFINITY or
* <code>Double.NEGATIVE_INFINITY) and neither part
* is <code>NaN.
*
* @return true if one or both parts of this complex number are infinite
* and neither part is <code>NaN
*/
public boolean isInfinite() {
return isInfinite;
}
/**
* Return the product of this complex number and the given complex number.
* <p>
* Implements preliminary checks for NaN and infinity followed by
* the definitional formula:
* <pre>
* (a + bi)(c + di) = (ac - bd) + (ad + bc)i
* </code>
* </p>
* <p>
* Returns {@link #NaN} if either this or <code>rhs has one or more
* NaN parts.
* </p>
* Returns {@link #INF} if neither this nor <code>rhs has one or more
* NaN parts and if either this or <code>rhs has one or more
* infinite parts (same result is returned regardless of the sign of the
* components).
* </p>
* <p>
* Returns finite values in components of the result per the
* definitional formula in all remaining cases.
* </p>
*
* @param rhs the other complex number
* @return the complex number product
* @throws NullPointerException if <code>rhs is null
*/
public Complex multiply(Complex rhs) {
if (isNaN() || rhs.isNaN()) {
return NaN;
}
if (Double.isInfinite(real) || Double.isInfinite(imaginary) ||
Double.isInfinite(rhs.real)|| Double.isInfinite(rhs.imaginary)) {
// we don't use Complex.isInfinite() to avoid testing for NaN again
return INF;
}
return createComplex(real * rhs.real - imaginary * rhs.imaginary,
real * rhs.imaginary + imaginary * rhs.real);
}
/**
* Return the product of this complex number and the given scalar number.
* <p>
* Implements preliminary checks for NaN and infinity followed by
* the definitional formula:
* <pre>
* c(a + bi) = (ca) + (cb)i
* </code>
* </p>
* <p>
* Returns {@link #NaN} if either this or <code>rhs has one or more
* NaN parts.
* </p>
* Returns {@link #INF} if neither this nor <code>rhs has one or more
* NaN parts and if either this or <code>rhs has one or more
* infinite parts (same result is returned regardless of the sign of the
* components).
* </p>
* <p>
* Returns finite values in components of the result per the
* definitional formula in all remaining cases.
* </p>
*
* @param rhs the scalar number
* @return the complex number product
*/
public Complex multiply(double rhs) {
if (isNaN() || Double.isNaN(rhs)) {
return NaN;
}
if (Double.isInfinite(real) || Double.isInfinite(imaginary) ||
Double.isInfinite(rhs)) {
// we don't use Complex.isInfinite() to avoid testing for NaN again
return INF;
}
return createComplex(real * rhs, imaginary * rhs);
}
/**
* Return the additive inverse of this complex number.
* <p>
* Returns <code>Complex.NaN if either real or imaginary
* part of this Complex number equals <code>Double.NaN.
*
* @return the negation of this complex number
*/
public Complex negate() {
if (isNaN()) {
return NaN;
}
return createComplex(-real, -imaginary);
}
/**
* Return the difference between this complex number and the given complex
* number.
* <p>
* Uses the definitional formula
* <pre>
* (a + bi) - (c + di) = (a-c) + (b-d)i
* </pre>
* <p>
* If either this or <code>rhs has a NaN value in either part,
* {@link #NaN} is returned; otherwise inifinite and NaN values are
* returned in the parts of the result according to the rules for
* {@link java.lang.Double} arithmetic. </p>
*
* @param rhs the other complex number
* @return the complex number difference
* @throws NullPointerException if <code>rhs is null
*/
public Complex subtract(Complex rhs) {
if (isNaN() || rhs.isNaN()) {
return NaN;
}
return createComplex(real - rhs.getReal(),
imaginary - rhs.getImaginary());
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/InverseCosine.html" TARGET="_top">
* inverse cosine</a> of this complex number.
* <p>
* Implements the formula: <pre>
* <code> acos(z) = -i (log(z + i (sqrt(1 - z2))))
* <p>
* Returns {@link Complex#NaN} if either real or imaginary part of the
* input argument is <code>NaN or infinite.
