|
Commons Math example source code file (BicubicSplineInterpolatingFunctionTest.java)
The Commons Math BicubicSplineInterpolatingFunctionTest.java source code/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.analysis.interpolation; import org.apache.commons.math.MathException; import org.apache.commons.math.DimensionMismatchException; import org.apache.commons.math.analysis.BivariateRealFunction; import org.junit.Assert; import org.junit.Test; /** * Testcase for the bicubic function. * * @version $Revision: 821626 $ $Date: 2009-10-04 23:57:30 +0200 (Sun, 04 Oct 2009) $ */ public final class BicubicSplineInterpolatingFunctionTest { /** * Test preconditions. */ @Test public void testPreconditions() throws MathException { double[] xval = new double[] {3, 4, 5, 6.5}; double[] yval = new double[] {-4, -3, -1, 2.5}; double[][] zval = new double[xval.length][yval.length]; @SuppressWarnings("unused") BivariateRealFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, zval, zval, zval); double[] wxval = new double[] {3, 2, 5, 6.5}; try { bcf = new BicubicSplineInterpolatingFunction(wxval, yval, zval, zval, zval, zval); Assert.fail("an exception should have been thrown"); } catch (IllegalArgumentException e) { // Expected } double[] wyval = new double[] {-4, -1, -1, 2.5}; try { bcf = new BicubicSplineInterpolatingFunction(xval, wyval, zval, zval, zval, zval); Assert.fail("an exception should have been thrown"); } catch (IllegalArgumentException e) { // Expected } double[][] wzval = new double[xval.length][yval.length - 1]; try { bcf = new BicubicSplineInterpolatingFunction(xval, yval, wzval, zval, zval, zval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, wzval, zval, zval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, zval, wzval, zval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, zval, zval, wzval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } wzval = new double[xval.length - 1][yval.length]; try { bcf = new BicubicSplineInterpolatingFunction(xval, yval, wzval, zval, zval, zval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, wzval, zval, zval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, zval, wzval, zval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, zval, zval, wzval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } } /** * Test for a plane. * <p> * z = 2 x - 3 y + 5 */ @Test public void testPlane() throws MathException { double[] xval = new double[] {3, 4, 5, 6.5}; double[] yval = new double[] {-4, -3, -1, 2, 2.5}; // Function values BivariateRealFunction f = new BivariateRealFunction() { public double value(double x, double y) { return 2 * x - 3 * y + 5; } }; double[][] zval = new double[xval.length][yval.length]; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { zval[i][j] = f.value(xval[i], yval[j]); } } // Partial derivatives with respect to x double[][] dZdX = new double[xval.length][yval.length]; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { dZdX[i][j] = 2; } } // Partial derivatives with respect to y double[][] dZdY = new double[xval.length][yval.length]; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { dZdY[i][j] = -3; } } // Partial cross-derivatives double[][] dZdXdY = new double[xval.length][yval.length]; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { dZdXdY[i][j] = 0; } } BivariateRealFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, dZdX, dZdY, dZdXdY); double x, y; double expected, result; x = 4; y = -3; expected = f.value(x, y); result = bcf.value(x, y); Assert.assertEquals("On sample point", expected, result, 1e-15); x = 4.5; y = -1.5; expected = f.value(x, y); result = bcf.value(x, y); Assert.assertEquals("Half-way between sample points (middle of the patch)", expected, result, 0.3); x = 3.5; y = -3.5; expected = f.value(x, y); result = bcf.value(x, y); Assert.assertEquals("Half-way between sample points (border of the patch)", expected, result, 0.3); } /** * Test for a paraboloid. * <p> * z = 2 x<sup>2 - 3 y2 + 4 x y - 5 */ @Test public void testParaboloid() throws MathException { double[] xval = new double[] {3, 4, 5, 6.5}; double[] yval = new double[] {-4, -3, -1, 2, 2.5}; // Function values BivariateRealFunction f = new BivariateRealFunction() { public double value(double x, double y) { return 2 * x * x - 3 * y * y + 4 * x * y - 5; } }; double[][] zval = new double[xval.length][yval.length]; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { zval[i][j] = f.value(xval[i], yval[j]); } } // Partial derivatives with respect to x double[][] dZdX = new double[xval.length][yval.length]; BivariateRealFunction dfdX = new BivariateRealFunction() { public double value(double x, double y) { return 4 * (x + y); } }; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { dZdX[i][j] = dfdX.value(xval[i], yval[j]); } } // Partial derivatives with respect to y double[][] dZdY = new double[xval.length][yval.length]; BivariateRealFunction dfdY = new BivariateRealFunction() { public double value(double x, double y) { return 4 * x - 6 * y; } }; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { dZdY[i][j] = dfdY.value(xval[i], yval[j]); } } // Partial cross-derivatives double[][] dZdXdY = new double[xval.length][yval.length]; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { dZdXdY[i][j] = 4; } } BivariateRealFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, dZdX, dZdY, dZdXdY); double x, y; double expected, result; x = 4; y = -3; expected = f.value(x, y); result = bcf.value(x, y); Assert.assertEquals("On sample point", expected, result, 1e-15); x = 4.5; y = -1.5; expected = f.value(x, y); result = bcf.value(x, y); Assert.assertEquals("Half-way between sample points (middle of the patch)", expected, result, 2); x = 3.5; y = -3.5; expected = f.value(x, y); result = bcf.value(x, y); Assert.assertEquals("Half-way between sample points (border of the patch)", expected, result, 2); } } Other Commons Math examples (source code examples)Here is a short list of links related to this Commons Math BicubicSplineInterpolatingFunctionTest.java source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.