|
Java example source code file (DerivativeStructureTest.java)
The DerivativeStructureTest.java Java example source code/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.analysis.differentiation; import java.util.Arrays; import java.util.List; import org.apache.commons.math3.ExtendedFieldElementAbstractTest; import org.apache.commons.math3.TestUtils; import org.apache.commons.math3.analysis.polynomials.PolynomialFunction; import org.apache.commons.math3.exception.DimensionMismatchException; import org.apache.commons.math3.exception.NumberIsTooLargeException; import org.apache.commons.math3.random.Well1024a; import org.apache.commons.math3.util.ArithmeticUtils; import org.apache.commons.math3.util.CombinatoricsUtils; import org.apache.commons.math3.util.FastMath; import org.junit.Assert; import org.junit.Test; /** * Test for class {@link DerivativeStructure}. */ public class DerivativeStructureTest extends ExtendedFieldElementAbstractTest<DerivativeStructure> { @Override protected DerivativeStructure build(final double x) { return new DerivativeStructure(2, 1, 0, x); } @Test(expected=NumberIsTooLargeException.class) public void testWrongVariableIndex() { new DerivativeStructure(3, 1, 3, 1.0); } @Test(expected=DimensionMismatchException.class) public void testMissingOrders() { new DerivativeStructure(3, 1, 0, 1.0).getPartialDerivative(0, 1); } @Test(expected=NumberIsTooLargeException.class) public void testTooLargeOrder() { new DerivativeStructure(3, 1, 0, 1.0).getPartialDerivative(1, 1, 2); } @Test public void testVariableWithoutDerivative0() { DerivativeStructure v = new DerivativeStructure(1, 0, 0, 1.0); Assert.assertEquals(1.0, v.getValue(), 1.0e-15); } @Test(expected=NumberIsTooLargeException.class) public void testVariableWithoutDerivative1() { DerivativeStructure v = new DerivativeStructure(1, 0, 0, 1.0); Assert.assertEquals(1.0, v.getPartialDerivative(1), 1.0e-15); } @Test public void testVariable() { for (int maxOrder = 1; maxOrder < 5; ++maxOrder) { checkF0F1(new DerivativeStructure(3, maxOrder, 0, 1.0), 1.0, 1.0, 0.0, 0.0); checkF0F1(new DerivativeStructure(3, maxOrder, 1, 2.0), 2.0, 0.0, 1.0, 0.0); checkF0F1(new DerivativeStructure(3, maxOrder, 2, 3.0), 3.0, 0.0, 0.0, 1.0); } } @Test public void testConstant() { for (int maxOrder = 1; maxOrder < 5; ++maxOrder) { checkF0F1(new DerivativeStructure(3, maxOrder, FastMath.PI), FastMath.PI, 0.0, 0.0, 0.0); } } @Test public void testCreateConstant() { DerivativeStructure a = new DerivativeStructure(3, 2, 0, 1.3); DerivativeStructure b = a.createConstant(2.5); Assert.assertEquals(a.getFreeParameters(), b.getFreeParameters()); Assert.assertEquals(a.getOrder(), b.getOrder()); checkEquals(a.getField().getOne().multiply(2.5), b, 1.0e-15); } @Test public void testPrimitiveAdd() { for (int maxOrder = 1; maxOrder < 5; ++maxOrder) { checkF0F1(new DerivativeStructure(3, maxOrder, 0, 1.0).add(5), 6.0, 1.0, 0.0, 0.0); checkF0F1(new DerivativeStructure(3, maxOrder, 1, 2.0).add(5), 7.0, 0.0, 1.0, 0.0); checkF0F1(new DerivativeStructure(3, maxOrder, 2, 3.0).add(5), 8.0, 0.0, 0.0, 1.0); } } @Test public void testAdd() { for (int maxOrder = 1; maxOrder < 5; ++maxOrder) { DerivativeStructure x = new DerivativeStructure(3, maxOrder, 0, 1.0); DerivativeStructure y = new DerivativeStructure(3, maxOrder, 1, 2.0); DerivativeStructure z = new DerivativeStructure(3, maxOrder, 2, 3.0); DerivativeStructure xyz = x.add(y.add(z)); checkF0F1(xyz, x.getValue() + y.getValue() + z.getValue(), 1.0, 1.0, 1.0); } } @Test public void testPrimitiveSubtract() { for (int maxOrder = 1; maxOrder < 5; ++maxOrder) { checkF0F1(new DerivativeStructure(3, maxOrder, 0, 1.0).subtract(5), -4.0, 1.0, 0.0, 0.0); checkF0F1(new DerivativeStructure(3, maxOrder, 1, 2.0).subtract(5), -3.0, 0.0, 1.0, 0.0); checkF0F1(new DerivativeStructure(3, maxOrder, 2, 3.0).subtract(5), -2.0, 0.0, 0.0, 1.0); } } @Test public void testSubtract() { for (int maxOrder = 1; maxOrder < 5; ++maxOrder) { DerivativeStructure x = new DerivativeStructure(3, maxOrder, 0, 1.0); DerivativeStructure y = new DerivativeStructure(3, maxOrder, 1, 2.0); DerivativeStructure z = new DerivativeStructure(3, maxOrder, 2, 3.0); DerivativeStructure xyz = x.subtract(y.subtract(z)); checkF0F1(xyz, x.getValue() - (y.getValue() - z.getValue()), 1.0, -1.0, 1.0); } } @Test public void testPrimitiveMultiply() { for (int maxOrder = 1; maxOrder < 5; ++maxOrder) { checkF0F1(new DerivativeStructure(3, maxOrder, 0, 1.0).multiply(5), 5.0, 5.0, 0.0, 0.0); checkF0F1(new DerivativeStructure(3, maxOrder, 1, 2.0).multiply(5), 10.0, 0.0, 5.0, 0.0); checkF0F1(new DerivativeStructure(3, maxOrder, 2, 3.0).multiply(5), 15.0, 0.0, 0.0, 5.0); } } @Test public void testMultiply() { for (int maxOrder = 1; maxOrder < 5; ++maxOrder) { DerivativeStructure x = new DerivativeStructure(3, maxOrder, 0, 1.0); DerivativeStructure y = new DerivativeStructure(3, maxOrder, 1, 2.0); DerivativeStructure z = new DerivativeStructure(3, maxOrder, 2, 3.0); DerivativeStructure xyz = x.multiply(y.multiply(z)); for (int i = 0; i <= maxOrder; ++i) { for (int j = 0; j <= maxOrder; ++j) { for (int k = 0; k <= maxOrder; ++k) { if (i + j + k <= maxOrder) { Assert.assertEquals((i == 0 ? x.getValue() : (i == 1 ? 1.0 : 0.0)) * (j == 0 ? y.getValue() : (j == 1 ? 1.0 : 0.0)) * (k == 0 ? z.getValue() : (k == 1 ? 1.0 : 0.0)), xyz.getPartialDerivative(i, j, k), 1.0e-15); } } } } } } @Test public void testNegate() { for (int maxOrder = 1; maxOrder < 5; ++maxOrder) { checkF0F1(new DerivativeStructure(3, maxOrder, 0, 1.0).negate(), -1.0, -1.0, 0.0, 0.0); checkF0F1(new DerivativeStructure(3, maxOrder, 1, 2.0).negate(), -2.0, 0.0, -1.0, 0.0); checkF0F1(new DerivativeStructure(3, maxOrder, 2, 3.0).negate(), -3.0, 0.0, 0.0, -1.0); } } @Test public void testReciprocal() { for (double x = 0.1; x < 1.2; x += 0.1) { DerivativeStructure r = new DerivativeStructure(1, 6, 0, x).reciprocal(); Assert.assertEquals(1 / x, r.getValue(), 1.0e-15); for (int i = 1; i < r.getOrder(); ++i) { double expected = ArithmeticUtils.pow(-1, i) * CombinatoricsUtils.factorial(i) / FastMath.pow(x, i + 1); Assert.assertEquals(expected, r.getPartialDerivative(i), 1.0e-15 * FastMath.abs(expected)); } } } @Test public void testPow() { for (int maxOrder = 1; maxOrder < 