alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Commons Math example source code file (ChiSquareTestImpl.java)

This example Commons Math source code file (ChiSquareTestImpl.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Commons Math tags/keywords

chisquareddistribution, chisquareddistribution, chisquaretestimpl, chisquaretestimpl, illegalargumentexception, illegalargumentexception, mathexception, mathexception, unknowndistributionchisquaretest

The Commons Math ChiSquareTestImpl.java source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.stat.inference;

import org.apache.commons.math.MathException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.distribution.ChiSquaredDistribution;
import org.apache.commons.math.distribution.ChiSquaredDistributionImpl;

/**
 * Implements Chi-Square test statistics defined in the
 * {@link UnknownDistributionChiSquareTest} interface.
 *
 * @version $Revision: 811833 $ $Date: 2009-09-06 12:27:50 -0400 (Sun, 06 Sep 2009) $
 */
public class ChiSquareTestImpl implements UnknownDistributionChiSquareTest {

    /** Distribution used to compute inference statistics. */
    private ChiSquaredDistribution distribution;

    /**
     * Construct a ChiSquareTestImpl
     */
    public ChiSquareTestImpl() {
        this(new ChiSquaredDistributionImpl(1.0));
    }

    /**
     * Create a test instance using the given distribution for computing
     * inference statistics.
     * @param x distribution used to compute inference statistics.
     * @since 1.2
     */
    public ChiSquareTestImpl(ChiSquaredDistribution x) {
        super();
        setDistribution(x);
    }
     /**
     * {@inheritDoc}
     * <p>Note: This implementation rescales the
     * <code>expected array if necessary to ensure that the sum of the
     * expected and observed counts are equal.</p>
     *
     * @param observed array of observed frequency counts
     * @param expected array of expected frequency counts
     * @return chi-square test statistic
     * @throws IllegalArgumentException if preconditions are not met
     * or length is less than 2
     */
    public double chiSquare(double[] expected, long[] observed)
        throws IllegalArgumentException {
        if (expected.length < 2) {
            throw MathRuntimeException.createIllegalArgumentException(
                  "expected array length = {0}, must be at least 2",
                  expected.length);
        }
        if (expected.length != observed.length) {
            throw MathRuntimeException.createIllegalArgumentException(
                  "dimension mismatch {0} != {1}", expected.length, observed.length);
        }
        checkPositive(expected);
        checkNonNegative(observed);
        double sumExpected = 0d;
        double sumObserved = 0d;
        for (int i = 0; i < observed.length; i++) {
            sumExpected += expected[i];
            sumObserved += observed[i];
        }
        double ratio = 1.0d;
        boolean rescale = false;
        if (Math.abs(sumExpected - sumObserved) > 10E-6) {
            ratio = sumObserved / sumExpected;
            rescale = true;
        }
        double sumSq = 0.0d;
        for (int i = 0; i < observed.length; i++) {
            if (rescale) {
                final double dev = observed[i] - ratio * expected[i];
                sumSq += dev * dev / (ratio * expected[i]);
            } else {
                final double dev = observed[i] - expected[i];
                sumSq += dev * dev / expected[i];
            }
        }
        return sumSq;
    }

    /**
     * {@inheritDoc}
     * <p>Note: This implementation rescales the
     * <code>expected array if necessary to ensure that the sum of the
     * expected and observed counts are equal.</p>
     *
     * @param observed array of observed frequency counts
     * @param expected array of expected frequency counts
     * @return p-value
     * @throws IllegalArgumentException if preconditions are not met
     * @throws MathException if an error occurs computing the p-value
     */
    public double chiSquareTest(double[] expected, long[] observed)
        throws IllegalArgumentException, MathException {
        distribution.setDegreesOfFreedom(expected.length - 1.0);
        return 1.0 - distribution.cumulativeProbability(
            chiSquare(expected, observed));
    }

    /**
     * {@inheritDoc}
     * <p>Note: This implementation rescales the
     * <code>expected array if necessary to ensure that the sum of the
     * expected and observed counts are equal.</p>
     *
     * @param observed array of observed frequency counts
     * @param expected array of expected frequency counts
     * @param alpha significance level of the test
     * @return true iff null hypothesis can be rejected with confidence
     * 1 - alpha
     * @throws IllegalArgumentException if preconditions are not met
     * @throws MathException if an error occurs performing the test
     */
    public boolean chiSquareTest(double[] expected, long[] observed,
            double alpha) throws IllegalArgumentException, MathException {
        if ((alpha <= 0) || (alpha > 0.5)) {
            throw MathRuntimeException.createIllegalArgumentException(
                  "out of bounds significance level {0}, must be between {1} and {2}",
                  alpha, 0, 0.5);
        }
        return chiSquareTest(expected, observed) < alpha;
    }

