|
Commons Math example source code file (HypergeometricDistributionImpl.java)
The Commons Math HypergeometricDistributionImpl.java source code/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.distribution; import java.io.Serializable; import org.apache.commons.math.MathRuntimeException; import org.apache.commons.math.util.MathUtils; /** * The default implementation of {@link HypergeometricDistribution}. * * @version $Revision: 920852 $ $Date: 2010-03-09 07:53:44 -0500 (Tue, 09 Mar 2010) $ */ public class HypergeometricDistributionImpl extends AbstractIntegerDistribution implements HypergeometricDistribution, Serializable { /** Serializable version identifier */ private static final long serialVersionUID = -436928820673516179L; /** The number of successes in the population. */ private int numberOfSuccesses; /** The population size. */ private int populationSize; /** The sample size. */ private int sampleSize; /** * Construct a new hypergeometric distribution with the given the population * size, the number of successes in the population, and the sample size. * * @param populationSize the population size. * @param numberOfSuccesses number of successes in the population. * @param sampleSize the sample size. */ public HypergeometricDistributionImpl(int populationSize, int numberOfSuccesses, int sampleSize) { super(); if (numberOfSuccesses > populationSize) { throw MathRuntimeException .createIllegalArgumentException( "number of successes ({0}) must be less than or equal to population size ({1})", numberOfSuccesses, populationSize); } if (sampleSize > populationSize) { throw MathRuntimeException .createIllegalArgumentException( "sample size ({0}) must be less than or equal to population size ({1})", sampleSize, populationSize); } setPopulationSizeInternal(populationSize); setSampleSizeInternal(sampleSize); setNumberOfSuccessesInternal(numberOfSuccesses); } /** * For this distribution, X, this method returns P(X ≤ x). * * @param x the value at which the PDF is evaluated. * @return PDF for this distribution. */ @Override public double cumulativeProbability(int x) { double ret; int[] domain = getDomain(populationSize, numberOfSuccesses, sampleSize); if (x < domain[0]) { ret = 0.0; } else if (x >= domain[1]) { ret = 1.0; } else { ret = innerCumulativeProbability(domain[0], x, 1, populationSize, numberOfSuccesses, sampleSize); } return ret; } /** * Return the domain for the given hypergeometric distribution parameters. * * @param n the population size. * @param m number of successes in the population. * @param k the sample size. * @return a two element array containing the lower and upper bounds of the * hypergeometric distribution. */ private int[] getDomain(int n, int m, int k) { return new int[] { getLowerDomain(n, m, k), getUpperDomain(m, k) }; } /** * Access the domain value lower bound, based on <code>p, used to * bracket a PDF root. * * @param p the desired probability for the critical value * @return domain value lower bound, i.e. P(X < <i>lower bound) < * <code>p */ @Override protected int getDomainLowerBound(double p) { return getLowerDomain(populationSize, numberOfSuccesses, sampleSize); } /** * Access the domain value upper bound, based on <code>p, used to * bracket a PDF root. * * @param p the desired probability for the critical value * @return domain value upper bound, i.e. P(X < <i>upper bound) > * <code>p */ @Override protected int getDomainUpperBound(double p) { return getUpperDomain(sampleSize, numberOfSuccesses); } /** * Return the lowest domain value for the given hypergeometric distribution * parameters. * * @param n the population size. * @param m number of successes in the population. * @param k the sample size. * @return the lowest domain value of the hypergeometric distribution. */ private int getLowerDomain(int n, int m, int k) { return Math.max(0, m - (n - k)); } /** * Access the number of successes. * * @return the number of successes. */ public int getNumberOfSuccesses() { return numberOfSuccesses; } /** * Access the population size. * * @return the population size. */ public int getPopulationSize() { return populationSize; } /** * Access the sample size. * * @return the sample size. */ public int getSampleSize() { return sampleSize; } /** * Return the highest domain value for the given hypergeometric distribution * parameters. * * @param m number of successes in the population. * @param k the sample size. * @return the highest domain value of the hypergeometric distribution. */ private int getUpperDomain(int m, int k) { return Math.min(k, m); } /** * For this distribution, X, this method returns P(X = x). * * @param