|
Commons Math example source code file (DescriptiveStatisticsTest.java)
The Commons Math DescriptiveStatisticsTest.java source code/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with this * work for additional information regarding copyright ownership. The ASF * licenses this file to You under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the License. * You may obtain a copy of the License at * http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law * or agreed to in writing, software distributed under the License is * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the specific language * governing permissions and limitations under the License. */ package org.apache.commons.math.stat.descriptive; import java.util.Locale; import junit.framework.TestCase; import org.apache.commons.math.stat.descriptive.rank.Percentile; import org.apache.commons.math.util.MathUtils; /** * Test cases for the DescriptiveStatistics class. * * @version $Revision: 902201 $ $Date: 2007-08-16 15:36:33 -0500 (Thu, 16 Aug * 2007) $ */ public class DescriptiveStatisticsTest extends TestCase { public DescriptiveStatisticsTest(String name) { super(name); } protected DescriptiveStatistics createDescriptiveStatistics() { return new DescriptiveStatistics(); } public void testSetterInjection() { DescriptiveStatistics stats = createDescriptiveStatistics(); stats.addValue(1); stats.addValue(3); assertEquals(2, stats.getMean(), 1E-10); // Now lets try some new math stats.setMeanImpl(new deepMean()); assertEquals(42, stats.getMean(), 1E-10); } public void testCopy() { DescriptiveStatistics stats = createDescriptiveStatistics(); stats.addValue(1); stats.addValue(3); DescriptiveStatistics copy = new DescriptiveStatistics(stats); assertEquals(2, copy.getMean(), 1E-10); // Now lets try some new math stats.setMeanImpl(new deepMean()); copy = stats.copy(); assertEquals(42, copy.getMean(), 1E-10); } public void testWindowSize() { DescriptiveStatistics stats = createDescriptiveStatistics(); stats.setWindowSize(300); for (int i = 0; i < 100; ++i) { stats.addValue(i + 1); } int refSum = (100 * 101) / 2; assertEquals(refSum / 100.0, stats.getMean(), 1E-10); assertEquals(300, stats.getWindowSize()); try { stats.setWindowSize(-3); fail("an exception should have been thrown"); } catch (IllegalArgumentException iae) { // expected } catch (Exception e) { fail("wrong exception caught: " + e.getMessage()); } assertEquals(300, stats.getWindowSize()); stats.setWindowSize(50); assertEquals(50, stats.getWindowSize()); int refSum2 = refSum - (50 * 51) / 2; assertEquals(refSum2 / 50.0, stats.getMean(), 1E-10); } public void testGetValues() { DescriptiveStatistics stats = createDescriptiveStatistics(); for (int i = 100; i > 0; --i) { stats.addValue(i); } int refSum = (100 * 101) / 2; assertEquals(refSum / 100.0, stats.getMean(), 1E-10); double[] v = stats.getValues(); for (int i = 0; i < v.length; ++i) { assertEquals(100.0 - i, v[i], 1.0e-10); } double[] s = stats.getSortedValues(); for (int i = 0; i < s.length; ++i) { assertEquals(i + 1.0, s[i], 1.0e-10); } assertEquals(12.0, stats.getElement(88), 1.0e-10); } public void testToString() { DescriptiveStatistics stats = createDescriptiveStatistics(); stats.addValue(1); stats.addValue(2); stats.addValue(3); Locale d = Locale.getDefault(); Locale.setDefault(Locale.US); assertEquals("DescriptiveStatistics:\n" + "n: 3\n" + "min: 1.0\n" + "max: 3.0\n" + "mean: 2.0\n" + "std dev: 1.0\n" + "median: 2.0\n" + "skewness: 0.0\n" + "kurtosis: NaN\n", stats.toString()); Locale.setDefault(d); } public void testShuffledStatistics() { // the purpose of this test is only to check the get/set methods // we are aware shuffling statistics like this is really not // something sensible to do in production ... DescriptiveStatistics reference = createDescriptiveStatistics(); DescriptiveStatistics shuffled = createDescriptiveStatistics(); UnivariateStatistic tmp = shuffled.getGeometricMeanImpl(); shuffled.setGeometricMeanImpl(shuffled.getMeanImpl()); shuffled.setMeanImpl(shuffled.getKurtosisImpl()); shuffled.setKurtosisImpl(shuffled.getSkewnessImpl()); shuffled.setSkewnessImpl(shuffled.getVarianceImpl()); shuffled.setVarianceImpl(shuffled.getMaxImpl()); shuffled.setMaxImpl(shuffled.getMinImpl()); shuffled.setMinImpl(shuffled.getSumImpl()); shuffled.setSumImpl(shuffled.getSumsqImpl()); shuffled.setSumsqImpl(tmp); for (int i = 100; i > 