alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Commons Math example source code file (Gamma.java)

This example Commons Math source code file (Gamma.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Commons Math tags/keywords

c_limit, continuedfraction, default_epsilon, default_epsilon, gamma, gamma, half_log_2_pi, lanczos, mathexception, mathexception, maxiterationsexceededexception, override, s_limit, s_limit

The Commons Math Gamma.java source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.special;

import org.apache.commons.math.MathException;
import org.apache.commons.math.MaxIterationsExceededException;
import org.apache.commons.math.util.ContinuedFraction;

/**
 * This is a utility class that provides computation methods related to the
 * Gamma family of functions.
 *
 * @version $Revision: 920558 $ $Date: 2010-03-08 17:57:32 -0500 (Mon, 08 Mar 2010) $
 */
public class Gamma {

    /**
     * <a href="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant">Euler-Mascheroni constant
     * @since 2.0
     */
    public static final double GAMMA = 0.577215664901532860606512090082;

    /** Maximum allowed numerical error. */
    private static final double DEFAULT_EPSILON = 10e-15;

    /** Lanczos coefficients */
    private static final double[] LANCZOS =
    {
        0.99999999999999709182,
        57.156235665862923517,
        -59.597960355475491248,
        14.136097974741747174,
        -0.49191381609762019978,
        .33994649984811888699e-4,
        .46523628927048575665e-4,
        -.98374475304879564677e-4,
        .15808870322491248884e-3,
        -.21026444172410488319e-3,
        .21743961811521264320e-3,
        -.16431810653676389022e-3,
        .84418223983852743293e-4,
        -.26190838401581408670e-4,
        .36899182659531622704e-5,
    };

    /** Avoid repeated computation of log of 2 PI in logGamma */
    private static final double HALF_LOG_2_PI = 0.5 * Math.log(2.0 * Math.PI);

    // limits for switching algorithm in digamma
    /** C limit. */
    private static final double C_LIMIT = 49;

    /** S limit. */
    private static final double S_LIMIT = 1e-5;

    /**
     * Default constructor.  Prohibit instantiation.
     */
    private Gamma() {
        super();
    }

    /**
     * Returns the natural logarithm of the gamma function Γ(x).
     *
     * The implementation of this method is based on:
     * <ul>
     * <li>
     * Gamma Function</a>, equation (28).
     * <li>
     * Lanczos Approximation</a>, equations (1) through (5).
     * <li>Paul Godfrey, A note on
     * the computation of the convergent Lanczos complex Gamma approximation
     * </a>
     * </ul>
     *
     * @param x the value.
     * @return log(Γ(x))
     */
    public static double logGamma(double x) {
        double ret;

        if (Double.isNaN(x) || (x <= 0.0)) {
            ret = Double.NaN;
        } else {
            double g = 607.0 / 128.0;

            double sum = 0.0;
            for (int i = LANCZOS.length - 1; i > 0; --i) {
                sum = sum + (LANCZOS[i] / (x + i));
            }
            sum = sum + LANCZOS[0];

            double tmp = x + g + .5;
            ret = ((x + .5) * Math.log(tmp)) - tmp +
                HALF_LOG_2_PI + Math.log(sum / x);
        }

        return ret;
    }

    /**
     * Returns the regularized gamma function P(a, x).
     *
     * @param a the a parameter.
     * @param x the value.
     * @return the regularized gamma function P(a, x)
     * @throws MathException if the algorithm fails to converge.
     */
    public static double regularizedGammaP(double a, double x)
        throws MathException
    {
        return regularizedGammaP(a, x, DEFAULT_EPSILON, Integer.MAX_VALUE);
    }


    /**
     * Returns the regularized gamma function P(a, x).
     *
     * The implementation of this method is based on:
     * <ul>
     * <li>
     * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
     * Regularized Gamma Function</a>, equation (1).
     * <li>
     * <a href="http://mathworld.wolfram.com/IncompleteGammaFunction.html">
     * Incomplete Gamma Function</a>, equation (4).
     * <li>
     * <a href="http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheFirstKind.html">
     * Confluent Hypergeometric Function of the First Kind</a>, equation (1).
     * </li>
     * </ul>
     *
     * @param a the a parameter.
     * @param x the value.
     * @param epsilon When the absolute value of the nth item in the
     *                series is less than epsilon the approximation ceases
     *                to calculate further elements in the series.
     * @param maxIterations Maximum number of "iterations" to complete.
     * @return the regularized gamma function P(a, x)
     * @throws MathException if the algorithm fails to converge.
     */
    public static double regularizedGammaP(double a,
                                           double x,
                                           double epsilon,
                                           int maxIterations)
        throws MathException
    {
        double ret;

        if (Double.isNaN(a) || Double.isNaN(x) || (a <= 0.0) || (x < 0.0)) {
            ret = Double.NaN;
        } else if (x == 0.0) {
            ret = 0.0;
        } else if (x >= a + 1) {
            // use regularizedGammaQ because it should converge faster in this
            // case.
            ret = 1.0 - regularizedGammaQ(a, x, epsilon, maxIterations);
        } else {
            // calculate series
            double n = 0.0; // current element index
            double an = 1.0 / a; // n-th element in the series
            double sum = an; // partial sum
            while (Math.abs(an/sum) > epsilon && n < maxIterations && sum < Double.POSITIVE_INFINITY) {
                // compute next element in the series
                n = n + 1.0;
                an = an * (x / (a + n));