x the value at which the PMF is evaluated. * @return PMF for this distribution. */ public double probability(int x) { double ret; int[] domain = getDomain(populationSize, numberOfSuccesses, sampleSize); if (x < domain[0] || x > domain[1]) { ret = 0.0; } else { double p = (double) sampleSize / (double) populationSize; double q = (double) (populationSize - sampleSize) / (double) populationSize; double p1 = SaddlePointExpansion.logBinomialProbability(x, numberOfSuccesses, p, q); double p2 = SaddlePointExpansion.logBinomialProbability(sampleSize - x, populationSize - numberOfSuccesses, p, q); double p3 = SaddlePointExpansion.logBinomialProbability(sampleSize, populationSize, p, q); ret = Math.exp(p1 + p2 - p3); } return ret; } /** * For the distribution, X, defined by the given hypergeometric distribution * parameters, this method returns P(X = x). * * @param n the population size. * @param m number of successes in the population. * @param k the sample size. * @param x the value at which the PMF is evaluated. * @return PMF for the distribution. */ private double probability(int n, int m, int k, int x) { return Math.exp(MathUtils.binomialCoefficientLog(m, x) + MathUtils.binomialCoefficientLog(n - m, k - x) - MathUtils.binomialCoefficientLog(n, k)); } /** * Modify the number of successes. * * @param num the new number of successes. * @throws IllegalArgumentException if <code>num is negative. * @deprecated as of 2.1 (class will become immutable in 3.0) */ @Deprecated public void setNumberOfSuccesses(int num) { setNumberOfSuccessesInternal(num); } /** * Modify the number of successes. * * @param num the new number of successes. * @throws IllegalArgumentException if <code>num is negative. */ private void setNumberOfSuccessesInternal(int num) { if (num < 0) { throw MathRuntimeException.createIllegalArgumentException( "number of successes must be non-negative ({0})", num); } numberOfSuccesses = num; } /** * Modify the population size. * * @param size the new population size. * @throws IllegalArgumentException if <code>size is not positive. * @deprecated as of 2.1 (class will become immutable in 3.0) */ @Deprecated public void setPopulationSize(int size) { setPopulationSizeInternal(size); } /** * Modify the population size. * * @param size the new population size. * @throws IllegalArgumentException if <code>size is not positive. */ private void setPopulationSizeInternal(int size) { if (size <= 0) { throw MathRuntimeException.createIllegalArgumentException( "population size must be positive ({0})", size); } populationSize = size; } /** * Modify the sample size. * * @param size the new sample size. * @throws IllegalArgumentException if <code>size is negative. * @deprecated as of 2.1 (class will become immutable in 3.0) */ @Deprecated public void setSampleSize(int size) { setSampleSizeInternal(size); } /** * Modify the sample size. * * @param size the new sample size. * @throws IllegalArgumentException if <code>size is negative. */ private void setSampleSizeInternal(int size) { if (size < 0) { throw MathRuntimeException.createIllegalArgumentException( "sample size must be positive ({0})", size); } sampleSize = size; } /** * For this distribution, X, this method returns P(X ≥ x). * * @param x the value at which the CDF is evaluated. * @return upper tail CDF for this distribution. * @since 1.1 */ public double upperCumulativeProbability(int x) { double ret; final int[] domain = getDomain(populationSize, numberOfSuccesses, sampleSize); if (x < domain[0]) { ret = 1.0; } else if (x > domain[1]) { ret = 0.0; } else { ret = innerCumulativeProbability(domain[1], x, -1, populationSize, numberOfSuccesses, sampleSize); } return ret; } /** * For this distribution, X, this method returns P(x0 ≤ X ≤ x1). This * probability is computed by summing the point probabilities for the values * x0, x0 + 1, x0 + 2, ..., x1, in the order directed by dx. * * @param x0 the inclusive, lower bound * @param x1 the inclusive, upper bound * @param dx the direction of summation. 1 indicates summing from x0 to x1. * 0 indicates summing from x1 to x0. * @param n the population size. * @param m number of successes in the population. * @param k the sample size. * @return P(x0 ≤ X ≤ x1). */ private double innerCumulativeProbability(int x0, int x1, int dx, int n, int m, int k) { double ret = probability(n, m, k, x0); while (x0 != x1) { x0 += dx; ret += probability(n, m, k, x0); } return ret; } } Other Commons Math examples (source code examples)Here is a short list of links related to this Commons Math HypergeometricDistributionImpl.java source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.