alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Commons Math example source code file (BetaDistributionImpl.java)

This example Commons Math source code file (BetaDistributionImpl.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Commons Math tags/keywords

abstractcontinuousdistribution, betadistribution, betadistributionimpl, betadistributionimpl, cannot, default_inverse_absolute_accuracy, default_inverse_absolute_accuracy, deprecated, mathexception, mathexception, override, override

The Commons Math BetaDistributionImpl.java source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.distribution;

import org.apache.commons.math.MathException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.special.Gamma;
import org.apache.commons.math.special.Beta;

/**
 * Implements the Beta distribution.
 * <p>
 * References:
 * <ul>
 * <li>
 * Beta distribution</a>
 * </ul>
 * </p>
 * @version $Revision: 925900 $ $Date: 2010-03-21 17:10:07 -0400 (Sun, 21 Mar 2010) $
 * @since 2.0
 */
public class BetaDistributionImpl
    extends AbstractContinuousDistribution implements BetaDistribution {

    /**
     * Default inverse cumulative probability accurac
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;

    /** Serializable version identifier. */
    private static final long serialVersionUID = -1221965979403477668L;

    /** First shape parameter. */
    private double alpha;

    /** Second shape parameter. */
    private double beta;

    /** Normalizing factor used in density computations.
     * updated whenever alpha or beta are changed.
     */
    private double z;

    /** Inverse cumulative probability accuracy */
    private final double solverAbsoluteAccuracy;

    /**
     * Build a new instance.
     * @param alpha first shape parameter (must be positive)
     * @param beta second shape parameter (must be positive)
     * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
     * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
     * @since 2.1
     */
    public BetaDistributionImpl(double alpha, double beta, double inverseCumAccuracy) {
        this.alpha = alpha;
        this.beta = beta;
        z = Double.NaN;
        solverAbsoluteAccuracy = inverseCumAccuracy;
    }

    /**
     * Build a new instance.
     * @param alpha first shape parameter (must be positive)
     * @param beta second shape parameter (must be positive)
     */
    public BetaDistributionImpl(double alpha, double beta) {
        this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }

    /** {@inheritDoc}
     * @deprecated as of 2.1 (class will become immutable in 3.0)
     */
    @Deprecated
    public void setAlpha(double alpha) {
        this.alpha = alpha;
        z = Double.NaN;
    }

    /** {@inheritDoc} */
    public double getAlpha() {
        return alpha;
    }

    /** {@inheritDoc}
     * @deprecated as of 2.1 (class will become immutable in 3.0)
     */
    @Deprecated
    public void setBeta(double beta) {
        this.beta = beta;
        z = Double.NaN;
    }

    /** {@inheritDoc} */
    public double getBeta() {
        return beta;
    }

    /**
     * Recompute the normalization factor.
     */
    private void recomputeZ() {
        if (Double.isNaN(z)) {
            z = Gamma.logGamma(alpha) + Gamma.logGamma(beta) - Gamma.logGamma(alpha + beta);
        }
    }

    /**
     * Return the probability density for a particular point.
     *
     * @param x The point at which the density should be computed.
     * @return The pdf at point x.
     * @deprecated
     */
    public double density(Double x) {
        return density(x.doubleValue());
    }

    /**
     * Return the probability density for a particular point.
     *
     * @param x The point at which the density should be computed.
     * @return The pdf at point x.
     * @since 2.1
     */
    public double density(double x) {
        recomputeZ();
        if (x < 0 || x > 1) {
            return 0;
        } else if (x == 0) {
            if (alpha < 1) {
                throw MathRuntimeException.createIllegalArgumentException(
                        "Cannot compute beta density at 0 when alpha = {0,number}", alpha);
            }
            return 0;
        } else if (x == 1) {
            if (beta < 1) {
                throw MathRuntimeException.createIllegalArgumentException(
                        "Cannot compute beta density at 1 when beta = %.3g", beta);
            }
            return 0;
        } else {
            double logX = Math.log(x);
            double log1mX = Math.log1p(-x);
            return Math.exp((alpha - 1) * logX + (beta - 1) * log1mX - z);
        }
    }

    /** {@inheritDoc} */
    @Override
    public double inverseCumulativeProbability(double p) throws MathException {
        if (p == 0) {
            return 0;
        } else if (p == 1) {
            return 1;
        } else {
            return super.inverseCumulativeProbability(p);
        }
    }

    /** {@inheritDoc} */
    @Override
    protected double getInitialDomain(double p) {
        return p;
    }

    /** {@inheritDoc} */
    @Override
    protected double getDomainLowerBound(double p) {
        return 0;
    }

    /** {@inheritDoc} */
    @Override
    protected double getDomainUpperBound(double p) {
        return 1;
    }

    /** {@inheritDoc} */
    public double cumulativeProbability(double x) throws MathException {
        if (x <= 0) {
            return 0;
        } else if (x >= 1) {
            return 1;
        } else {
            return Beta.regularizedBeta(x, alpha, beta);
        }
    }

    /** {@inheritDoc} */
    @Override
    public double cumulativeProbability(double x0, double x1) throws MathException {
        return cumulativeProbability(x1) - cumulativeProbability(x0);
    }

    /**
     * Return the absolute accuracy setting of the solver used to estimate
     * inverse cumulative probabilities.
     *
     * @return the solver absolute accuracy
     * @since 2.1
     */
    @Override
    protected double getSolverAbsoluteAccuracy() {
        return solverAbsoluteAccuracy;
    }
}
... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.