|
Commons Math example source code file (HypergeometricDistributionTest.java)
The Commons Math HypergeometricDistributionTest.java source code/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.distribution; import org.apache.commons.math.TestUtils; /** * Test cases for HyperGeometriclDistribution. * Extends IntegerDistributionAbstractTest. See class javadoc for * IntegerDistributionAbstractTest for details. * * @version $Revision: 812147 $ $Date: 2009-09-07 10:08:16 -0400 (Mon, 07 Sep 2009) $ */ public class HypergeometricDistributionTest extends IntegerDistributionAbstractTest { /** * Constructor for ChiSquareDistributionTest. * @param name */ public HypergeometricDistributionTest(String name) { super(name); } //-------------- Implementations for abstract methods ----------------------- /** Creates the default discrete distribution instance to use in tests. */ @Override public IntegerDistribution makeDistribution() { return new HypergeometricDistributionImpl(10,5, 5); } /** Creates the default probability density test input values */ @Override public int[] makeDensityTestPoints() { return new int[] {-1, 0, 1, 2, 3, 4, 5, 10}; } /** Creates the default probability density test expected values */ @Override public double[] makeDensityTestValues() { return new double[] {0d, 0.003968d, 0.099206d, 0.396825d, 0.396825d, 0.099206d, 0.003968d, 0d}; } /** Creates the default cumulative probability density test input values */ @Override public int[] makeCumulativeTestPoints() { return makeDensityTestPoints(); } /** Creates the default cumulative probability density test expected values */ @Override public double[] makeCumulativeTestValues() { return new double[] {0d, .003968d, .103175d, .50000d, .896825d, .996032d, 1.00000d, 1d}; } /** Creates the default inverse cumulative probability test input values */ @Override public double[] makeInverseCumulativeTestPoints() { return new double[] {0d, 0.001d, 0.010d, 0.025d, 0.050d, 0.100d, 0.999d, 0.990d, 0.975d, 0.950d, 0.900d, 1d}; } /** Creates the default inverse cumulative probability density test expected values */ @Override public int[] makeInverseCumulativeTestValues() { return new int[] {-1, -1, 0, 0, 0, 0, 4, 3, 3, 3, 3, 5}; } //-------------------- Additional test cases ------------------------------ /** Verify that if there are no failures, mass is concentrated on sampleSize */ public void testDegenerateNoFailures() throws Exception { setDistribution(new HypergeometricDistributionImpl(5,5,3)); setCumulativeTestPoints(new int[] {-1, 0, 1, 3, 10 }); setCumulativeTestValues(new double[] {0d, 0d, 0d, 1d, 1d}); setDensityTestPoints(new int[] {-1, 0, 1, 3, 10}); setDensityTestValues(new double[] {0d, 0d, 0d, 1d, 0d}); setInverseCumulativeTestPoints(new double[] {0.1d, 0.5d}); setInverseCumulativeTestValues(new int[] {2, 2}); verifyDensities(); verifyCumulativeProbabilities(); verifyInverseCumulativeProbabilities(); } /** Verify that if there are no successes, mass is concentrated on 0 */ public void testDegenerateNoSuccesses() throws Exception { setDistribution(new HypergeometricDistributionImpl(5,0,3)); setCumulativeTestPoints(new int[] {-1, 0, 1, 3, 10 }); setCumulativeTestValues(new double[] {0d, 1d, 1d, 1d, 1d}); setDensityTestPoints(new int[] {-1, 0, 1, 3, 10}); setDensityTestValues(new double[] {0d, 1d, 0d, 0d, 0d}); setInverseCumulativeTestPoints(new double[] {0.1d, 0.5d}); setInverseCumulativeTestValues(new int[] {-1, -1}); verifyDensities(); verifyCumulativeProbabilities(); verifyInverseCumulativeProbabilities(); } /** Verify that if sampleSize = populationSize, mass is concentrated on numberOfSuccesses */ public void testDegenerateFullSample() throws Exception { setDistribution(new HypergeometricDistributionImpl(5,3,5)); setCumulativeTestPoints(new int[] {-1, 0, 1, 3, 10 }); setCumulativeTestValues(new double[] {0d, 0d, 0d, 1d, 1d}); setDensityTestPoints(new int[] {-1, 0, 1, 3, 10}); setDensityTestValues(new double[] {0d, 0d, 0d, 1d, 0d}); setInverseCumulativeTestPoints(new double[] {0.1d, 0.5d}); setInverseCumulativeTestValues(new int[] {2, 2}); verifyDensities(); verifyCumulativeProbabilities(); verifyInverseCumulativeProbabilities(); } public