alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  
* <tr> * </table> * @version $Revision: 825919 $ $Date: 2009-10-16 10:51:55 -0400 (Fri, 16 Oct 2009) $ * @since 1.2 * @deprecated as of 2.0, everything in package org.apache.commons.math.estimation has * been deprecated and replaced by package org.apache.commons.math.optimization.general * */ @Deprecated public class LevenbergMarquardtEstimator extends AbstractEstimator implements Serializable { /** Serializable version identifier */ private static final long serialVersionUID = -5705952631533171019L; /** Number of solved variables. */ private int solvedCols; /** Diagonal elements of the R matrix in the Q.R. decomposition. */ private double[] diagR; /** Norms of the columns of the jacobian matrix. */ private double[] jacNorm; /** Coefficients of the Householder transforms vectors. */ private double[] beta; /** Columns permutation array. */ private int[] permutation; /** Rank of the jacobian matrix. */ private int rank; /** Levenberg-Marquardt parameter. */ private double lmPar; /** Parameters evolution direction associated with lmPar. */ private double[] lmDir; /** Positive input variable used in determining the initial step bound. */ private double initialStepBoundFactor; /** Desired relative error in the sum of squares. */ private double costRelativeTolerance; /** Desired relative error in the approximate solution parameters. */ private double parRelativeTolerance; /** Desired max cosine on the orthogonality between the function vector * and the columns of the jacobian. */ private double orthoTolerance; /** * Build an estimator for least squares problems. * <p>The default values for the algorithm settings are: * <ul> * <li>{@link #setInitialStepBoundFactor initial step bound factor}: 100.0 * <li>{@link #setMaxCostEval maximal cost evaluations}: 1000 * <li>{@link #setCostRelativeTolerance cost relative tolerance}: 1.0e-10 * <li>{@link #setParRelativeTolerance parameters relative tolerance}: 1.0e-10 * <li>{@link #setOrthoTolerance orthogonality tolerance}: 1.0e-10 * </ul> * </p> */ public LevenbergMarquardtEstimator() { // set up the superclass with a default max cost evaluations setting setMaxCostEval(1000); // default values for the tuning parameters setInitialStepBoundFactor(100.0); setCostRelativeTolerance(1.0e-10); setParRelativeTolerance(1.0e-10); setOrthoTolerance(1.0e-10); } /** * Set the positive input variable used in determining the initial step bound. * This bound is set to the product of initialStepBoundFactor and the euclidean norm of diag*x if nonzero, * or else to initialStepBoundFactor itself. In most cases factor should lie * in the interval (0.1, 100.0). 100.0 is a generally recommended value * * @param initialStepBoundFactor initial step bound factor * @see #estimate */ public void setInitialStepBoundFactor(double initialStepBoundFactor) { this.initialStepBoundFactor = initialStepBoundFactor; } /** * Set the desired relative error in the sum of squares. * * @param costRelativeTolerance desired relative error in the sum of squares * @see #estimate */ public void setCostRelativeTolerance(double costRelativeTolerance) { this.costRelativeTolerance = costRelativeTolerance; } /** * Set the desired relative error in the approximate solution parameters. * * @param parRelativeTolerance desired relative error * in the approximate solution parameters * @see #estimate */ public void setParRelativeTolerance(double parRelativeTolerance) { this.parRelativeTolerance = parRelativeTolerance; } /** * Set the desired max cosine on the orthogonality. * * @param orthoTolerance desired max cosine on the orthogonality * between the function vector and the columns of the jacobian * @see #estimate */ public void setOrthoTolerance(double orthoTolerance) { this.orthoTolerance = orthoTolerance; } /** * Solve an estimation problem using the Levenberg-Marquardt algorithm. * <p>The algorithm used is a modified Levenberg-Marquardt one, based * on the MINPACK <a href="http://www.netlib.org/minpack/lmder.f">lmder * routine. The algorithm settings must have been set up before this method * is called with the {@link #setInitialStepBoundFactor}, * {@link #setMaxCostEval}, {@link #setCostRelativeTolerance}, * {@link #setParRelativeTolerance} and {@link #setOrthoTolerance} methods. * If these methods have not been called, the default values set up by the * {@link #LevenbergMarquardtEstimator() constructor} will be used.</p> * <p>The authors of the original fortran function are:

* <ul> * <li>Argonne National Laboratory. MINPACK project. March 1980 * <li>Burton S. Garbow * <li>Kenneth E. Hillstrom * <li>Jorge J. More * </ul> * <p>Luc Maisonobe did the Java translation.