*
* @return the inverse cosine of this complex number
* @since 1.2
*/
public Complex acos() {
if (isNaN()) {
return Complex.NaN;
}
return this.add(this.sqrt1z().multiply(Complex.I)).log()
.multiply(Complex.I.negate());
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/InverseSine.html" TARGET="_top">
* inverse sine</a> of this complex number.
* <p>
* Implements the formula: <pre>
* <code> asin(z) = -i (log(sqrt(1 - z2) + iz))
* <p>
* Returns {@link Complex#NaN} if either real or imaginary part of the
* input argument is <code>NaN or infinite.
*
* @return the inverse sine of this complex number.
* @since 1.2
*/
public Complex asin() {
if (isNaN()) {
return Complex.NaN;
}
return sqrt1z().add(this.multiply(Complex.I)).log()
.multiply(Complex.I.negate());
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/InverseTangent.html" TARGET="_top">
* inverse tangent</a> of this complex number.
* <p>
* Implements the formula: <pre>
* <code> atan(z) = (i/2) log((i + z)/(i - z))
* <p>
* Returns {@link Complex#NaN} if either real or imaginary part of the
* input argument is <code>NaN or infinite.
*
* @return the inverse tangent of this complex number
* @since 1.2
*/
public Complex atan() {
if (isNaN()) {
return Complex.NaN;
}
return this.add(Complex.I).divide(Complex.I.subtract(this)).log()
.multiply(Complex.I.divide(createComplex(2.0, 0.0)));
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/Cosine.html" TARGET="_top">
* cosine</a>
* of this complex number.
* <p>
* Implements the formula: <pre>
* <code> cos(a + bi) = cos(a)cosh(b) - sin(a)sinh(b)i
* where the (real) functions on the right-hand side are
* {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
* {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
* <p>
* Returns {@link Complex#NaN} if either real or imaginary part of the
* input argument is <code>NaN.
* <p>
* Infinite values in real or imaginary parts of the input may result in
* infinite or NaN values returned in parts of the result.<pre>
* Examples:
* <code>
* cos(1 ± INFINITY i) = 1 ∓ INFINITY i
* cos(±INFINITY + i) = NaN + NaN i
* cos(±INFINITY ± INFINITY i) = NaN + NaN i</code>
*
* @return the cosine of this complex number
* @since 1.2
*/
public Complex cos() {
if (isNaN()) {
return Complex.NaN;
}
return createComplex(Math.cos(real) * MathUtils.cosh(imaginary),
-Math.sin(real) * MathUtils.sinh(imaginary));
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/HyperbolicCosine.html" TARGET="_top">
* hyperbolic cosine</a> of this complex number.
* <p>
* Implements the formula: <pre>
* <code> cosh(a + bi) = cosh(a)cos(b) + sinh(a)sin(b)i
* where the (real) functions on the right-hand side are
* {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
* {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
* <p>
* Returns {@link Complex#NaN} if either real or imaginary part of the
* input argument is <code>NaN.
* <p>
* Infinite values in real or imaginary parts of the input may result in
* infinite or NaN values returned in parts of the result.<pre>
* Examples:
* <code>
* cosh(1 ± INFINITY i) = NaN + NaN i
* cosh(±INFINITY + i) = INFINITY ± INFINITY i
* cosh(±INFINITY ± INFINITY i) = NaN + NaN i</code>
*
* @return the hyperbolic cosine of this complex number.
* @since 1.2
*/
public Complex cosh() {
if (isNaN()) {
return Complex.NaN;
}
return createComplex(MathUtils.cosh(real) * Math.cos(imaginary),
MathUtils.sinh(real) * Math.sin(imaginary));
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/ExponentialFunction.html" TARGET="_top">
* exponential function</a> of this complex number.
* <p>
* Implements the formula: <pre>
* <code> exp(a + bi) = exp(a)cos(b) + exp(a)sin(b)i
* where the (real) functions on the right-hand side are
* {@link java.lang.Math#exp}, {@link java.lang.Math#cos}, and
* {@link java.lang.Math#sin}.</p>
* <p>
* Returns {@link Complex#NaN} if either real or imaginary part of the
* input argument is <code>NaN.
