|
Java example source code file (logNormalTestCases)
The logNormalTestCases Java example source code# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #------------------------------------------------------------------------------ # R source file to validate LogNormal distribution tests in # org.apache.commons.math.distribution.LogNormalDistributionTest # # To run the test, install R, put this file and testFunctions # into the same directory, launch R from this directory and then enter # source("<name-of-this-file>") # # R functions used # plnorm(q, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE) <-- distribution #----------------------------------------------------------------------------- tol <- 1E-9 # Function definitions source("testFunctions") # utility test functions # function to verify distribution computations verifyDistribution <- function(points, expected, mu, sigma, tol) { rDistValues <- rep(0, length(points)) i <- 0 for (point in points) { i <- i + 1 rDistValues[i] <- plnorm(point, mu, sigma, log = FALSE) } output <- c("Distribution test mu = ",mu,", sigma = ", sigma) if (assertEquals(expected, rDistValues, tol, "Distribution Values")) { displayPadded(output, SUCCEEDED, WIDTH) } else { displayPadded(output, FAILED, WIDTH) } } # function to verify density computations verifyDensity <- function(points, expected, mu, sigma, tol) { rDensityValues <- rep(0, length(points)) i <- 0 for (point in points) { i <- i + 1 rDensityValues[i] <- dlnorm(point, mu, sigma, log = FALSE) } output <- c("Density test mu = ",mu,", sigma = ", sigma) if (assertEquals(expected, rDensityValues, tol, "Density Values")) { displayPadded(output, SUCCEEDED, WIDTH) } else { displayPadded(output, FAILED, WIDTH) } } #-------------------------------------------------------------------------- cat("LogNormal test cases\n") mu <- 2.1 sigma <- 1.4 distributionValues <- c(0, 0, 0, 0, 0.00948199951485, 0.432056525076, 0.381648158697, 0.354555726206, 0.329513316888, 0.298422824228) densityValues <- c(0, 0, 0, 0, 0.0594218160072, 0.0436977691036, 0.0508364857798, 0.054873528325, 0.0587182664085, 0.0636229042785) distributionPoints <- c(-2.226325228634938, -1.156887023657177, -0.643949578356075, -0.2027950777320613, 0.305827808237559, 6.42632522863494, 5.35688702365718, 4.843949578356074, 4.40279507773206, 3.89417219176244) verifyDistribution(distributionPoints, distributionValues, mu, sigma, tol) verifyDensity(distributionPoints, densityValues, mu, sigma, tol) distributionValues <- c(0, 0.0396495152787, 0.16601209243, 0.272533253269, 0.357618409638, 0.426488363093, 0.483255136841, 0.530823013877) densityValues <- c(0, 0.0873055825147, 0.0847676303432, 0.0677935186237, 0.0544105523058, 0.0444614628804, 0.0369750288945, 0.0312206409653) distributionPoints <- c(mu - 2 *sigma, mu - sigma, mu, mu + sigma, mu + 2 * sigma, mu + 3 * sigma, mu + 4 * sigma, mu + 5 * sigma) verifyDistribution(distributionPoints, distributionValues, mu, sigma, tol) verifyDensity(distributionPoints, densityValues, mu, sigma, tol) mu <- 0 sigma <- 1 distributionPoints <- c(mu - 2 *sigma, mu - sigma, mu, mu + sigma, mu + 2 * sigma, mu + 3 * sigma, mu + 4 * sigma, mu + 5 * sigma) distributionValues <- c(0, 0, 0, 0.5, 0.755891404214, 0.864031392359, 0.917171480998, 0.946239689548) densityValues <- c(0, 0, 0, 0.398942280401, 0.156874019279, 0.07272825614, 0.0381534565119, 0.0218507148303) verifyDistribution(distributionPoints, distributionValues, mu, sigma, tol) verifyDensity(distributionPoints, densityValues, mu, sigma, tol) mu <- 0 sigma <- 0.1 distributionPoints <- c(mu - 2 *sigma, mu - sigma, mu, mu + sigma, mu + 2 * sigma, mu + 3 * sigma, mu + 4 * sigma, mu + 5 * sigma) distributionValues <- c(0, 0, 0, 1.28417563064e-117, 1.39679883412e-58, 1.09839325447e-33, 2.52587961726e-20, 2.0824223487e-12) densityValues <- c(0, 0, 0, 2.96247992535e-114, 1.1283370232e-55, 4.43812313223e-31, 5.85346445002e-18, 2.9446618076e-10) verifyDistribution(distributionPoints, distributionValues, mu, sigma, tol) verifyDensity(distributionPoints, densityValues, mu, sigma, tol) displayDashes(WIDTH) Other Java examples (source code examples)Here is a short list of links related to this Java logNormalTestCases source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.