    /**
     * @param counts array representation of 2-way table
     * @return chi-square test statistic
     * @throws IllegalArgumentException if preconditions are not met
     */
    public double chiSquare(long[][] counts) throws IllegalArgumentException {

        checkArray(counts);
        int nRows = counts.length;
        int nCols = counts[0].length;

        // compute row, column and total sums
        double[] rowSum = new double[nRows];
        double[] colSum = new double[nCols];
        double total = 0.0d;
        for (int row = 0; row < nRows; row++) {
            for (int col = 0; col < nCols; col++) {
                rowSum[row] += counts[row][col];
                colSum[col] += counts[row][col];
                total += counts[row][col];
            }
        }

        // compute expected counts and chi-square
        double sumSq = 0.0d;
        double expected = 0.0d;
        for (int row = 0; row < nRows; row++) {
            for (int col = 0; col < nCols; col++) {
                expected = (rowSum[row] * colSum[col]) / total;
                sumSq += ((counts[row][col] - expected) *
                        (counts[row][col] - expected)) / expected;
            }
        }
        return sumSq;
    }

    /**
     * @param counts array representation of 2-way table
     * @return p-value
     * @throws IllegalArgumentException if preconditions are not met
     * @throws MathException if an error occurs computing the p-value
     */
    public double chiSquareTest(long[][] counts)
    throws IllegalArgumentException, MathException {
        checkArray(counts);
        double df = ((double) counts.length -1) * ((double) counts[0].length - 1);
        distribution.setDegreesOfFreedom(df);
        return 1 - distribution.cumulativeProbability(chiSquare(counts));
    }

    /**
     * @param counts array representation of 2-way table
     * @param alpha significance level of the test
     * @return true iff null hypothesis can be rejected with confidence
     * 1 - alpha
     * @throws IllegalArgumentException if preconditions are not met
     * @throws MathException if an error occurs performing the test
     */
    public boolean chiSquareTest(long[][] counts, double alpha)
    throws IllegalArgumentException, MathException {
        if ((alpha <= 0) || (alpha > 0.5)) {
            throw MathRuntimeException.createIllegalArgumentException(
                  "out of bounds significance level {0}, must be between {1} and {2}",
                  alpha, 0.0, 0.5);
        }
        return chiSquareTest(counts) < alpha;
    }

    /**
     * @param observed1 array of observed frequency counts of the first data set
     * @param observed2 array of observed frequency counts of the second data set
     * @return chi-square test statistic
     * @throws IllegalArgumentException if preconditions are not met
     * @since 1.2
     */
    public double chiSquareDataSetsComparison(long[] observed1, long[] observed2)
        throws IllegalArgumentException {

        // Make sure lengths are same
        if (observed1.length < 2) {
            throw MathRuntimeException.createIllegalArgumentException(
                  "observed array length = {0}, must be at least 2",
                  observed1.length);
        }
        if (observed1.length != observed2.length) {
            throw MathRuntimeException.createIllegalArgumentException(
                  "dimension mismatch {0} != {1}",
                  observed1.length, observed2.length);
        }

        // Ensure non-negative counts
        checkNonNegative(observed1);
        checkNonNegative(observed2);

        // Compute and compare count sums
        long countSum1 = 0;
        long countSum2 = 0;
        boolean unequalCounts = false;
        double weight = 0.0;
        for (int i = 0; i < observed1.length; i++) {
            countSum1 += observed1[i];
            countSum2 += observed2[i];
        }
        // Ensure neither sample is uniformly 0
        if (countSum1 == 0) {
            throw MathRuntimeException.createIllegalArgumentException(
                  "observed counts are all 0 in first observed array");
        }
        if (countSum2 == 0) {
            throw MathRuntimeException.createIllegalArgumentException(
                  "observed counts are all 0 in second observed array");
        }
        // Compare and compute weight only if different
        unequalCounts = countSum1 != countSum2;
        if (unequalCounts) {
            weight = Math.sqrt((double) countSum1 / (double) countSum2);
        }
        // Compute ChiSquare statistic
        double sumSq = 0.0d;
        double dev = 0.0d;
        double obs1 = 0.0d;
        double obs2 = 0.0d;
        for (int i = 0; i < observed1.length; i++) {
            if (observed1[i] == 0 && observed2[i] == 0) {
                throw MathRuntimeException.createIllegalArgumentException(
                      "observed counts are both zero for entry {0}", i);
            } else {
                obs1 = observed1[i];
                obs2 = observed2[i];
                if (unequalCounts) { // apply weights
                    dev = obs1/weight - obs2 * weight;
                } else {
                    dev = obs1 - obs2;
                }
                sumSq += (dev * dev) / (obs1 + obs2);
            }
        }
        return sumSq;
    }