* <p>
* Infinite values in real or imaginary parts of the input may result in
* infinite or NaN values returned in parts of the result.<pre>
* Examples:
* <code>
* exp(1 ± INFINITY i) = NaN + NaN i
* exp(INFINITY + i) = INFINITY + INFINITY i
* exp(-INFINITY + i) = 0 + 0i
* exp(±INFINITY ± INFINITY i) = NaN + NaN i</code>
*
* @return <i>ethis
* @since 1.2
*/
public Complex exp() {
if (isNaN()) {
return Complex.NaN;
}
double expReal = Math.exp(real);
return createComplex(expReal * Math.cos(imaginary), expReal * Math.sin(imaginary));
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/NaturalLogarithm.html" TARGET="_top">
* natural logarithm</a> of this complex number.
* <p>
* Implements the formula: <pre>
* <code> log(a + bi) = ln(|a + bi|) + arg(a + bi)i
* where ln on the right hand side is {@link java.lang.Math#log},
* <code>|a + bi| is the modulus, {@link Complex#abs}, and
* <code>arg(a + bi) = {@link java.lang.Math#atan2}(b, a)
* <p>
* Returns {@link Complex#NaN} if either real or imaginary part of the
* input argument is <code>NaN.
* <p>
* Infinite (or critical) values in real or imaginary parts of the input may
* result in infinite or NaN values returned in parts of the result.<pre>
* Examples:
* <code>
* log(1 ± INFINITY i) = INFINITY ± (π/2)i
* log(INFINITY + i) = INFINITY + 0i
* log(-INFINITY + i) = INFINITY + πi
* log(INFINITY ± INFINITY i) = INFINITY ± (π/4)i
* log(-INFINITY ± INFINITY i) = INFINITY ± (3π/4)i
* log(0 + 0i) = -INFINITY + 0i
* </code>
*
* @return ln of this complex number.
* @since 1.2
*/
public Complex log() {
if (isNaN()) {
return Complex.NaN;
}
return createComplex(Math.log(abs()),
Math.atan2(imaginary, real));
}
/**
* Returns of value of this complex number raised to the power of <code>x.
* <p>
* Implements the formula: <pre>
* <code> yx = exp(x·log(y))
* where <code>exp and log are {@link #exp} and
* {@link #log}, respectively.</p>
* <p>
* Returns {@link Complex#NaN} if either real or imaginary part of the
* input argument is <code>NaN or infinite, or if y
* equals {@link Complex#ZERO}.</p>
*
* @param x the exponent.
* @return <code>thisx
* @throws NullPointerException if x is null
* @since 1.2
*/
public Complex pow(Complex x) {
if (x == null) {
throw new NullPointerException();
}
return this.log().multiply(x).exp();
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/Sine.html" TARGET="_top">
* sine</a>
* of this complex number.
* <p>
* Implements the formula: <pre>
* <code> sin(a + bi) = sin(a)cosh(b) - cos(a)sinh(b)i
* where the (real) functions on the right-hand side are
* {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
* {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
* <p>
* Returns {@link Complex#NaN} if either real or imaginary part of the
* input argument is <code>NaN.
* <p>
* Infinite values in real or imaginary parts of the input may result in
* infinite or NaN values returned in parts of the result.<pre>
* Examples:
* <code>
* sin(1 ± INFINITY i) = 1 ± INFINITY i
* sin(±INFINITY + i) = NaN + NaN i
* sin(±INFINITY ± INFINITY i) = NaN + NaN i</code>
*
* @return the sine of this complex number.
* @since 1.2
*/
public Complex sin() {
if (isNaN()) {
return Complex.NaN;
}
return createComplex(Math.sin(real) * MathUtils.cosh(imaginary),
Math.cos(real) * MathUtils.sinh(imaginary));
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/HyperbolicSine.html" TARGET="_top">
* hyperbolic sine</a> of this complex number.