5; ++maxOrder) { for (int n = 0; n < 10; ++n) { DerivativeStructure x = new DerivativeStructure(3, maxOrder, 0, 1.0); DerivativeStructure y = new DerivativeStructure(3, maxOrder, 1, 2.0); DerivativeStructure z = new DerivativeStructure(3, maxOrder, 2, 3.0); List<DerivativeStructure> list = Arrays.asList(x, y, z, x.add(y).add(z), x.multiply(y).multiply(z)); if (n == 0) { for (DerivativeStructure ds : list) { checkEquals(ds.getField().getOne(), ds.pow(n), 1.0e-15); } } else if (n == 1) { for (DerivativeStructure ds : list) { checkEquals(ds, ds.pow(n), 1.0e-15); } } else { for (DerivativeStructure ds : list) { DerivativeStructure p = ds.getField().getOne(); for (int i = 0; i < n; ++i) { p = p.multiply(ds); } checkEquals(p, ds.pow(n), 1.0e-15); } } } } } @Test public void testPowDoubleDS() { for (int maxOrder = 1; maxOrder < 5; ++maxOrder) { DerivativeStructure x = new DerivativeStructure(3, maxOrder, 0, 0.1); DerivativeStructure y = new DerivativeStructure(3, maxOrder, 1, 0.2); DerivativeStructure z = new DerivativeStructure(3, maxOrder, 2, 0.3); List<DerivativeStructure> list = Arrays.asList(x, y, z, x.add(y).add(z), x.multiply(y).multiply(z)); for (DerivativeStructure ds : list) { // the special case a = 0 is included here for (double a : new double[] { 0.0, 0.1, 1.0, 2.0, 5.0 }) { DerivativeStructure reference = (a == 0) ? x.getField().getZero() : new DerivativeStructure(3, maxOrder, a).pow(ds); DerivativeStructure result = DerivativeStructure.pow(a, ds); checkEquals(reference, result, 1.0e-15); } } // negative base: -1^x can be evaluated for integers only, so value is sometimes OK, derivatives are always NaN DerivativeStructure negEvenInteger = DerivativeStructure.pow(-2.0, new DerivativeStructure(3, maxOrder, 0, 2.0)); Assert.assertEquals(4.0, negEvenInteger.getValue(), 1.0e-15); Assert.assertTrue(Double.isNaN(negEvenInteger.getPartialDerivative(1, 0, 0))); DerivativeStructure negOddInteger = DerivativeStructure.pow(-2.0, new DerivativeStructure(3, maxOrder, 0, 3.0)); Assert.assertEquals(-8.0, negOddInteger.getValue(), 1.0e-15); Assert.assertTrue(Double.isNaN(negOddInteger.getPartialDerivative(1, 0, 0))); DerivativeStructure negNonInteger = DerivativeStructure.pow(-2.0, new DerivativeStructure(3, maxOrder, 0, 2.001)); Assert.assertTrue(Double.isNaN(negNonInteger.getValue())); Assert.assertTrue(Double.isNaN(negNonInteger.getPartialDerivative(1, 0, 0))); DerivativeStructure zeroNeg = DerivativeStructure.pow(0.0, new DerivativeStructure(3, maxOrder, 0, -1.0)); Assert.assertTrue(Double.isNaN(zeroNeg.getValue())); Assert.assertTrue(Double.isNaN(zeroNeg.getPartialDerivative(1, 0, 0))); DerivativeStructure posNeg = DerivativeStructure.pow(2.0, new DerivativeStructure(3, maxOrder, 0, -2.0)); Assert.assertEquals(1.0 / 4.0, posNeg.getValue(), 1.0e-15); Assert.assertEquals(FastMath.log(2.0) / 4.0, posNeg.getPartialDerivative(1, 0, 0), 1.0e-15); // very special case: a = 0 and power = 0 DerivativeStructure zeroZero = DerivativeStructure.pow(0.0, new DerivativeStructure(3, maxOrder, 0, 0.0)); // this should be OK for simple first derivative with one variable only ... Assert.assertEquals(1.0, zeroZero.getValue(), 1.0e-15); Assert.assertEquals(Double.NEGATIVE_INFINITY, zeroZero.getPartialDerivative(1, 0, 0), 1.0e-15); // the following checks show a LIMITATION of the current implementation // we have no way to tell x is a pure linear variable x = 0 // we only say: "x is a structure with value = 0.0, // first derivative with respect to x = 1.0, and all other derivatives // (first order with respect to y and z and higher derivatives) all 0.0. // We have function f(x) = a^x and x = 0 so we compute: // f(0) = 1, f'(0) = ln(a), f''(0) = ln(a)^2. The limit of these values // when a converges to 0 implies all derivatives keep switching between // +infinity and -infinity. // // Function composition rule for first derivatives is: // d[f(g(x,y,z))]/dy = f'(g(x,y,z)) * dg(x,y,z)/dy // so given that in our case x represents g and does not depend // on y or z, we have dg(x,y,z)/dy = 0 // applying the composition rules gives: // d[f(g(x,y,z))]/dy = f'(g(x,y,z)) * dg(x,y,z)/dy // = -infinity * 0 // = NaN // if we knew x is really the x variable and not the identity // function applied to x, we would not have computed f'(g(x,y,z)) * dg(x,y,z)/dy // and we would have found that the result was 0 and not NaN Assert.assertTrue(Double.isNaN(zeroZero.getPartialDerivative(0, 1, 0))); Assert.assertTrue(Double.isNaN(zeroZero.getPartialDerivative(0, 0, 1))); // Function composition rule for second derivatives is: // d2[f(g(x))]/dx2 = f''(g(x)) * [g'(x)]^2 + f'(g(x)) * g''(x) // when function f is the a^x root and x = 0 we have: // f(0) = 1, f'(0) = ln(a), f''(0) = ln(a)^2 which for a = 0 implies // all derivatives keep switching between +infinity and -infinity // so given that in our case x represents g, we have g(x) = 0, // g'(x) = 1 and g''(x) = 0 // applying the composition rules gives: // d2[f(g(x))]/dx2 = f''(g(x)) * [g'(x)]^2 + f'(g(x)) * g''(x) // = +infinity * 1^2 + -infinity * 0 // = +infinity + NaN // = NaN // if we knew x is really the x variable and not the identity // function applied to x, we would not have computed f'(g(x)) * g''(x) // and we would have found that the result was +infinity and not NaN if (maxOrder > 1) { Assert.assertTrue(Double.isNaN(zeroZero.getPartialDerivative(2, 0, 0))); Assert.assertTrue(Double.isNaN(zeroZero.getPartialDerivative(0, 2, 0))); Assert.assertTrue(Double.isNaN(zeroZero.getPartialDerivative(0, 0, 2))); Assert.assertTrue(Double.isNaN(zeroZero.getPartialDerivative(1, 1, 0))); Assert.assertTrue(Double.isNaN(zeroZero.getPartialDerivative(0, 1, 1))); Assert.assertTrue(Double.isNaN(zeroZero.getPartialDerivative(1, 1, 0))); } } } @Test public void testExpression() { double epsilon = 2.5e-13; for (double x = 0; x < 2; x += 0.2) { DerivativeStructure dsX = new DerivativeStructure(3, 5, 0, x); for (double y = 0; y < 2; y += 0.2) { DerivativeStructure dsY = new DerivativeStructure(3, 5, 1, y); for (double z = 0; z >- 2; z -= 0.2) { DerivativeStructure dsZ = new DerivativeStructure(3, 5, 2, z); // f(x, y, z) = x + 5 x y - 2 z + (8 z x - y)^3 DerivativeStructure ds = new DerivativeStructure(1, dsX, 5, dsX.multiply(dsY), -2, dsZ, 1, new