|
Commons Math example source code file (utilities.xml)
This example Commons Math source code file (utilities.xml) is included in the DevDaily.com
"Java Source Code
Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.
The Commons Math utilities.xml source code
<?xml version="1.0"?>
<!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<?xml-stylesheet type="text/xsl" href="./xdoc.xsl"?>
<!-- $Revision: 726459 $ $Date: 2008-12-14 09:56:50 -0500 (Sun, 14 Dec 2008) $ -->
<document url="utilities.html">
<properties>
<title>The Commons Math User Guide - Utilites
</properties>
<body>
<section name="6 Utilities">
<subsection name="6.1 Overview" href="overview">
<p>
The <a href="../apidocs/org/apache/commons/math/util/package-summary.html">
org.apache.commons.math.util</a> package collects a group of array utilities,
value transformers, and numerical routines used by implementation classes in
commons-math.
</p>
</subsection>
<subsection name="6.2 Double array utilities" href="arrays">
<p>
To maintain statistics based on a "rolling" window of values, a resizable
array implementation was developed and is provided for reuse in the
<code>util package. The core functionality provided is described in
the documentation for the interface,
<a href="../apidocs/org/apache/commons/math/util/DoubleArray.html">
org.apache.commons.math.util.DoubleArray.</a> This interface adds one
method, <code>addElementRolling(double) to basic list accessors.
The <code>addElementRolling method adds an element
(the actual parameter) to the end of the list and removes the first element
in the list.
</p>
<p>
The <a href="../apidocs/org/apache/commons/math/util/ResizableDoubleArray.html">
org.apache.commons.math.util.ResizableDoubleArray</a> class provides a
configurable, array-backed implementation of the <code>DoubleArray
interface. When <code>addElementRolling is invoked, the underlying
array is expanded if necessary, the new element is added to the end of the
array and the "usable window" of the array is moved forward, so that
the first element is effectively discarded, what was the second becomes the
first, and so on. To efficiently manage storage, two maintenance
operations need to be periodically performed -- orphaned elements at the
beginning of the array need to be reclaimed and space for new elements at
the end needs to be created. Both of these operations are handled
automatically, with frequency / effect driven by the configuration
properties <code>expansionMode, expansionFactor and
<code>contractionCriteria. See
<a href="../apidocs/org/apache/commons/math/util/ResizableDoubleArray.html">
ResizableDoubleArray</a>
for details.
</p>
</subsection>
<subsection name="6.3 int/double hash map" href="int_double_hash_map">
<p>
The <a href="../apidocs/org/apache/commons/math/util/OpenIntToDoubleHashMap.html">
org.apache.commons.math.util.OpenIntToDoubleHashMap</a> class provides a specialized
hash map implementation for int/double. This implementation has a much smaller memory
overhead than standard <code>java.util.HashMap class. It uses open addressing
and primitive arrays, which greatly reduces the number of intermediate objects and
improve data locality.
</p>
</subsection>
<subsection name="6.4 Continued Fractions" href="continued_fractions">
<p>
The <a href="../apidocs/org/apache/commons/math/util/ContinuedFraction.html">
org.apache.commons.math.util.ContinuedFraction</a> class provides a generic
way to create and evaluate continued fractions. The easiest way to create a
continued fraction is to subclass <code>ContinuedFraction and
override the <code>getA and getB methods which return
the continued fraction terms. The precise definition of these terms is
explained in <a href="http://mathworld.wolfram.com/ContinuedFraction.html">
Continued Fraction, equation (1)</a> from MathWorld.
</p>
<p>
As an example, the constant Pi could be computed using the continued fraction
defined at <a href="http://functions.wolfram.com/Constants/Pi/10/0002/">
http://functions.wolfram.com/Constants/Pi/10/0002/</a>. The following
anonymous class provides the implementation:
<source>ContinuedFraction c = new ContinuedFraction() {
public double getA(int n, double x) {
switch(n) {
case 0: return 3.0;
default: return 6.0;
}
}
public double getB(int n, double x) {
double y = (2.0 * n) - 1.0;
return y * y;
}
}</source>
</p>
<p>
Then, to evalute Pi, simply call any of the <code>evalute methods
(Note, the point of evalution in this example is meaningless since Pi is a
constant).
</p>
<p>
For a more practical use of continued fractions, consider the exponential
function with the continued fraction definition of
<a href="http://functions.wolfram.com/ElementaryFunctions/Exp/10/">
http://functions.wolfram.com/ElementaryFunctions/Exp/10/</a>. The
following anonymous class provides its implementation:
<source>ContinuedFraction c = new ContinuedFraction() {
public double getA(int n, double x) {
if (n % 2 == 0) {
switch(n) {
case 0: return 1.0;
default: return 2.0;
}
} else {
return n;
}
}
public double getB(int n, double x) {
if (n % 2 == 0) {
return -x;
} else {
return x;
}
}
}</source>
</p>
<p>
Then, to evalute <i>ex for any value x, simply call any of the
<code>evalute methods.
</p>
</subsection>
<subsection name="6.5 binomial coefficients, factorials and other common math functions" href="math_utils">
<p>
A collection of reusable math functions is provided in the
<a href="../apidocs/org/apache/commons/math/util/MathUtils.html">MathUtils
utility class. MathUtils currently includes methods to compute the following: <ul>
<li>
Binomial coeffiecients -- "n choose k" available as an (exact) long value,
<code>binomialCoefficient(int, int) for small n, k; as a double,
<code>binomialCoefficientDouble(int, int) for larger values; and in
a "super-sized" version, <code>binomialCoefficientLog(int, int)
that returns the natural logarithm of the value.</li>
<li>
Factorials -- like binomial coefficients, these are available as exact long
values, <code>factorial(int); doubles,
<code>factorialDouble(int); or logs, factorialLog(int) .
<li>
Hyperbolic sine and cosine functions --
<code>cosh(double), sinh(double)
<li>
sign (+1 if argument > 0, 0 if x = 0, and -1 if x < 0) and
indicator (+1.0 if argument >= 0 and -1.0 if argument < 0) functions
for variables of all primitive numeric types.</li>
<li>
a hash function, <code>hash(double), returning a long-valued
hash code for a double value.
</li>
<li>
Convience methods to round floating-point number to arbitrary precision.
</li>
<li>
Least common multiple and greatest common denominator functions.
</li>
</ul>
</p>
</subsection>
</section>
</body>
</document>
Other Commons Math examples (source code examples)
Here is a short list of links related to this Commons Math utilities.xml source code file:
|