alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Commons Math example source code file (NumAcc4.txt)

This example Commons Math source code file (NumAcc4.txt) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Commons Math tags/keywords

certified, data, data, file, file, name, observations, observations, response, sample, sample, simon, stat, values

The Commons Math NumAcc4.txt source code

File Name:     NumAcc4.dat

File Format:   ASCII
               Header          : lines  1 to   60     (=   60)
               Certified Values: lines 41 to   43     (=    3)
               Data            : lines 61 to 1061     (= 1001)

Dataset Name:  NumAcc4

Description:   This is a constructed/fabricated data set
               to test accuracy in summary statistic calculations.
               The numbers are 9-digit floating point values and
               differ only in the last decimal place.
                     sample mean            =  10000000.2   (exact)
                     sample standard dev.   =         0.1   (exact)
                     sample autocorr. coef. =      -0.999   (exact)

Stat Category: Univariate

Reference:     Simon, Stephen D. and Lesage, James P. (1989).
               Assessing the Accuracy of ANOVA Caluclations
               in Statistical Software", Computational
               Statistics & data Analysis, 8, pp. 325-332.

Data:          Constructed
               1    Response           : y
               0    Predictors
               1001 Observations

Model:         Higher Level of Difficulty
               2    Parameters         : mu, sigma
               1    Response Variable  : y
               0    Predictor Variables

               y    = mu + e




                                                  Certified Values
Sample Mean                                ybar:   10000000.2 
Sample Standard Deviation (denom. = n-1)      s:   0.1        
Sample Autocorrelation Coefficient (lag 1) r(1):   -0.999     

Number of Observations:                             1001













Data: Y
--------------
  10000000.2
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3
  10000000.1
  10000000.3

Other Commons Math examples (source code examples)

Here is a short list of links related to this Commons Math NumAcc4.txt source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.