|
Commons Math example source code file (NelderMeadTest.java)
The Commons Math NelderMeadTest.java source code/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.optimization.direct; import static org.junit.Assert.assertEquals; import static org.junit.Assert.assertNotNull; import static org.junit.Assert.assertNull; import static org.junit.Assert.assertTrue; import static org.junit.Assert.fail; import org.apache.commons.math.ConvergenceException; import org.apache.commons.math.FunctionEvaluationException; import org.apache.commons.math.MathException; import org.apache.commons.math.MaxEvaluationsExceededException; import org.apache.commons.math.MaxIterationsExceededException; import org.apache.commons.math.analysis.MultivariateRealFunction; import org.apache.commons.math.analysis.MultivariateVectorialFunction; import org.apache.commons.math.linear.Array2DRowRealMatrix; import org.apache.commons.math.linear.RealMatrix; import org.apache.commons.math.optimization.GoalType; import org.apache.commons.math.optimization.LeastSquaresConverter; import org.apache.commons.math.optimization.OptimizationException; import org.apache.commons.math.optimization.RealPointValuePair; import org.apache.commons.math.optimization.SimpleRealPointChecker; import org.apache.commons.math.optimization.SimpleScalarValueChecker; import org.junit.Test; public class NelderMeadTest { @Test public void testFunctionEvaluationExceptions() { MultivariateRealFunction wrong = new MultivariateRealFunction() { private static final long serialVersionUID = 4751314470965489371L; public double value(double[] x) throws FunctionEvaluationException { if (x[0] < 0) { throw new FunctionEvaluationException(x, "{0}", "oops"); } else if (x[0] > 1) { throw new FunctionEvaluationException(new RuntimeException("oops"), x); } else { return x[0] * (1 - x[0]); } } }; try { NelderMead optimizer = new NelderMead(0.9, 1.9, 0.4, 0.6); optimizer.optimize(wrong, GoalType.MINIMIZE, new double[] { -1.0 }); fail("an exception should have been thrown"); } catch (FunctionEvaluationException ce) { // expected behavior assertNull(ce.getCause()); } catch (Exception e) { fail("wrong exception caught: " + e.getMessage()); } try { NelderMead optimizer = new NelderMead(0.9, 1.9, 0.4, 0.6); optimizer.optimize(wrong, GoalType.MINIMIZE, new double[] { +2.0 }); fail("an exception should have been thrown"); } catch (FunctionEvaluationException ce) { // expected behavior assertNotNull(ce.getCause()); } catch (Exception e) { fail("wrong exception caught: " + e.getMessage()); } } @Test public void testMinimizeMaximize() throws FunctionEvaluationException, ConvergenceException { // the following function has 4 local extrema: final double xM = -3.841947088256863675365; final double yM = -1.391745200270734924416; final double xP = 0.2286682237349059125691; final double yP = -yM; final double valueXmYm = 0.2373295333134216789769; // local maximum final double valueXmYp = -valueXmYm; // local minimum final double valueXpYm = -0.7290400707055187115322; // global minimum final double valueXpYp = -valueXpYm; // global maximum MultivariateRealFunction fourExtrema = new MultivariateRealFunction() { private static final long serialVersionUID = -7039124064449091152L; public double value(double[] variables) throws FunctionEvaluationException { final double x = variables[0]; final double y = variables[1]; return ((x == 0) || (y == 0)) ? 