* <p>
* Implements the formula: <pre>
* <code> sinh(a + bi) = sinh(a)cos(b)) + cosh(a)sin(b)i
* where the (real) functions on the right-hand side are
* {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
* {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
* <p>
* Returns {@link Complex#NaN} if either real or imaginary part of the
* input argument is <code>NaN.
* <p>
* Infinite values in real or imaginary parts of the input may result in
* infinite or NaN values returned in parts of the result.<pre>
* Examples:
* <code>
* sinh(1 ± INFINITY i) = NaN + NaN i
* sinh(±INFINITY + i) = ± INFINITY + INFINITY i
* sinh(±INFINITY ± INFINITY i) = NaN + NaN i</code>
*
* @return the hyperbolic sine of this complex number
* @since 1.2
*/
public Complex sinh() {
if (isNaN()) {
return Complex.NaN;
}
return createComplex(MathUtils.sinh(real) * Math.cos(imaginary),
MathUtils.cosh(real) * Math.sin(imaginary));
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/SquareRoot.html" TARGET="_top">
* square root</a> of this complex number.
* <p>
* Implements the following algorithm to compute <code>sqrt(a + bi):
* <ol>t = sqrt((|a| + |a + bi|) / 2) if* </ol> * where <ul> * <li> |a| = {@link Math#abs}(a)
* <li>|a + bi| = {@link Complex#abs}(a + bi)
* <li>sign(b) = {@link MathUtils#indicator}(b)
* </ul>
* <p>
* Returns {@link Complex#NaN} if either real or imaginary part of the
* input argument is <code>NaN.
* <p>
* Infinite values in real or imaginary parts of the input may result in
* infinite or NaN values returned in parts of the result.<pre>
* Examples:
* <code>
* sqrt(1 ± INFINITY i) = INFINITY + NaN i
* sqrt(INFINITY + i) = INFINITY + 0i
* sqrt(-INFINITY + i) = 0 + INFINITY i
* sqrt(INFINITY ± INFINITY i) = INFINITY + NaN i
* sqrt(-INFINITY ± INFINITY i) = NaN ± INFINITY i
* </code>
*
* @return the square root of this complex number
* @since 1.2
*/
public Complex sqrt() {
if (isNaN()) {
return Complex.NaN;
}
if (real == 0.0 && imaginary == 0.0) {
return createComplex(0.0, 0.0);
}
double t = Math.sqrt((Math.abs(real) + abs()) / 2.0);
if (real >= 0.0) {
return createComplex(t, imaginary / (2.0 * t));
} else {
return createComplex(Math.abs(imaginary) / (2.0 * t),
MathUtils.indicator(imaginary) * t);
}
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/SquareRoot.html" TARGET="_top">
* square root</a> of 1 - this 2 for this complex
* number.
* <p>
* Computes the result directly as
* <code>sqrt(Complex.ONE.subtract(z.multiply(z))).
* <p>
* Returns {@link Complex#NaN} if either real or imaginary part of the
* input argument is <code>NaN.
* <p>
* Infinite values in real or imaginary parts of the input may result in
* infinite or NaN values returned in parts of the result.</p>
*
* @return the square root of 1 - <code>this2
* @since 1.2
*/
public Complex sqrt1z() {
return createComplex(1.0, 0.0).subtract(this.multiply(this)).sqrt();
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/Tangent.html" TARGET="_top">
* tangent</a> of this complex number.
* <p>
* Implements the formula: <pre>
* <code>tan(a + bi) = sin(2a)/(cos(2a)+cosh(2b)) + [sinh(2b)/(cos(2a)+cosh(2b))]i
* where the (real) functions on the right-hand side are
* {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
* {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
* <p>
* Returns {@link Complex#NaN} if either real or imaginary part of the
* input argument is <code>NaN.