* * @param problem estimation problem to solve * @exception EstimationException if convergence cannot be * reached with the specified algorithm settings or if there are more variables * than equations * @see #setInitialStepBoundFactor * @see #setCostRelativeTolerance * @see #setParRelativeTolerance * @see #setOrthoTolerance */ @Override public void estimate(EstimationProblem problem) throws EstimationException { initializeEstimate(problem); // arrays shared with the other private methods solvedCols = Math.min(rows, cols); diagR = new double[cols]; jacNorm = new double[cols]; beta = new double[cols]; permutation = new int[cols]; lmDir = new double[cols]; // local variables double delta = 0; double xNorm = 0; double[] diag = new double[cols]; double[] oldX = new double[cols]; double[] oldRes = new double[rows]; double[] work1 = new double[cols]; double[] work2 = new double[cols]; double[] work3 = new double[cols]; // evaluate the function at the starting point and calculate its norm updateResidualsAndCost(); // outer loop lmPar = 0; boolean firstIteration = true; while (true) { // compute the Q.R. decomposition of the jacobian matrix updateJacobian(); qrDecomposition(); // compute Qt.res qTy(residuals); // now we don't need Q anymore, // so let jacobian contain the R matrix with its diagonal elements for (int k = 0; k < solvedCols; ++k) { int pk = permutation[k]; jacobian[k * cols + pk] = diagR[pk]; } if (firstIteration) { // scale the variables according to the norms of the columns // of the initial jacobian xNorm = 0; for (int k = 0; k < cols; ++k) { double dk = jacNorm[k]; if (dk == 0) { dk = 1.0; } double xk = dk * parameters[k].getEstimate(); xNorm += xk * xk; diag[k] = dk; } xNorm = Math.sqrt(xNorm); // initialize the step bound delta delta = (xNorm == 0) ? initialStepBoundFactor : (initialStepBoundFactor * xNorm); } // check orthogonality between function vector and jacobian columns double maxCosine = 0; if (cost != 0) { for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; double s = jacNorm[pj]; if (s != 0) { double sum = 0; int index = pj; for (int i = 0; i <= j; ++i) { sum += jacobian[index] * residuals[i]; index += cols; } maxCosine = Math.max(maxCosine, Math.abs(sum) / (s * cost)); } } } if (maxCosine <= orthoTolerance) { return; } // rescale if necessary for (int j = 0; j < cols; ++j) { diag[j] = Math.max(diag[j], jacNorm[j]); } // inner loop for (double ratio = 0; ratio < 1.0e-4;) { // save the state for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; oldX[pj] = parameters[pj].getEstimate(); } double previousCost = cost; double[] tmpVec = residuals; residuals = oldRes; oldRes = tmpVec; // determine the Levenberg-Marquardt parameter determineLMParameter(oldRes, delta, diag, work1, work2, work3); // compute the new point and the norm of the evolution direction double lmNorm = 0; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; lmDir[pj] = -lmDir[pj]; parameters[pj].setEstimate(oldX[pj] + lmDir[pj]); double s = diag[pj] * lmDir[pj]; lmNorm += s * s; } lmNorm = Math.sqrt(lmNorm); // on the first iteration, adjust the initial step bound. if (firstIteration) { delta = Math.min(delta, lmNorm); } // evaluate the function at x + p and calculate its norm updateResidualsAndCost(); // compute the scaled actual reduction double actRed = -1.0; if (0.1 * cost < previousCost) { double r = cost / previousCost; actRed = 1.0 - r * r; } // compute the scaled predicted reduction // and the scaled directional derivative for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; double dirJ = lmDir[pj]; work1[j] = 0; int index = pj; for (int i = 0; i <= j; ++i) { work1[i] += jacobian[index] * dirJ; index += cols; } } double coeff1 = 0; for (int j = 0; j < solvedCols; ++j) { coeff1 += work1[j] * work1[j]; } double pc2 = previousCost * previousCost; coeff1 = coeff1 / pc2; double coeff2 = lmPar * lmNorm * lmNorm / pc2; double preRed = coeff1 + 2 * coeff2; double dirDer = -(coeff1 + coeff2); // ratio of the actual to the predicted reduction ratio = (preRed == 0) ? 0 : (actRed / preRed); // update the step bound if (ratio <= 0.25) { double tmp = (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5; if ((0.1 * cost >= previousCost) || (tmp < 0.1)) { tmp = 0.1; } delta = tmp * Math.min(delta, 10.0 * lmNorm); lmPar /= tmp; } else if ((lmPar == 0) || (ratio >= 0.75)) { delta = 2 * lmNorm; lmPar *= 0.5; } // test for successful iteration. if (ratio >= 1.0e-4) { // successful iteration, update the norm firstIteration = false; xNorm = 0; for (int k = 0; k < cols; ++k) { double xK = diag[k] * parameters[k].getEstimate(); xNorm += xK * xK; } xNorm = Math.sqrt(xNorm); } else { // failed iteration, reset the previous values cost = previousCost; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; parameters[pj].setEstimate(oldX[pj]); } tmpVec = residuals; residuals = oldRes; oldRes = tmpVec; } // tests for convergence. if (((Math.abs(actRed) <= costRelativeTolerance) && (preRed <= costRelativeTolerance) && (ratio <= 2.0)) || (delta <= parRelativeTolerance * xNorm)) { return; } // tests for termination and stringent tolerances // (2.2204e-16 is the machine epsilon for IEEE754) if ((Math.abs(actRed) <= 2.2204e-16) && (preRed <= 2.2204e-16) && (ratio <= 2.0)) { throw new EstimationException("cost relative tolerance is too small ({0})," + " no further reduction in the" + " sum of squares is possible", costRelativeTolerance); } else if (delta <= 2.2204e-16 * xNorm) { throw new EstimationException("parameters relative tolerance is too small" + " ({0}), no further improvement in" + " the approximate solution is possible", parRelativeTolerance); } else if (maxCosine <= 2.2204e-16) { throw new EstimationException("orthogonality tolerance is too small ({0})," + " solution is orthogonal to the jacobian", orthoTolerance); } } } } /** * Determine the Levenberg-Marquardt parameter. * <p>This implementation is a translation in Java of the MINPACK * <a href="http://www.netlib.org/minpack/lmpar.f">lmpar * routine.</p> * <p>This method sets the lmPar and lmDir attributes.