0 : (Math.atan(x) * Math.atan(x + 2) * Math.atan(y) * Math.atan(y) / (x * y)); } }; NelderMead optimizer = new NelderMead(); optimizer.setConvergenceChecker(new SimpleScalarValueChecker(1.0e-10, 1.0e-30)); optimizer.setMaxIterations(100); optimizer.setStartConfiguration(new double[] { 0.2, 0.2 }); RealPointValuePair optimum; // minimization optimum = optimizer.optimize(fourExtrema, GoalType.MINIMIZE, new double[] { -3.0, 0 }); assertEquals(xM, optimum.getPoint()[0], 2.0e-7); assertEquals(yP, optimum.getPoint()[1], 2.0e-5); assertEquals(valueXmYp, optimum.getValue(), 6.0e-12); assertTrue(optimizer.getEvaluations() > 60); assertTrue(optimizer.getEvaluations() < 90); optimum = optimizer.optimize(fourExtrema, GoalType.MINIMIZE, new double[] { +1, 0 }); assertEquals(xP, optimum.getPoint()[0], 5.0e-6); assertEquals(yM, optimum.getPoint()[1], 6.0e-6); assertEquals(valueXpYm, optimum.getValue(), 1.0e-11); assertTrue(optimizer.getEvaluations() > 60); assertTrue(optimizer.getEvaluations() < 90); // maximization optimum = optimizer.optimize(fourExtrema, GoalType.MAXIMIZE, new double[] { -3.0, 0.0 }); assertEquals(xM, optimum.getPoint()[0], 1.0e-5); assertEquals(yM, optimum.getPoint()[1], 3.0e-6); assertEquals(valueXmYm, optimum.getValue(), 3.0e-12); assertTrue(optimizer.getEvaluations() > 60); assertTrue(optimizer.getEvaluations() < 90); optimum = optimizer.optimize(fourExtrema, GoalType.MAXIMIZE, new double[] { +1, 0 }); assertEquals(xP, optimum.getPoint()[0], 4.0e-6); assertEquals(yP, optimum.getPoint()[1], 5.0e-6); assertEquals(valueXpYp, optimum.getValue(), 7.0e-12); assertTrue(optimizer.getEvaluations() > 60); assertTrue(optimizer.getEvaluations() < 90); } @Test public void testRosenbrock() throws FunctionEvaluationException, ConvergenceException { Rosenbrock rosenbrock = new Rosenbrock(); NelderMead optimizer = new NelderMead(); optimizer.setConvergenceChecker(new SimpleScalarValueChecker(-1, 1.0e-3)); optimizer.setMaxIterations(100); optimizer.setStartConfiguration(new double[][] { { -1.2, 1.0 }, { 0.9, 1.2 } , { 3.5, -2.3 } }); RealPointValuePair optimum = optimizer.optimize(rosenbrock, GoalType.MINIMIZE, new double[] { -1.2, 1.0 }); assertEquals(rosenbrock.getCount(), optimizer.getEvaluations()); assertTrue(optimizer.getEvaluations() > 40); assertTrue(optimizer.getEvaluations() < 50); assertTrue(optimum.getValue() < 8.0e-4); } @Test public void testPowell() throws FunctionEvaluationException, ConvergenceException { Powell powell = new Powell(); NelderMead optimizer = new NelderMead(); optimizer.setConvergenceChecker(new SimpleScalarValueChecker(-1.0, 1.0e-3)); optimizer.setMaxIterations(200); RealPointValuePair optimum = optimizer.optimize(powell, GoalType.MINIMIZE, new double[] { 3.0, -1.0, 0.0, 1.0 }); assertEquals(powell.getCount(), optimizer.getEvaluations()); assertTrue(optimizer.getEvaluations() > 110); assertTrue(optimizer.getEvaluations() < 130); assertTrue(optimum.getValue() < 2.0e-3); } @Test public void testLeastSquares1() throws FunctionEvaluationException, ConvergenceException { final RealMatrix factors = new Array2DRowRealMatrix(new double[][] { { 1.0, 0.0 }, { 0.0, 1.0 } }, false); LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorialFunction() { public double[] value(double[] variables) { return factors.operate(variables); } }, new double[] { 2.0, -3.0 }); NelderMead optimizer = new NelderMead(); optimizer.setConvergenceChecker(new SimpleScalarValueChecker(-1.0, 1.0e-6)); optimizer.setMaxIterations(200); RealPointValuePair optimum = optimizer.optimize(ls, GoalType.MINIMIZE, new double[] { 10.0, 10.0 }); assertEquals( 2.0, optimum.getPointRef()[0], 3.0e-5); assertEquals(-3.0, optimum.getPointRef()[1], 4.0e-4); assertTrue(optimizer.getEvaluations() > 60); assertTrue(optimizer.getEvaluations() < 80); assertTrue(optimum.getValue() < 1.0e-6); } @Test public void testLeastSquares2() throws FunctionEvaluationException, ConvergenceException { final RealMatrix factors = new Array2DRowRealMatrix(new double[][] { { 