* <p>
* Infinite (or critical) values in real or imaginary parts of the input may
* result in infinite or NaN values returned in parts of the result.<pre>
* Examples:
* <code>
* tan(1 ± INFINITY i) = 0 + NaN i
* tan(±INFINITY + i) = NaN + NaN i
* tan(±INFINITY ± INFINITY i) = NaN + NaN i
* tan(±π/2 + 0 i) = ±INFINITY + NaN i</code>
*
* @return the tangent of this complex number
* @since 1.2
*/
public Complex tan() {
if (isNaN()) {
return Complex.NaN;
}
double real2 = 2.0 * real;
double imaginary2 = 2.0 * imaginary;
double d = Math.cos(real2) + MathUtils.cosh(imaginary2);
return createComplex(Math.sin(real2) / d, MathUtils.sinh(imaginary2) / d);
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/HyperbolicTangent.html" TARGET="_top">
* hyperbolic tangent</a> of this complex number.
* <p>
* Implements the formula: <pre>
* <code>tan(a + bi) = sinh(2a)/(cosh(2a)+cos(2b)) + [sin(2b)/(cosh(2a)+cos(2b))]i
* where the (real) functions on the right-hand side are
* {@link java.lang.Math#sin}, {@link java.lang.Math#cos},
* {@link MathUtils#cosh} and {@link MathUtils#sinh}.</p>
* <p>
* Returns {@link Complex#NaN} if either real or imaginary part of the
* input argument is <code>NaN.
* <p>
* Infinite values in real or imaginary parts of the input may result in
* infinite or NaN values returned in parts of the result.<pre>
* Examples:
* <code>
* tanh(1 ± INFINITY i) = NaN + NaN i
* tanh(±INFINITY + i) = NaN + 0 i
* tanh(±INFINITY ± INFINITY i) = NaN + NaN i
* tanh(0 + (π/2)i) = NaN + INFINITY i</code>
*
* @return the hyperbolic tangent of this complex number
* @since 1.2
*/
public Complex tanh() {
if (isNaN()) {
return Complex.NaN;
}
double real2 = 2.0 * real;
double imaginary2 = 2.0 * imaginary;
double d = MathUtils.cosh(real2) + Math.cos(imaginary2);
return createComplex(MathUtils.sinh(real2) / d, Math.sin(imaginary2) / d);
}
/**
* <p>Compute the argument of this complex number.
* </p>
* <p>The argument is the angle phi between the positive real axis and the point
* representing this number in the complex plane. The value returned is between -PI (not inclusive)
* and PI (inclusive), with negative values returned for numbers with negative imaginary parts.
* </p>
* <p>If either real or imaginary part (or both) is NaN, NaN is returned. Infinite parts are handled
* as java.Math.atan2 handles them, essentially treating finite parts as zero in the presence of
* an infinite coordinate and returning a multiple of pi/4 depending on the signs of the infinite
* parts. See the javadoc for java.Math.atan2 for full details.</p>
*
* @return the argument of this complex number
*/
public double getArgument() {
return Math.atan2(getImaginary(), getReal());
}
/**
* <p>Computes the n-th roots of this complex number.
* </p>
* <p>The nth roots are defined by the formula: * <code> zk = abs 1/n (cos(phi + 2πk/n) + i (sin(phi + 2πk/n))* for <i> k=0, 1, ..., n-1 , where abs and phi are
* respectively the {@link #abs() modulus} and {@link #getArgument() argument} of this complex number.
* </p>
* <p>If one or both parts of this complex number is NaN, a list with just one element,
* {@link #NaN} is returned.</p>
* <p>if neither part is NaN, but at least one part is infinite, the result is a one-element
* list containing {@link #INF}.</p>
*
* @param n degree of root
* @return List<Complex> all nth roots of this complex number
* @throws IllegalArgumentException if parameter n is less than or equal to 0
* @since 2.0
*/
public List<Complex> nthRoot(int n) throws IllegalArgumentException {
if (n <= 0) {
throw MathRuntimeException.createIllegalArgumentException(
"cannot compute nth root for null or negative n: {0}",
n);
}
List<Complex> result = new ArrayListOther Commons Math examples (source code examples)Here is a short list of links related to this Commons Math Complex.java source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.