|
Java example source code file (hypergeometricTestCases)
The hypergeometricTestCases Java example source code# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #------------------------------------------------------------------------------ # R source file to validate Hypergeometric distribution tests in # org.apache.commons.math.distribution.HypergeometricDistributionTest # # To run the test, install R, put this file and testFunctions # into the same directory, launch R from this directory and then enter # source("<name-of-this-file>") # # R functions used # dhyper(x, m, n, k, log = FALSE) <- density # phyper(q, m, n, k, lower.tail = TRUE, log.p = FALSE) <- distribution # qhyper(p, m, n, k, lower.tail = TRUE, log.p = FALSE) <- quantiles #------------------------------------------------------------------------------ tol <- 1E-6 # error tolerance for tests #------------------------------------------------------------------------------ # Function definitions source("testFunctions") # utility test functions # function to verify density computations verifyDensity <- function(points, expected, good, bad, selected, tol, log = FALSE) { rDensityValues <- rep(0, length(points)) i <- 0 for (point in points) { i <- i + 1 rDensityValues[i] <- dhyper(point, good, bad, selected, log) } output <- c("Density test good = ", good, ", bad = ", bad, ", selected = ",selected) if (assertEquals(expected,rDensityValues,tol,"Density Values")) { displayPadded(output, SUCCEEDED, WIDTH) } else { displayPadded(output, FAILED, WIDTH) } } # function to verify distribution computations verifyDistribution <- function(points, expected, good, bad, selected, tol) { rDistValues <- rep(0, length(points)) i <- 0 for (point in points) { i <- i + 1 rDistValues[i] <- phyper(point, good, bad, selected) } output <- c("Distribution test good = ", good, ", bad = ", bad, ", selected = ",selected) if (assertEquals(expected,rDistValues,tol,"Distribution Values")) { displayPadded(output, SUCCEEDED, WIDTH) } else { displayPadded(output, FAILED, WIDTH) } } #-------------------------------------------------------------------------- cat("Hypergeometric test cases\n") good <- 5 bad <- 5 selected <- 5 densityPoints <- c(-1, 0, 1, 2, 3, 4, 5, 10) densityValues <- c(0, 0.00396825396825397, 0.0992063492063492, 0.396825396825397, 0.396825396825397, 0.0992063492063492, 0.00396825396825397, 0) logDensityValues <- c(-Inf, -5.52942908751142, -2.31055326264322, -0.924258901523332, -0.924258901523332, -2.31055326264322, -5.52942908751142, -Inf) distributionValues <- c(0, .003968, .103175, .50000, .896825, .996032, 1.00000, 1) #Eliminate p=1 case because it will mess up adjustement below inverseCumPoints <- c(0, 0.001, 0.010, 0.025, 0.050, 0.100, 0.999, 0.990, 0.975, 0.950, 0.900) inverseCumValues <- c(-1, -1, 0, 0, 0, 0, 4, 3, 3, 3, 3) verifyDensity(densityPoints, densityValues, good, bad, selected, tol) verifyDensity(densityPoints, logDensityValues, good, bad, selected, tol, TRUE) verifyDistribution(densityPoints, distributionValues, good, bad, selected, tol) i <- 0 rInverseCumValues <- rep(0,length(inverseCumPoints)) for (point in inverseCumPoints) { i <- i + 1 rInverseCumValues[i] <- qhyper(point, good, bad, selected) } output <- c("Inverse Distribution test good = ", good, ", bad = ", bad, ", selected = ", selected) # R defines quantiles from the right, need to subtract one if (assertEquals(inverseCumValues, rInverseCumValues-1, tol, "Inverse Dist Values")) { displayPadded(output, SUCCEEDED, 80) } else { displayPadded(output, FAILED, 80) } # Degenerate cases good <- 5 bad <- 0 selected <- 3 densityPoints <- c(-1, 0, 1, 3, 10) densityValues <- c(0, 0, 0, 1, 0) distributionValues <- c(0, 0, 0, 1, 1) verifyDensity(densityPoints, densityValues, good, bad, selected, tol) verifyDistribution(densityPoints, distributionValues, good, bad, selected, tol) good <- 0 bad <- 5 selected <- 3 densityPoints <- c(-1, 0, 1, 3, 10) densityValues <- c(0, 1, 0, 0, 0) distributionValues <- c(0, 1, 1, 1, 1) verifyDensity(densityPoints, densityValues, good, bad, selected, tol) verifyDistribution(densityPoints, distributionValues, good, bad, selected, tol) good <- 3 bad <- 2 selected <- 5 densityPoints <- c(-1, 0, 1, 3, 10) densityValues <- c(0, 0, 0, 1, 0) distributionValues <- c(0, 0, 0, 1, 1) verifyDensity(densityPoints, densityValues, good, bad, selected, tol) verifyDistribution(densityPoints, distributionValues, good, bad, selected, tol) displayDashes(WIDTH) Other Java examples (source code examples)Here is a short list of links related to this Java hypergeometricTestCases source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.