1.0, 0.0 }, { 0.0, 1.0 } }, false); LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorialFunction() { public double[] value(double[] variables) { return factors.operate(variables); } }, new double[] { 2.0, -3.0 }, new double[] { 10.0, 0.1 }); NelderMead optimizer = new NelderMead(); optimizer.setConvergenceChecker(new SimpleScalarValueChecker(-1.0, 1.0e-6)); optimizer.setMaxIterations(200); RealPointValuePair optimum = optimizer.optimize(ls, GoalType.MINIMIZE, new double[] { 10.0, 10.0 }); assertEquals( 2.0, optimum.getPointRef()[0], 5.0e-5); assertEquals(-3.0, optimum.getPointRef()[1], 8.0e-4); assertTrue(optimizer.getEvaluations() > 60); assertTrue(optimizer.getEvaluations() < 80); assertTrue(optimum.getValue() < 1.0e-6); } @Test public void testLeastSquares3() throws FunctionEvaluationException, ConvergenceException { final RealMatrix factors = new Array2DRowRealMatrix(new double[][] { { 1.0, 0.0 }, { 0.0, 1.0 } }, false); LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorialFunction() { public double[] value(double[] variables) { return factors.operate(variables); } }, new double[] { 2.0, -3.0 }, new Array2DRowRealMatrix(new double [][] { { 1.0, 1.2 }, { 1.2, 2.0 } })); NelderMead optimizer = new NelderMead(); optimizer.setConvergenceChecker(new SimpleScalarValueChecker(-1.0, 1.0e-6)); optimizer.setMaxIterations(200); RealPointValuePair optimum = optimizer.optimize(ls, GoalType.MINIMIZE, new double[] { 10.0, 10.0 }); assertEquals( 2.0, optimum.getPointRef()[0], 2.0e-3); assertEquals(-3.0, optimum.getPointRef()[1], 8.0e-4); assertTrue(optimizer.getEvaluations() > 60); assertTrue(optimizer.getEvaluations() < 80); assertTrue(optimum.getValue() < 1.0e-6); } @Test(expected = MaxIterationsExceededException.class) public void testMaxIterations() throws MathException { try { Powell powell = new Powell(); NelderMead optimizer = new NelderMead(); optimizer.setConvergenceChecker(new SimpleScalarValueChecker(-1.0, 1.0e-3)); optimizer.setMaxIterations(20); optimizer.optimize(powell, GoalType.MINIMIZE, new double[] { 3.0, -1.0, 0.0, 1.0 }); } catch (OptimizationException oe) { if (oe.getCause() instanceof ConvergenceException) { throw (ConvergenceException) oe.getCause(); } throw oe; } } @Test(expected = MaxEvaluationsExceededException.class) public void testMaxEvaluations() throws MathException { try { Powell powell = new Powell(); NelderMead optimizer = new NelderMead(); optimizer.setConvergenceChecker(new SimpleRealPointChecker(-1.0, 1.0e-3)); optimizer.setMaxEvaluations(20); optimizer.optimize(powell, GoalType.MINIMIZE, new double[] { 3.0, -1.0, 0.0, 1.0 }); } catch (FunctionEvaluationException fee) { if (fee.getCause() instanceof ConvergenceException) { throw (ConvergenceException) fee.getCause(); } throw fee; } } private static class Rosenbrock implements MultivariateRealFunction { private int count; public Rosenbrock() { count = 0; } public double value(double[] x) throws FunctionEvaluationException { ++count; double a = x[1] - x[0] * x[0]; double b = 1.0 - x[0]; return 100 * a * a + b * b; } public int getCount() { return count; } } private static class Powell implements MultivariateRealFunction { private int count; public Powell() { count = 0; } public double value(double[] x) throws FunctionEvaluationException { ++count; double a = x[0] + 10 * x[1]; double b = x[2] - x[3]; double c = x[1] - 2 * x[2]; double d = x[0] - x[3]; return a * a + 5 * b * b + c * c * c * c + 10 * d * d * d * d; } public int getCount() { return count; } } } Other Commons Math examples (source code examples)Here is a short list of links related to this Commons Math NelderMeadTest.java source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.