DerivativeStructure(8, dsZ.multiply(dsX), -1, dsY).pow(3)); DerivativeStructure dsOther = new DerivativeStructure(1, dsX, 5, dsX.multiply(dsY), -2, dsZ).add(new DerivativeStructure(8, dsZ.multiply(dsX), -1, dsY).pow(3)); double f = x + 5 * x * y - 2 * z + FastMath.pow(8 * z * x - y, 3); Assert.assertEquals(f, ds.getValue(), FastMath.abs(epsilon * f)); Assert.assertEquals(f, dsOther.getValue(), FastMath.abs(epsilon * f)); // df/dx = 1 + 5 y + 24 (8 z x - y)^2 z double dfdx = 1 + 5 * y + 24 * z * FastMath.pow(8 * z * x - y, 2); Assert.assertEquals(dfdx, ds.getPartialDerivative(1, 0, 0), FastMath.abs(epsilon * dfdx)); Assert.assertEquals(dfdx, dsOther.getPartialDerivative(1, 0, 0), FastMath.abs(epsilon * dfdx)); // df/dxdy = 5 + 48 z*(y - 8 z x) double dfdxdy = 5 + 48 * z * (y - 8 * z * x); Assert.assertEquals(dfdxdy, ds.getPartialDerivative(1, 1, 0), FastMath.abs(epsilon * dfdxdy)); Assert.assertEquals(dfdxdy, dsOther.getPartialDerivative(1, 1, 0), FastMath.abs(epsilon * dfdxdy)); // df/dxdydz = 48 (y - 16 z x) double dfdxdydz = 48 * (y - 16 * z * x); Assert.assertEquals(dfdxdydz, ds.getPartialDerivative(1, 1, 1), FastMath.abs(epsilon * dfdxdydz)); Assert.assertEquals(dfdxdydz, dsOther.getPartialDerivative(1, 1, 1), FastMath.abs(epsilon * dfdxdydz)); } } } } @Test public void testCompositionOneVariableX() { double epsilon = 1.0e-13; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.1) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); for (double y = 0.1; y < 1.2; y += 0.1) { DerivativeStructure dsY = new DerivativeStructure(1, maxOrder, y); DerivativeStructure f = dsX.divide(dsY).sqrt(); double f0 = FastMath.sqrt(x / y); Assert.assertEquals(f0, f.getValue(), FastMath.abs(epsilon * f0)); if (f.getOrder() > 0) { double f1 = 1 / (2 * FastMath.sqrt(x * y)); Assert.assertEquals(f1, f.getPartialDerivative(1), FastMath.abs(epsilon * f1)); if (f.getOrder() > 1) { double f2 = -f1 / (2 * x); Assert.assertEquals(f2, f.getPartialDerivative(2), FastMath.abs(epsilon * f2)); if (f.getOrder() > 2) { double f3 = (f0 + x / (2 * y * f0)) / (4 * x * x * x); Assert.assertEquals(f3, f.getPartialDerivative(3), FastMath.abs(epsilon * f3)); } } } } } } } @Test public void testTrigo() { double epsilon = 2.0e-12; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.1) { DerivativeStructure dsX = new DerivativeStructure(3, maxOrder, 0, x); for (double y = 0.1; y < 1.2; y += 0.1) { DerivativeStructure dsY = new DerivativeStructure(3, maxOrder, 1, y); for (double z = 0.1; z < 1.2; z += 0.1) { DerivativeStructure dsZ = new DerivativeStructure(3, maxOrder, 2, z); DerivativeStructure f = dsX.divide(dsY.cos().add(dsZ.tan())).sin(); double a = FastMath.cos(y) + FastMath.tan(z); double f0 = FastMath.sin(x / a); Assert.assertEquals(f0, f.getValue(), FastMath.abs(epsilon * f0)); if (f.getOrder() > 0) { double dfdx = FastMath.cos(x / a) / a; Assert.assertEquals(dfdx, f.getPartialDerivative(1, 0, 0), FastMath.abs(epsilon * dfdx)); double dfdy = x * FastMath.sin(y) * dfdx / a; Assert.assertEquals(dfdy, f.getPartialDerivative(0, 1, 0), FastMath.abs(epsilon * dfdy)); double cz = FastMath.cos(z); double cz2 = cz * cz; double dfdz = -x * dfdx / (a * cz2); Assert.assertEquals(dfdz, f.getPartialDerivative(0, 0, 1), FastMath.abs(epsilon * dfdz)); if (f.getOrder() > 1) { double df2dx2 = -(f0 / (a * a)); Assert.assertEquals(df2dx2, f.getPartialDerivative(2, 0, 0), FastMath.abs(epsilon * df2dx2)); double df2dy2 = x * FastMath.cos(y) * dfdx / a - x * x * FastMath.sin(y) * FastMath.sin(y) * f0 / (a * a * a * a) + 2 * FastMath.sin(y) * dfdy / a; Assert.assertEquals(df2dy2, f.getPartialDerivative(0, 2, 0), FastMath.abs(epsilon * df2dy2)); double c4 = cz2 * cz2; double df2dz2 = x * (2 * a * (1 - a * cz * FastMath.sin(z)) * dfdx - x * f0 / a ) / (a * a * a * c4); Assert.assertEquals(df2dz2, f.getPartialDerivative(0, 0, 2), FastMath.abs(epsilon * df2dz2)); double df2dxdy = dfdy / x - x * FastMath.sin(y) * f0 / (a * a * a); Assert.assertEquals(df2dxdy, f.getPartialDerivative(1, 1, 0), FastMath.abs(epsilon * df2dxdy)); } } } } } } } @Test public void testSqrtDefinition() { double[] epsilon = new double[] { 5.0e-16, 5.0e-16, 2.0e-15, 5.0e-14, 2.0e-12 }; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure sqrt1 = dsX.pow(0.5); DerivativeStructure sqrt2 = dsX.sqrt(); DerivativeStructure zero = sqrt1.subtract(sqrt2); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0, zero.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testRootNSingularity() { for (int n = 2; n < 10; ++n) { for (int maxOrder = 0; maxOrder < 12; ++maxOrder) { DerivativeStructure dsZero = new DerivativeStructure(1, maxOrder, 0, 0.0); DerivativeStructure rootN = dsZero.rootN(n); Assert.assertEquals(0.0, rootN.getValue(), 1.0e-20); if (maxOrder > 0) { Assert.assertTrue(Double.isInfinite(rootN.getPartialDerivative(1))); Assert.assertTrue(rootN.getPartialDerivative(1) > 0); for (int order = 2; order <= maxOrder; ++order) { // the following checks shows a LIMITATION of the current implementation // we have no way to tell dsZero is a pure linear variable x = 0 // we only say: "dsZero is a structure with value = 0.0, // first derivative = 1.0, second and higher derivatives = 0.0". // Function composition rule for second derivatives is: // d2[f(g(x))]/dx2 = f''(g(x)) * [g'(x)]^2 + f'(g(x)) * g''(x) // when function f is the nth root and x = 0 we have: // f(0) = 0, f'(0) = +infinity, f''(0) = -infinity (and higher // derivatives keep switching between +infinity and -infinity) // so given that in our case dsZero represents g, we have g(x) = 0, // g'(x) = 1 and g''(x) = 0 // applying the composition rules gives: // d2[f(g(x))]/dx2 = f''(g(x)) * [g'(x)]^2 + f'(g(x)) * g''(x) // = -infinity * 1^2 + +infinity * 0 // = -infinity + NaN // = NaN // if we knew dsZero is really the x variable and not the identity // function applied to x, we would not have computed f'(g(x)) * g''(x) // and we would have found that the result was -infinity and not NaN Assert.assertTrue(Double.isNaN(rootN.getPartialDerivative(order))); } } // the following shows that the limitation explained above is NOT a bug... // if we set up the higher order derivatives for g appropriately, we do // compute the higher order derivatives of the composition correctly