    /**
     * @param observed1 array of observed frequency counts of the first data set
     * @param observed2 array of observed frequency counts of the second data set
     * @return p-value
     * @throws IllegalArgumentException if preconditions are not met
     * @throws MathException if an error occurs computing the p-value
     * @since 1.2
     */
    public double chiSquareTestDataSetsComparison(long[] observed1, long[] observed2)
        throws IllegalArgumentException, MathException {
        distribution.setDegreesOfFreedom((double) observed1.length - 1);
        return 1 - distribution.cumulativeProbability(
                chiSquareDataSetsComparison(observed1, observed2));
    }

    /**
     * @param observed1 array of observed frequency counts of the first data set
     * @param observed2 array of observed frequency counts of the second data set
     * @param alpha significance level of the test
     * @return true iff null hypothesis can be rejected with confidence
     * 1 - alpha
     * @throws IllegalArgumentException if preconditions are not met
     * @throws MathException if an error occurs performing the test
     * @since 1.2
     */
    public boolean chiSquareTestDataSetsComparison(long[] observed1, long[] observed2,
            double alpha) throws IllegalArgumentException, MathException {
        if ((alpha <= 0) || (alpha > 0.5)) {
            throw MathRuntimeException.createIllegalArgumentException(
                  "out of bounds significance level {0}, must be between {1} and {2}",
                  alpha, 0.0, 0.5);
        }
        return chiSquareTestDataSetsComparison(observed1, observed2) < alpha;
    }

    /**
     * Checks to make sure that the input long[][] array is rectangular,
     * has at least 2 rows and 2 columns, and has all non-negative entries,
     * throwing IllegalArgumentException if any of these checks fail.
     *
     * @param in input 2-way table to check
     * @throws IllegalArgumentException if the array is not valid
     */
    private void checkArray(long[][] in) throws IllegalArgumentException {

        if (in.length < 2) {
            throw MathRuntimeException.createIllegalArgumentException(
                  "invalid row dimension: {0} (must be at least 2)",
                  in.length);
        }

        if (in[0].length < 2) {
            throw MathRuntimeException.createIllegalArgumentException(
                  "invalid column dimension: {0} (must be at least 2)",
                  in[0].length);
        }

        checkRectangular(in);
        checkNonNegative(in);

    }

    //---------------------  Private array methods -- should find a utility home for these

    /**
     * Throws IllegalArgumentException if the input array is not rectangular.
     *
     * @param in array to be tested
     * @throws NullPointerException if input array is null
     * @throws IllegalArgumentException if input array is not rectangular
     */
    private void checkRectangular(long[][] in) {
        for (int i = 1; i < in.length; i++) {
            if (in[i].length != in[0].length) {
                throw MathRuntimeException.createIllegalArgumentException(
                      "some rows have length {0} while others have length {1}",
                      in[i].length, in[0].length);
            }
        }
    }

    /**
     * Check all entries of the input array are > 0.
     *
     * @param in array to be tested
     * @exception IllegalArgumentException if one entry is not positive
     */
    private void checkPositive(double[] in) throws IllegalArgumentException {
        for (int i = 0; i < in.length; i++) {
            if (in[i] <= 0) {
                throw MathRuntimeException.createIllegalArgumentException(
                      "element {0} is not positive: {1}",
                      i, in[i]);
            }
        }
    }

    /**
     * Check all entries of the input array are >= 0.
     *
     * @param in array to be tested
     * @exception IllegalArgumentException if one entry is negative
     */
    private void checkNonNegative(long[] in) throws IllegalArgumentException {
        for (int i = 0; i < in.length; i++) {
            if (in[i] < 0) {
                throw MathRuntimeException.createIllegalArgumentException(
                      "element {0} is negative: {1}",
                      i, in[i]);
            }
        }
    }

    /**
     * Check all entries of the input array are >= 0.
     *
     * @param in array to be tested
     * @exception IllegalArgumentException if one entry is negative
     */
    private void checkNonNegative(long[][] in) throws IllegalArgumentException {
        for (int i = 0; i < in.length; i ++) {
            for (int j = 0; j < in[i].length; j++) {
                if (in[i][j] < 0) {
                    throw MathRuntimeException.createIllegalArgumentException(
                          "element ({0}, {1}) is negative: {2}",
                          i, j, in[i][j]);
                }
            }
        }
    }

    /**
     * Modify the distribution used to compute inference statistics.
     *
     * @param value
     *            the new distribution
     * @since 1.2
     */
    public void setDistribution(ChiSquaredDistribution value) {
        distribution = value;
    }
}

Other Commons Math examples (source code examples)

Here is a short list of links related to this Commons Math ChiSquareTestImpl.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.