|
Java example source code file (pascalTestCases)
The pascalTestCases Java example source code# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #------------------------------------------------------------------------------ # R source file to validate Pascal distribution tests in # org.apache.commons.math.distribution.PascalDistributionTest # # To run the test, install R, put this file and testFunctions # into the same directory, launch R from this directory and then enter # source("<name-of-this-file>") # # R functions used # dnbinom(x, size, prob, mu, log = FALSE) <- density # pnbinom(q, size, prob, mu, lower.tail = TRUE, log.p = FALSE) <- distribution # qnbinom(p, size, prob, mu, lower.tail = TRUE, log.p = FALSE) <- quantiles #------------------------------------------------------------------------------ tol <- 1E-9 # error tolerance for tests #------------------------------------------------------------------------------ # Function definitions source("testFunctions") # utility test functions # function to verify density computations verifyDensity <- function(points, expected, size, p, tol) { rDensityValues <- rep(0, length(points)) i <- 0 for (point in points) { i <- i + 1 rDensityValues[i] <- dnbinom(point, size, p) } output <- c("Density test size = ", size, ", p = ", p) if (assertEquals(expected,rDensityValues,tol,"Density Values")) { displayPadded(output, SUCCEEDED, WIDTH) } else { displayPadded(output, FAILED, WIDTH) } } # function to verify distribution computations verifyDistribution <- function(points, expected, size, p, tol) { rDistValues <- rep(0, length(points)) i <- 0 for (point in points) { i <- i + 1 rDistValues[i] <- pnbinom(point, size, p) } output <- c("Distribution test size = ", size, ", p = ", p) if (assertEquals(expected,rDistValues,tol,"Distribution Values")) { displayPadded(output, SUCCEEDED, WIDTH) } else { displayPadded(output, FAILED, WIDTH) } } #-------------------------------------------------------------------------- cat("Negative Binomial test cases\n") size <- 10.0 probability <- 0.70 densityPoints <- c(-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) densityValues <- c(0, 0.0282475249, 0.0847425747, 0.139825248255, 0.167790297906, 0.163595540458, 0.137420253985, 0.103065190489, 0.070673273478, 0.0450542118422, 0.0270325271053, 0.0154085404500, 0.0084046584273) distributionValues <- c(0, 0.0282475249, 0.1129900996, 0.252815347855, 0.420605645761, 0.584201186219, 0.721621440204, 0.824686630693, 0.895359904171, 0.940414116013, 0.967446643119, 0.982855183569, 0.991259841996) inverseCumPoints <- c( 0, 0.001, 0.010, 0.025, 0.050, 0.100, 0.999, 0.990, 0.975, 0.950, 0.900) inverseCumValues <- c(-1, -1, -1, -1, 0, 0, 13, 10, 9, 8, 7) verifyDensity(densityPoints,densityValues,size,probability,tol) verifyDistribution(densityPoints, distributionValues, size, probability, tol) i <- 0 rInverseCumValues <- rep(0,length(inverseCumPoints)) for (point in inverseCumPoints) { i <- i + 1 rInverseCumValues[i] <- qnbinom(point, size, probability) } output <- c("Inverse Distribution test n = ", size, ", p = ", probability) # R defines quantiles from the right, need to subtract one if (assertEquals(inverseCumValues, rInverseCumValues-1, tol, "Inverse Dist Values")) { displayPadded(output, SUCCEEDED, 80) } else { displayPadded(output, FAILED, 80) } # Degenerate cases size <- 5 probability <- 0.0 densityPoints <- c(-1, 0, 1, 10, 11) # Note: commons math returns 0's below densityValues <- c(NaN, NaN, NaN, NaN, NaN) distributionPoints <- c(-1, 0, 1, 5, 10) # Note: commons math returns 0's below distributionValues <- c(NaN, NaN, NaN, NaN, NaN) output <- c("Density test n = ", size, ", p = ", probability) verifyDensity(densityPoints,densityValues,size,probability,tol) output <- c("Distribution test n = ", size, ", p = ", probability) verifyDistribution(distributionPoints,distributionValues,size,probability,tol) size <- 5 probability <- 1.0 densityPoints <- c(-1, 0, 1, 2, 5, 10) densityValues <- c(0, 1, 0, 0, 0, 0) distributionPoints <- c(-1, 0, 1, 2, 5, 10) distributionValues <- c(0, 1, 1, 1, 1, 1) output <- c("Density test n = ", size, ", p = ", probability) verifyDensity(densityPoints,densityValues,size,probability,tol) output <- c("Distribution test n = ", size, ", p = ", probability) verifyDistribution(distributionPoints,distributionValues,size,probability,tol) displayDashes(WIDTH) Other Java examples (source code examples)Here is a short list of links related to this Java pascalTestCases source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.