alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Commons Math example source code file (AbstractMultipleLinearRegression.java)

This example Commons Math source code file (AbstractMultipleLinearRegression.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Commons Math tags/keywords

abstractmultiplelinearregression, array2drowrealmatrix, array2drowrealmatrix, arrayrealvector, arrayrealvector, multiplelinearregression, realmatrix, realmatrix, realvector, realvector, x, y

The Commons Math AbstractMultipleLinearRegression.java source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.stat.regression;

import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.linear.RealMatrix;
import org.apache.commons.math.linear.Array2DRowRealMatrix;
import org.apache.commons.math.linear.RealVector;
import org.apache.commons.math.linear.ArrayRealVector;

/**
 * Abstract base class for implementations of MultipleLinearRegression.
 * @version $Revision: 811685 $ $Date: 2009-09-05 13:36:48 -0400 (Sat, 05 Sep 2009) $
 * @since 2.0
 */
public abstract class AbstractMultipleLinearRegression implements
        MultipleLinearRegression {

    /** X sample data. */
    protected RealMatrix X;

    /** Y sample data. */
    protected RealVector Y;

    /**
     * Loads model x and y sample data from a flat array of data, overriding any previous sample.
     * Assumes that rows are concatenated with y values first in each row.
     *
     * @param data input data array
     * @param nobs number of observations (rows)
     * @param nvars number of independent variables (columns, not counting y)
     */
    public void newSampleData(double[] data, int nobs, int nvars) {
        double[] y = new double[nobs];
        double[][] x = new double[nobs][nvars + 1];
        int pointer = 0;
        for (int i = 0; i < nobs; i++) {
            y[i] = data[pointer++];
            x[i][0] = 1.0d;
            for (int j = 1; j < nvars + 1; j++) {
                x[i][j] = data[pointer++];
            }
        }
        this.X = new Array2DRowRealMatrix(x);
        this.Y = new ArrayRealVector(y);
    }

    /**
     * Loads new y sample data, overriding any previous sample
     *
     * @param y the [n,1] array representing the y sample
     */
    protected void newYSampleData(double[] y) {
        this.Y = new ArrayRealVector(y);
    }

    /**
     * Loads new x sample data, overriding any previous sample
     *
     * @param x the [n,k] array representing the x sample
     */
    protected void newXSampleData(double[][] x) {
        this.X = new Array2DRowRealMatrix(x);
    }

    /**
     * Validates sample data.
     *
     * @param x the [n,k] array representing the x sample
     * @param y the [n,1] array representing the y sample
     * @throws IllegalArgumentException if the x and y array data are not
     *             compatible for the regression
     */
    protected void validateSampleData(double[][] x, double[] y) {
        if ((x == null) || (y == null) || (x.length != y.length)) {
            throw MathRuntimeException.createIllegalArgumentException(
                  "dimension mismatch {0} != {1}",
                  (x == null) ? 0 : x.length,
                  (y == null) ? 0 : y.length);
        } else if ((x.length > 0) && (x[0].length > x.length)) {
            throw MathRuntimeException.createIllegalArgumentException(
                  "not enough data ({0} rows) for this many predictors ({1} predictors)",
                  x.length, x[0].length);
        }
    }

    /**
     * Validates sample data.
     *
     * @param x the [n,k] array representing the x sample
     * @param covariance the [n,n] array representing the covariance matrix
     * @throws IllegalArgumentException if the x sample data or covariance
     *             matrix are not compatible for the regression
     */
    protected void validateCovarianceData(double[][] x, double[][] covariance) {
        if (x.length != covariance.length) {
            throw MathRuntimeException.createIllegalArgumentException(
                 "dimension mismatch {0} != {1}", x.length, covariance.length);
        }
        if (covariance.length > 0 && covariance.length != covariance[0].length) {
            throw MathRuntimeException.createIllegalArgumentException(
                  "a {0}x{1} matrix was provided instead of a square matrix",
                  covariance.length, covariance[0].length);
        }
    }

    /**
     * {@inheritDoc}
     */
    public double[] estimateRegressionParameters() {
        RealVector b = calculateBeta();
        return b.getData();
    }

    /**
     * {@inheritDoc}
     */
    public double[] estimateResiduals() {
        RealVector b = calculateBeta();
        RealVector e = Y.subtract(X.operate(b));
        return e.getData();
    }

    /**
     * {@inheritDoc}
     */
    public double[][] estimateRegressionParametersVariance() {
        return calculateBetaVariance().getData();
    }

    /**
     * {@inheritDoc}
     */
    public double[] estimateRegressionParametersStandardErrors() {
        double[][] betaVariance = estimateRegressionParametersVariance();
        double sigma = calculateYVariance();
        int length = betaVariance[0].length;
        double[] result = new double[length];
        for (int i = 0; i < length; i++) {
            result[i] = Math.sqrt(sigma * betaVariance[i][i]);
        }
        return result;
    }

    /**
     * {@inheritDoc}
     */
    public double estimateRegressandVariance() {
        return calculateYVariance();
    }

    /**
     * Calculates the beta of multiple linear regression in matrix notation.
     *
     * @return beta
     */
    protected abstract RealVector calculateBeta();

    /**
     * Calculates the beta variance of multiple linear regression in matrix
     * notation.
     *
     * @return beta variance
     */
    protected abstract RealMatrix calculateBetaVariance();

    /**
     * Calculates the Y variance of multiple linear regression.
     *
     * @return Y variance
     */
    protected abstract double calculateYVariance();

    /**
     * Calculates the residuals of multiple linear regression in matrix
     * notation.
     *
     * <pre>
     * u = y - X * b
     * </pre>
     *
     * @return The residuals [n,1] matrix
     */
    protected RealVector calculateResiduals() {
        RealVector b = calculateBeta();
        return Y.subtract(X.operate(b));
    }

}

Other Commons Math examples (source code examples)

Here is a short list of links related to this Commons Math AbstractMultipleLinearRegression.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.