* <p>The authors of the original fortran function are:

* <ul> * <li>Argonne National Laboratory. MINPACK project. March 1980 * <li>Burton S. Garbow * <li>Kenneth E. Hillstrom * <li>Jorge J. More * </ul> * <p>Luc Maisonobe did the Java translation.

* * @param qy array containing qTy * @param delta upper bound on the euclidean norm of diagR * lmDir * @param diag diagonal matrix * @param work1 work array * @param work2 work array * @param work3 work array */ private void determineLMParameter(double[] qy, double delta, double[] diag, double[] work1, double[] work2, double[] work3) { // compute and store in x the gauss-newton direction, if the // jacobian is rank-deficient, obtain a least squares solution for (int j = 0; j < rank; ++j) { lmDir[permutation[j]] = qy[j]; } for (int j = rank; j < cols; ++j) { lmDir[permutation[j]] = 0; } for (int k = rank - 1; k >= 0; --k) { int pk = permutation[k]; double ypk = lmDir[pk] / diagR[pk]; int index = pk; for (int i = 0; i < k; ++i) { lmDir[permutation[i]] -= ypk * jacobian[index]; index += cols; } lmDir[pk] = ypk; } // evaluate the function at the origin, and test // for acceptance of the Gauss-Newton direction double dxNorm = 0; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; double s = diag[pj] * lmDir[pj]; work1[pj] = s; dxNorm += s * s; } dxNorm = Math.sqrt(dxNorm); double fp = dxNorm - delta; if (fp <= 0.1 * delta) { lmPar = 0; return; } // if the jacobian is not rank deficient, the Newton step provides // a lower bound, parl, for the zero of the function, // otherwise set this bound to zero double sum2; double parl = 0; if (rank == solvedCols) { for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; work1[pj] *= diag[pj] / dxNorm; } sum2 = 0; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; double sum = 0; int index = pj; for (int i = 0; i < j; ++i) { sum += jacobian[index] * work1[permutation[i]]; index += cols; } double s = (work1[pj] - sum) / diagR[pj]; work1[pj] = s; sum2 += s * s; } parl = fp / (delta * sum2); } // calculate an upper bound, paru, for the zero of the function sum2 = 0; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; double sum = 0; int index = pj; for (int i = 0; i <= j; ++i) { sum += jacobian[index] * qy[i]; index += cols; } sum /= diag[pj]; sum2 += sum * sum; } double gNorm = Math.sqrt(sum2); double paru = gNorm / delta; if (paru == 0) { // 2.2251e-308 is the smallest positive real for IEE754 paru = 2.2251e-308 / Math.min(delta, 0.1); } // if the input par lies outside of the interval (parl,paru), // set par to the closer endpoint lmPar = Math.min(paru, Math.max(lmPar, parl)); if (lmPar == 0) { lmPar = gNorm / dxNorm; } for (int countdown = 10; countdown >= 0; --countdown) { // evaluate the function at the current value of lmPar if (lmPar == 0) { lmPar = Math.max(2.2251e-308, 0.001 * paru); } double sPar = Math.sqrt(lmPar); for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; work1[pj] = sPar * diag[pj]; } determineLMDirection(qy, work1, work2, work3); dxNorm = 0; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; double s = diag[pj] * lmDir[pj]; work3[pj] = s; dxNorm += s * s; } dxNorm = Math.sqrt(dxNorm); double previousFP = fp; fp = dxNorm - delta; // if the function is small enough, accept the current value // of lmPar, also test for the exceptional cases where parl is zero if ((Math.abs(fp) <= 0.1 * delta) || ((parl == 0) && (fp <= previousFP) && (previousFP < 0))) { return; } // compute the Newton correction for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; work1[pj] = work3[pj] * diag[pj] / dxNorm; } for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; work1[pj] /= work2[j]; double tmp = work1[pj]; for (int i = j + 1; i < solvedCols; ++i) { work1[permutation[i]] -= jacobian[i * cols + pj] * tmp; } } sum2 = 0; for (int j = 0; j < solvedCols; ++j) { double s = work1[permutation[j]]; sum2 += s * s; } double correction = fp / (delta * sum2); // depending on the sign of the function, update parl or paru. if (fp > 0) { parl = Math.max(parl, lmPar); } else if (fp < 0) { paru = Math.min(paru, lmPar); } // compute an improved estimate for lmPar lmPar = Math.max(parl, lmPar + correction); } } /** * Solve a*x = b and d*x = 0 in the least squares sense. * <p>This implementation is a translation in Java of the MINPACK * <a href="http://www.netlib.org/minpack/qrsolv.f">qrsolv * routine.</p> * <p>This method sets the lmDir and lmDiag attributes.

* <p>The authors of the original fortran function are:

* <ul> * <li>Argonne National Laboratory. MINPACK project. March 1980 * <li>Burton S. Garbow * <li>Kenneth E. Hillstrom * <li>Jorge J. More * </ul> * <p>Luc Maisonobe did the Java translation.