void testPopulationSize() { HypergeometricDistribution dist = new HypergeometricDistributionImpl(5,3,5); try { dist.setPopulationSize(-1); fail("negative population size. IllegalArgumentException expected"); } catch(IllegalArgumentException ex) { } dist.setPopulationSize(10); assertEquals(10, dist.getPopulationSize()); } public void testLargeValues() { int populationSize = 3456; int sampleSize = 789; int numberOfSucceses = 101; double[][] data = { {0.0, 2.75646034603961e-12, 2.75646034603961e-12, 1.0}, {1.0, 8.55705370142386e-11, 8.83269973602783e-11, 0.999999999997244}, {2.0, 1.31288129219665e-9, 1.40120828955693e-9, 0.999999999911673}, {3.0, 1.32724172984193e-8, 1.46736255879763e-8, 0.999999998598792}, {4.0, 9.94501711734089e-8, 1.14123796761385e-7, 0.999999985326375}, {5.0, 5.89080768883643e-7, 7.03204565645028e-7, 0.999999885876203}, {20.0, 0.0760051397707708, 0.27349758476299, 0.802507555007781}, {21.0, 0.087144222047629, 0.360641806810619, 0.72650241523701}, {22.0, 0.0940378846881819, 0.454679691498801, 0.639358193189381}, {23.0, 0.0956897500614809, 0.550369441560282, 0.545320308501199}, {24.0, 0.0919766921922999, 0.642346133752582, 0.449630558439718}, {25.0, 0.083641637261095, 0.725987771013677, 0.357653866247418}, {96.0, 5.93849188852098e-57, 1.0, 6.01900244560712e-57}, {97.0, 7.96593036832547e-59, 1.0, 8.05105570861321e-59}, {98.0, 8.44582921934367e-61, 1.0, 8.5125340287733e-61}, {99.0, 6.63604297068222e-63, 1.0, 6.670480942963e-63}, {100.0, 3.43501099007557e-65, 1.0, 3.4437972280786e-65}, {101.0, 8.78623800302957e-68, 1.0, 8.78623800302957e-68}, }; testHypergeometricDistributionProbabilities(populationSize, sampleSize, numberOfSucceses, data); } private void testHypergeometricDistributionProbabilities(int populationSize, int sampleSize, int numberOfSucceses, double[][] data) { HypergeometricDistributionImpl dist = new HypergeometricDistributionImpl(populationSize, numberOfSucceses, sampleSize); for (int i = 0; i < data.length; ++i) { int x = (int)data[i][0]; double pdf = data[i][1]; double actualPdf = dist.probability(x); TestUtils.assertRelativelyEquals("Expected equals for <"+x+"> pdf",pdf, actualPdf, 1.0e-9); double cdf = data[i][2]; double actualCdf = dist.cumulativeProbability(x); TestUtils.assertRelativelyEquals("Expected equals for <"+x+"> cdf",cdf, actualCdf, 1.0e-9); double cdf1 = data[i][3]; double actualCdf1 = dist.upperCumulativeProbability(x); TestUtils.assertRelativelyEquals("Expected equals for <"+x+"> cdf1",cdf1, actualCdf1, 1.0e-9); } } public void testMoreLargeValues() { int populationSize = 26896; int sampleSize = 895; int numberOfSucceses = 55; double[][] data = { {0.0, 0.155168304750504, 0.155168304750504, 1.0}, {1.0, 0.29437545000746, 0.449543754757964, 0.844831695249496}, {2.0, 0.273841321577003, 0.723385076334967, 0.550456245242036}, {3.0, 0.166488572570786, 0.889873648905753, 0.276614923665033}, {4.0, 0.0743969744713231, 0.964270623377076, 0.110126351094247}, {5.0, 0.0260542785784855, 0.990324901955562, 0.0357293766229237}, {20.0, 3.57101101678792e-16, 1.0, 3.78252101622096e-16}, {21.0, 2.00551638598312e-17, 1.0, 2.11509999433041e-17}, {22.0, 1.04317070180562e-18, 1.0, 1.09583608347287e-18}, {23.0, 5.03153504903308e-20, 1.0, 5.266538166725e-20}, {24.0, 2.2525984149695e-21, 1.0, 2.35003117691919e-21}, {25.0, 9.3677424515947e-23, 1.0, 9.74327619496943e-23}, {50.0, 9.83633962945521e-69, 1.0, 9.8677629437617e-69}, {51.0, 3.13448949497553e-71, 1.0, 3.14233143064882e-71}, {52.0, 7.82755221928122e-74, 1.0, 7.84193567329055e-74}, {53.0, 1.43662126065532e-76, 1.0, 1.43834540093295e-76}, {54.0, 1.72312692517348e-79, 1.0, 1.7241402776278e-79}, {55.0, 1.01335245432581e-82, 1.0, 1.01335245432581e-82}, }; testHypergeometricDistributionProbabilities(populationSize, sampleSize, numberOfSucceses, data); } } Other Commons Math examples (source code examples)Here is a short list of links related to this Commons Math HypergeometricDistributionTest.java source code file: |
... this post is sponsored by my books ... | |
![]() #1 New Release! |
![]() FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.