0; --i) { reference.addValue(i); shuffled.addValue(i); } assertEquals(reference.getMean(), shuffled.getGeometricMean(), 1.0e-10); assertEquals(reference.getKurtosis(), shuffled.getMean(), 1.0e-10); assertEquals(reference.getSkewness(), shuffled.getKurtosis(), 1.0e-10); assertEquals(reference.getVariance(), shuffled.getSkewness(), 1.0e-10); assertEquals(reference.getMax(), shuffled.getVariance(), 1.0e-10); assertEquals(reference.getMin(), shuffled.getMax(), 1.0e-10); assertEquals(reference.getSum(), shuffled.getMin(), 1.0e-10); assertEquals(reference.getSumsq(), shuffled.getSum(), 1.0e-10); assertEquals(reference.getGeometricMean(), shuffled.getSumsq(), 1.0e-10); } public void testPercentileSetter() throws Exception { DescriptiveStatistics stats = createDescriptiveStatistics(); stats.addValue(1); stats.addValue(2); stats.addValue(3); assertEquals(2, stats.getPercentile(50.0), 1E-10); // Inject wrapped Percentile impl stats.setPercentileImpl(new goodPercentile()); assertEquals(2, stats.getPercentile(50.0), 1E-10); // Try "new math" impl stats.setPercentileImpl(new subPercentile()); assertEquals(10.0, stats.getPercentile(10.0), 1E-10); // Try to set bad impl try { stats.setPercentileImpl(new badPercentile()); fail("Expecting IllegalArgumentException"); } catch (IllegalArgumentException ex) { // expected } } public void test20090720() { DescriptiveStatistics descriptiveStatistics = new DescriptiveStatistics(100); for (int i = 0; i < 161; i++) { descriptiveStatistics.addValue(1.2); } descriptiveStatistics.clear(); descriptiveStatistics.addValue(1.2); assertEquals(1, descriptiveStatistics.getN()); } public void testRemoval() { final DescriptiveStatistics dstat = createDescriptiveStatistics(); checkremoval(dstat, 1, 6.0, 0.0, Double.NaN); checkremoval(dstat, 3, 5.0, 3.0, 4.5); checkremoval(dstat, 6, 3.5, 2.5, 3.0); checkremoval(dstat, 9, 3.5, 2.5, 3.0); checkremoval(dstat, DescriptiveStatistics.INFINITE_WINDOW, 3.5, 2.5, 3.0); } public void checkremoval(DescriptiveStatistics dstat, int wsize, double mean1, double mean2, double mean3) { dstat.setWindowSize(wsize); dstat.clear(); for (int i = 1 ; i <= 6 ; ++i) { dstat.addValue(i); } assertTrue(MathUtils.equals(mean1, dstat.getMean())); dstat.replaceMostRecentValue(0); assertTrue(MathUtils.equals(mean2, dstat.getMean())); dstat.removeMostRecentValue(); assertTrue(MathUtils.equals(mean3, dstat.getMean())); } // Test UnivariateStatistics impls for setter injection tests /** * A new way to compute the mean */ static class deepMean implements UnivariateStatistic { public double evaluate(double[] values, int begin, int length) { return 42; } public double evaluate(double[] values) { return 42; } public UnivariateStatistic copy() { return new deepMean(); } } /** * Test percentile implementation - wraps a Percentile */ static class goodPercentile implements UnivariateStatistic { private Percentile percentile = new Percentile(); public void setQuantile(double quantile) { percentile.setQuantile(quantile); } public double evaluate(double[] values, int begin, int length) { return percentile.evaluate(values, begin, length); } public double evaluate(double[] values) { return percentile.evaluate(values); } public UnivariateStatistic copy() { goodPercentile result = new goodPercentile(); result.setQuantile(percentile.getQuantile()); return result; } } /** * Test percentile subclass - another "new math" impl * Always returns currently set quantile */ static class subPercentile extends Percentile { @Override public double evaluate(double[] values, int begin, int length) { return getQuantile(); } @Override public double evaluate(double[] values) { return getQuantile(); } private static final long serialVersionUID = 8040701391045914979L; @Override public Percentile copy() { subPercentile result = new subPercentile(); return result; } } /** * "Bad" test percentile implementation - no setQuantile */ static class badPercentile implements UnivariateStatistic { private Percentile percentile = new Percentile(); public double evaluate(double[] values, int begin, int length) { return percentile.evaluate(values, begin, length); } public double evaluate(double[] values) { return percentile.evaluate(values); } public UnivariateStatistic copy() { return new badPercentile(); } } } Other Commons Math examples (source code examples)Here is a short list of links related to this Commons Math DescriptiveStatisticsTest.java source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.