* * @param qy array containing qTy * @param diag diagonal matrix * @param lmDiag diagonal elements associated with lmDir * @param work work array */ private void determineLMDirection(double[] qy, double[] diag, double[] lmDiag, double[] work) { // copy R and Qty to preserve input and initialize s // in particular, save the diagonal elements of R in lmDir for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; for (int i = j + 1; i < solvedCols; ++i) { jacobian[i * cols + pj] = jacobian[j * cols + permutation[i]]; } lmDir[j] = diagR[pj]; work[j] = qy[j]; } // eliminate the diagonal matrix d using a Givens rotation for (int j = 0; j < solvedCols; ++j) { // prepare the row of d to be eliminated, locating the // diagonal element using p from the Q.R. factorization int pj = permutation[j]; double dpj = diag[pj]; if (dpj != 0) { Arrays.fill(lmDiag, j + 1, lmDiag.length, 0); } lmDiag[j] = dpj; // the transformations to eliminate the row of d // modify only a single element of Qty // beyond the first n, which is initially zero. double qtbpj = 0; for (int k = j; k < solvedCols; ++k) { int pk = permutation[k]; // determine a Givens rotation which eliminates the // appropriate element in the current row of d if (lmDiag[k] != 0) { final double sin; final double cos; double rkk = jacobian[k * cols + pk]; if (Math.abs(rkk) < Math.abs(lmDiag[k])) { final double cotan = rkk / lmDiag[k]; sin = 1.0 / Math.sqrt(1.0 + cotan * cotan); cos = sin * cotan; } else { final double tan = lmDiag[k] / rkk; cos = 1.0 / Math.sqrt(1.0 + tan * tan); sin = cos * tan; } // compute the modified diagonal element of R and // the modified element of (Qty,0) jacobian[k * cols + pk] = cos * rkk + sin * lmDiag[k]; final double temp = cos * work[k] + sin * qtbpj; qtbpj = -sin * work[k] + cos * qtbpj; work[k] = temp; // accumulate the tranformation in the row of s for (int i = k + 1; i < solvedCols; ++i) { double rik = jacobian[i * cols + pk]; final double temp2 = cos * rik + sin * lmDiag[i]; lmDiag[i] = -sin * rik + cos * lmDiag[i]; jacobian[i * cols + pk] = temp2; } } } // store the diagonal element of s and restore // the corresponding diagonal element of R int index = j * cols + permutation[j]; lmDiag[j] = jacobian[index]; jacobian[index] = lmDir[j]; } // solve the triangular system for z, if the system is // singular, then obtain a least squares solution int nSing = solvedCols; for (int j = 0; j < solvedCols; ++j) { if ((lmDiag[j] == 0) && (nSing == solvedCols)) { nSing = j; } if (nSing < solvedCols) { work[j] = 0; } } if (nSing > 0) { for (int j = nSing - 1; j >= 0; --j) { int pj = permutation[j]; double sum = 0; for (int i = j + 1; i < nSing; ++i) { sum += jacobian[i * cols + pj] * work[i]; } work[j] = (work[j] - sum) / lmDiag[j]; } } // permute the components of z back to components of lmDir for (int j = 0; j < lmDir.length; ++j) { lmDir[permutation[j]] = work[j]; } } /** * Decompose a matrix A as A.P = Q.R using Householder transforms. * <p>As suggested in the P. Lascaux and R. Theodor book * <i>Analyse numérique matricielle appliquée à * l'art de l'ingénieur</i> (Masson, 1986), instead of representing * the Householder transforms with u<sub>k unit vectors such that: * <pre> * H<sub>k = I - 2uk.ukt * </pre> * we use <sub>k non-unit vectors such that: * <pre> * H<sub>k = I - betakvk.vkt * </pre> * where v<sub>k = ak - alphak ek. * The beta<sub>k coefficients are provided upon exit as recomputing * them from the v<sub>k vectors would be costly.

