alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Commons Math example source code file (multipleOLSRegressionTestCases)

This example Commons Math source code file (multipleOLSRegressionTestCases) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Commons Math tags/keywords

apache, errors, failed, license, license, longly, ols, r, r, succeeded, true, true, width, width

The Commons Math multipleOLSRegressionTestCases source code

# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#------------------------------------------------------------------------------
# R source file to validate OLS multiple regression tests in
# org.apache.commons.math.stat.regression.OLSMultipleLinearRegressionTest
#
# To run the test, install R, put this file and testFunctions
# into the same directory, launch R from this directory and then enter
# source("<name-of-this-file>")
#
#------------------------------------------------------------------------------
tol <- 1E-8                       # error tolerance for tests
#------------------------------------------------------------------------------
# Function definitions

source("testFunctions")           # utility test functions
options(digits=16)	          # override number of digits displayed

# function to verify OLS computations

verifyRegression <- function(model, expectedBeta, expectedResiduals,
  expectedErrors, modelName) {
    betaHat <- as.vector(coefficients(model))
    residuals <- as.vector(residuals(model))
    errors <-  as.vector(as.matrix(coefficients(summary(model)))[,2])
    output <- c("Parameter test dataset = ", modelName)
    if (assertEquals(expectedBeta,betaHat,tol,"Parameters")) {
        displayPadded(output, SUCCEEDED, WIDTH)
    } else {
        displayPadded(output, FAILED, WIDTH)
    }  
    output <- c("Residuals test dataset = ", modelName)
    if (assertEquals(expectedResiduals,residuals,tol,"Residuals")) {
        displayPadded(output, SUCCEEDED, WIDTH)
    } else {
        displayPadded(output, FAILED, WIDTH)
    }    
    output <- c("Errors test dataset = ", modelName)
    if (assertEquals(expectedErrors,errors,tol,"Errors")) {
        displayPadded(output, SUCCEEDED, WIDTH)
    } else {
        displayPadded(output, FAILED, WIDTH)
    }           
}

#--------------------------------------------------------------------------
cat("Multiple regression OLS test cases\n")

# Perfect fit
x1 <- c(0,2,0,0,0,0)
x2 <- c(0,0,3,0,0,0)
x3 <- c(0,0,0,4,0,0)
x4 <- c(0,0,0,0,5,0)
x5 <- c(0,0,0,0,0,6)
y <- c(11, 12, 13, 14, 15, 16)
model <- lm(y ~ x1 + x2 + x3 + x4 + x5)
expectedBeta <- c(11.0,0.5,0.666666666666667,0.75,0.8,0.8333333333333333)
expectedResiduals <- c(0,0,0,0,0,0)
expectedErrors <- c(NaN,NaN,NaN,NaN,NaN,NaN)
verifyRegression(model, expectedBeta, expectedResiduals, expectedErrors,
 "perfect fit") 

# Longly
#
# Data Source: J. Longley (1967) "An Appraisal of Least Squares Programs for the
# Electronic Computer from the Point of View of the User", 
# Journal of the American Statistical Association, 
# vol. 62. September, pp. 819-841.
#
# Certified values (and data) are from NIST:
# http://www.itl.nist.gov/div898/strd/lls/data/LINKS/DATA/Longley.dat
#
design <- matrix(c(60323,83.0,234289,2356,1590,107608,1947,
                    61122,88.5,259426,2325,1456,108632,1948,
                    60171,88.2,258054,3682,1616,109773,1949,
                    61187,89.5,284599,3351,1650,110929,1950,
                    63221,96.2,328975,2099,3099,112075,1951,
                    63639,98.1,346999,1932,3594,113270,1952,
                    64989,99.0,365385,1870,3547,115094,1953,
                    63761,100.0,363112,3578,3350,116219,1954,
                    66019,101.2,397469,2904,3048,117388,1955,
                    67857,104.6,419180,2822,2857,118734,1956,
                    68169,108.4,442769,2936,2798,120445,1957,
                    66513,110.8,444546,4681,2637,121950,1958,
                    68655,112.6,482704,3813,2552,123366,1959,
                    69564,114.2,502601,3931,2514,125368,1960,
                    69331,115.7,518173,4806,2572,127852,1961,
                    70551,116.9,554894,4007,2827,130081,1962),
                    nrow = 16, ncol = 7, byrow = TRUE)
y <- design[,1]
x1 <- design[,2]
x2 <- design[,3]
x3 <- design[,4]
x4 <- design[,5]
x5 <- design[,6]
x6 <- design[,7]
model <- lm(y ~ x1 + x2 + x3 + x4 + x5 + x6)

estimates <- matrix(c(-3482258.63459582,890420.383607373,
                       15.0618722713733,84.9149257747669,
                      -0.358191792925910E-01,0.334910077722432E-01,
                      -2.02022980381683,0.488399681651699,
                      -1.03322686717359,0.214274163161675,
                      -0.511041056535807E-01,0.226073200069370,
                       1829.15146461355,455.478499142212),
                       nrow = 7, ncol = 2, byrow = TRUE)

expectedBeta <- estimates[,1]
expectedErrors <- estimates[,2]
expectedResiduals <- c( 267.340029759711,-94.0139423988359,46.28716775752924,
 -410.114621930906,309.7145907602313,-249.3112153297231,-164.0489563956039,
 -13.18035686637081,14.30477260005235,455.394094551857,-17.26892711483297,
 -39.0550425226967,-155.5499735953195,-85.6713080421283,341.9315139607727,
 -206.7578251937366)

verifyRegression(model, expectedBeta, expectedResiduals, expectedErrors,
 "Longly") 