                // update partial sum
                sum = sum + an;
            }
            if (n >= maxIterations) {
                throw new MaxIterationsExceededException(maxIterations);
            } else if (Double.isInfinite(sum)) {
                ret = 1.0;
            } else {
                ret = Math.exp(-x + (a * Math.log(x)) - logGamma(a)) * sum;
            }
        }

        return ret;
    }

    /**
     * Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
     *
     * @param a the a parameter.
     * @param x the value.
     * @return the regularized gamma function Q(a, x)
     * @throws MathException if the algorithm fails to converge.
     */
    public static double regularizedGammaQ(double a, double x)
        throws MathException
    {
        return regularizedGammaQ(a, x, DEFAULT_EPSILON, Integer.MAX_VALUE);
    }

    /**
     * Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
     *
     * The implementation of this method is based on:
     * <ul>
     * <li>
     * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
     * Regularized Gamma Function</a>, equation (1).
     * <li>
     * <a href="http://functions.wolfram.com/GammaBetaErf/GammaRegularized/10/0003/">
     * Regularized incomplete gamma function: Continued fraction representations  (formula 06.08.10.0003)</a>
     * </ul>
     *
     * @param a the a parameter.
     * @param x the value.
     * @param epsilon When the absolute value of the nth item in the
     *                series is less than epsilon the approximation ceases
     *                to calculate further elements in the series.
     * @param maxIterations Maximum number of "iterations" to complete.
     * @return the regularized gamma function P(a, x)
     * @throws MathException if the algorithm fails to converge.
     */
    public static double regularizedGammaQ(final double a,
                                           double x,
                                           double epsilon,
                                           int maxIterations)
        throws MathException
    {
        double ret;

        if (Double.isNaN(a) || Double.isNaN(x) || (a <= 0.0) || (x < 0.0)) {
            ret = Double.NaN;
        } else if (x == 0.0) {
            ret = 1.0;
        } else if (x < a + 1.0) {
            // use regularizedGammaP because it should converge faster in this
            // case.
            ret = 1.0 - regularizedGammaP(a, x, epsilon, maxIterations);
        } else {
            // create continued fraction
            ContinuedFraction cf = new ContinuedFraction() {

                @Override
                protected double getA(int n, double x) {
                    return ((2.0 * n) + 1.0) - a + x;
                }

                @Override
                protected double getB(int n, double x) {
                    return n * (a - n);
                }
            };

            ret = 1.0 / cf.evaluate(x, epsilon, maxIterations);
            ret = Math.exp(-x + (a * Math.log(x)) - logGamma(a)) * ret;
        }

        return ret;
    }


    /**
     * <p>Computes the digamma function of x.

* * <p>This is an independently written implementation of the algorithm described in * Jose Bernardo, Algorithm AS 103: Psi (Digamma) Function, Applied Statistics, 1976.</p> * * <p>Some of the constants have been changed to increase accuracy at the moderate expense * of run-time. The result should be accurate to within 10^-8 absolute tolerance for * x >= 10^-5 and within 10^-8 relative tolerance for x > 0.</p> * * <p>Performance for large negative values of x will be quite expensive (proportional to * |x|). Accuracy for negative values of x should be about 10^-8 absolute for results * less than 10^5 and 10^-8 relative for results larger than that.</p> * * @param x the argument * @return digamma(x) to within 10-8 relative or absolute error whichever is smaller * @see <a href="http://en.wikipedia.org/wiki/Digamma_function"> Digamma at wikipedia
* @see <a href="http://www.uv.es/~bernardo/1976AppStatist.pdf"> Bernardo's original article * @since 2.0 */ public static double digamma(double x) { if (x > 0 && x <= S_LIMIT) { // use method 5 from Bernardo AS103 // accurate to O(x) return -GAMMA - 1 / x; } if (x >= C_LIMIT) { // use method 4 (accurate to O(1/x^8) double inv = 1 / (x * x); // 1 1 1 1 // log(x) - --- - ------ + ------- - ------- // 2 x 12 x^2 120 x^4 252 x^6 return Math.log(x) - 0.5 / x - inv * ((1.0 / 12) + inv * (1.0 / 120 - inv / 252)); } return digamma(x + 1) - 1 / x; } /** * <p>Computes the trigamma function of x. This function is derived by taking the derivative of * the implementation of digamma.</p> * * @param x the argument * @return trigamma(x) to within 10-8 relative or absolute error whichever is smaller * @see <a href="http://en.wikipedia.org/wiki/Trigamma_function"> Trigamma at wikipedia * @see Gamma#digamma(double) * @since 2.0 */ public static double trigamma(double x) { if (x > 0 && x <= S_LIMIT) { return 1 / (x * x); } if (x >= C_LIMIT) { double inv = 1 / (x * x); // 1 1 1 1 1 // - + ---- + ---- - ----- + ----- // x 2 3 5 7 // 2 x 6 x 30 x 42 x return 1 / x + inv / 2 + inv / x * (1.0 / 6 - inv * (1.0 / 30 + inv / 42)); } return trigamma(x + 1) + 1 / (x * x); } }

Other Commons Math examples (source code examples)

Here is a short list of links related to this Commons Math Gamma.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.