* <p>This decomposition handles rank deficient cases since the tranformations * are performed in non-increasing columns norms order thanks to columns * pivoting. The diagonal elements of the R matrix are therefore also in * non-increasing absolute values order.</p> * @exception EstimationException if the decomposition cannot be performed */ private void qrDecomposition() throws EstimationException { // initializations for (int k = 0; k < cols; ++k) { permutation[k] = k; double norm2 = 0; for (int index = k; index < jacobian.length; index += cols) { double akk = jacobian[index]; norm2 += akk * akk; } jacNorm[k] = Math.sqrt(norm2); } // transform the matrix column after column for (int k = 0; k < cols; ++k) { // select the column with the greatest norm on active components int nextColumn = -1; double ak2 = Double.NEGATIVE_INFINITY; for (int i = k; i < cols; ++i) { double norm2 = 0; int iDiag = k * cols + permutation[i]; for (int index = iDiag; index < jacobian.length; index += cols) { double aki = jacobian[index]; norm2 += aki * aki; } if (Double.isInfinite(norm2) || Double.isNaN(norm2)) { throw new EstimationException( "unable to perform Q.R decomposition on the {0}x{1} jacobian matrix", rows, cols); } if (norm2 > ak2) { nextColumn = i; ak2 = norm2; } } if (ak2 == 0) { rank = k; return; } int pk = permutation[nextColumn]; permutation[nextColumn] = permutation[k]; permutation[k] = pk; // choose alpha such that Hk.u = alpha ek int kDiag = k * cols + pk; double akk = jacobian[kDiag]; double alpha = (akk > 0) ? -Math.sqrt(ak2) : Math.sqrt(ak2); double betak = 1.0 / (ak2 - akk * alpha); beta[pk] = betak; // transform the current column diagR[pk] = alpha; jacobian[kDiag] -= alpha; // transform the remaining columns for (int dk = cols - 1 - k; dk > 0; --dk) { int dkp = permutation[k + dk] - pk; double gamma = 0; for (int index = kDiag; index < jacobian.length; index += cols) { gamma += jacobian[index] * jacobian[index + dkp]; } gamma *= betak; for (int index = kDiag; index < jacobian.length; index += cols) { jacobian[index + dkp] -= gamma * jacobian[index]; } } } rank = solvedCols; } /** * Compute the product Qt.y for some Q.R. decomposition. * * @param y vector to multiply (will be overwritten with the result) */ private void qTy(double[] y) { for (int k = 0; k < cols; ++k) { int pk = permutation[k]; int kDiag = k * cols + pk; double gamma = 0; int index = kDiag; for (int i = k; i < rows; ++i) { gamma += jacobian[index] * y[i]; index += cols; } gamma *= beta[pk]; index = kDiag; for (int i = k; i < rows; ++i) { y[i] -= gamma * jacobian[index]; index += cols; } } } }

Other Commons Math examples (source code examples)

Here is a short list of links related to this Commons Math LevenbergMarquardtEstimator.java source code file:

Commons Math example source code file (LevenbergMarquardtEstimator.java)

This example Commons Math source code file (LevenbergMarquardtEstimator.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Commons Math tags/keywords

abstractestimator, abstractestimator, deprecated, deprecated, estimationexception, estimationexception, io, levenbergmarquardtestimator, levenbergmarquardtestimator, override, serializable, util

The Commons Math LevenbergMarquardtEstimator.java source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.estimation;

import java.io.Serializable;
import java.util.Arrays;


/**
 * This class solves a least squares problem.
 *
 * <p>This implementation should work even for over-determined systems
 * (i.e. systems having more variables than equations). Over-determined systems
 * are solved by ignoring the variables which have the smallest impact according
 * to their jacobian column norm. Only the rank of the matrix and some loop bounds
 * are changed to implement this.</p>
 *
 * <p>The resolution engine is a simple translation of the MINPACK  routine with minor
 * changes. The changes include the over-determined resolution and the Q.R.
 * decomposition which has been rewritten following the algorithm described in the
 * P. Lascaux and R. Theodor book <i>Analyse numérique matricielle
 * appliquée à l'art de l'ingénieur</i>, Masson 1986.

* <p>The authors of the original fortran version are: * <ul> * <li>Argonne National Laboratory. MINPACK project. March 1980 * <li>Burton S. Garbow * <li>Kenneth E. Hillstrom * <li>Jorge J. More * </ul> * The redistribution policy for MINPACK is available <a * href="http://www.netlib.org/minpack/disclaimer">here</a>, for convenience, it * is reproduced below.</p> * * <table border="0" width="80%" cellpadding="10" align="center" bgcolor="#E0E0E0"> * <tr>
* Minpack Copyright Notice (1999) University of Chicago. * All rights reserved * </td>
* Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * <ol> * <li>Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer.</li> * <li>Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution.</li> * <li>The end-user documentation included with the redistribution, if any, * must include the following acknowledgment: * <code>This product includes software developed by the University of * Chicago, as Operator of Argonne National Laboratory.</code> * Alternately, this acknowledgment may appear in the software itself, * if and wherever such third-party acknowledgments normally appear.</li> * <li>WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL * BE CORRECTED.</strong> * <li>LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE * POSSIBILITY OF SUCH LOSS OR DAMAGES.</strong> * <ol>
... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.