# Swiss Fertility (R dataset named "swiss")

design <- matrix(c(80.2,17.0,15,12,9.96,
  83.1,45.1,6,9,84.84,
  92.5,39.7,5,5,93.40,
  85.8,36.5,12,7,33.77,
  76.9,43.5,17,15,5.16,
  76.1,35.3,9,7,90.57,
  83.8,70.2,16,7,92.85,
  92.4,67.8,14,8,97.16,
  82.4,53.3,12,7,97.67,
  82.9,45.2,16,13,91.38,
  87.1,64.5,14,6,98.61,
  64.1,62.0,21,12,8.52,
  66.9,67.5,14,7,2.27,
  68.9,60.7,19,12,4.43,
  61.7,69.3,22,5,2.82,
  68.3,72.6,18,2,24.20,
  71.7,34.0,17,8,3.30,
  55.7,19.4,26,28,12.11,
  54.3,15.2,31,20,2.15,
  65.1,73.0,19,9,2.84,
  65.5,59.8,22,10,5.23,
  65.0,55.1,14,3,4.52,
  56.6,50.9,22,12,15.14,
  57.4,54.1,20,6,4.20,
  72.5,71.2,12,1,2.40,
  74.2,58.1,14,8,5.23,
  72.0,63.5,6,3,2.56,
  60.5,60.8,16,10,7.72,
  58.3,26.8,25,19,18.46,
  65.4,49.5,15,8,6.10,
  75.5,85.9,3,2,99.71,
  69.3,84.9,7,6,99.68,
  77.3,89.7,5,2,100.00,
  70.5,78.2,12,6,98.96,
  79.4,64.9,7,3,98.22,
  65.0,75.9,9,9,99.06,
  92.2,84.6,3,3,99.46,
  79.3,63.1,13,13,96.83,
  70.4,38.4,26,12,5.62,
  65.7,7.7,29,11,13.79,
  72.7,16.7,22,13,11.22,
  64.4,17.6,35,32,16.92,
  77.6,37.6,15,7,4.97,
  67.6,18.7,25,7,8.65,
  35.0,1.2,37,53,42.34,
  44.7,46.6,16,29,50.43,
  42.8,27.7,22,29,58.33),
  nrow = 47, ncol = 5, byrow = TRUE)

y  <- design[,1]
x1 <- design[,2]
x2 <- design[,3]
x3 <- design[,4]
x4 <- design[,5]

model <- lm(y ~ x1 + x2 + x3 + x4)

estimates <- matrix(c(91.05542390271397,6.94881329475087,
                      -0.22064551045715,0.07360008972340,
                      -0.26058239824328,0.27410957467466,
                      -0.96161238456030,0.19454551679325,
                       0.12441843147162,0.03726654773803),
                       nrow = 5, ncol = 2, byrow = TRUE)

expectedBeta <- estimates[,1]
expectedErrors <- estimates[,2]

expectedResiduals <- c(7.1044267859730512,1.6580347433531366,
  4.6944952770029644,8.4548022690166160,13.6547432343186212,
 -9.3586864458500774,7.5822446330520386,15.5568995563859289,
  0.8113090736598980,7.1186762732484308,7.4251378771228724,
  2.6761316873234109,0.8351584810309354,7.1769991119615177,
 -3.8746753206299553,-3.1337779476387251,-0.1412575244091504,
  1.1186809170469780,-6.3588097346816594,3.4039270429434074,
  2.3374058329820175,-7.9272368576900503,-7.8361010968497959,
 -11.2597369269357070,0.9445333697827101,6.6544245101380328,
 -0.9146136301118665,-4.3152449403848570,-4.3536932047009183,
 -3.8907885169304661,-6.3027643926302188,-7.8308982189289091,
 -3.1792280015332750,-6.7167298771158226,-4.8469946718041754,
 -10.6335664353633685,11.1031134362036958,6.0084032641811733,
  5.4326230830188482,-7.2375578629692230,2.1671550814448222,
  15.0147574652763112,4.8625103516321015,-7.1597256413907706,
  -0.4515205619767598,-10.2916870903837587,-15.7812984571900063)

verifyRegression(model, expectedBeta, expectedResiduals, expectedErrors,
 "Swiss Fertility") 


displayDashes(WIDTH)

Other Commons Math examples (source code examples)

Here is a short list of links related to this Commons Math multipleOLSRegressionTestCases source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.