double[] gDerivatives = new double[ 1 + maxOrder]; gDerivatives[0] = 0.0; for (int k = 1; k <= maxOrder; ++k) { gDerivatives[k] = FastMath.pow(-1.0, k + 1); } DerivativeStructure correctRoot = new DerivativeStructure(1, maxOrder, gDerivatives).rootN(n); Assert.assertEquals(0.0, correctRoot.getValue(), 1.0e-20); if (maxOrder > 0) { Assert.assertTrue(Double.isInfinite(correctRoot.getPartialDerivative(1))); Assert.assertTrue(correctRoot.getPartialDerivative(1) > 0); for (int order = 2; order <= maxOrder; ++order) { Assert.assertTrue(Double.isInfinite(correctRoot.getPartialDerivative(order))); if ((order % 2) == 0) { Assert.assertTrue(correctRoot.getPartialDerivative(order) < 0); } else { Assert.assertTrue(correctRoot.getPartialDerivative(order) > 0); } } } } } } @Test public void testSqrtPow2() { double[] epsilon = new double[] { 1.0e-16, 3.0e-16, 2.0e-15, 6.0e-14, 6.0e-12 }; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure rebuiltX = dsX.multiply(dsX).sqrt(); DerivativeStructure zero = rebuiltX.subtract(dsX); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0.0, zero.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testCbrtDefinition() { double[] epsilon = new double[] { 4.0e-16, 9.0e-16, 6.0e-15, 2.0e-13, 4.0e-12 }; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure cbrt1 = dsX.pow(1.0 / 3.0); DerivativeStructure cbrt2 = dsX.cbrt(); DerivativeStructure zero = cbrt1.subtract(cbrt2); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0, zero.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testCbrtPow3() { double[] epsilon = new double[] { 1.0e-16, 5.0e-16, 8.0e-15, 3.0e-13, 4.0e-11 }; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure rebuiltX = dsX.multiply(dsX.multiply(dsX)).cbrt(); DerivativeStructure zero = rebuiltX.subtract(dsX); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0.0, zero.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testPowReciprocalPow() { double[] epsilon = new double[] { 2.0e-15, 2.0e-14, 3.0e-13, 8.0e-12, 3.0e-10 }; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.01) { DerivativeStructure dsX = new DerivativeStructure(2, maxOrder, 0, x); for (double y = 0.1; y < 1.2; y += 0.01) { DerivativeStructure dsY = new DerivativeStructure(2, maxOrder, 1, y); DerivativeStructure rebuiltX = dsX.pow(dsY).pow(dsY.reciprocal()); DerivativeStructure zero = rebuiltX.subtract(dsX); for (int n = 0; n <= maxOrder; ++n) { for (int m = 0; m <= maxOrder; ++m) { if (n + m <= maxOrder) { Assert.assertEquals(0.0, zero.getPartialDerivative(n, m), epsilon[n + m]); } } } } } } } @Test public void testHypotDefinition() { double epsilon = 1.0e-20; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = -1.7; x < 2; x += 0.2) { DerivativeStructure dsX = new DerivativeStructure(2, maxOrder, 0, x); for (double y = -1.7; y < 2; y += 0.2) { DerivativeStructure dsY = new DerivativeStructure(2, maxOrder, 1, y); DerivativeStructure hypot = DerivativeStructure.hypot(dsY, dsX); DerivativeStructure ref = dsX.multiply(dsX).add(dsY.multiply(dsY)).sqrt(); DerivativeStructure zero = hypot.subtract(ref); for (int n = 0; n <= maxOrder; ++n) { for (int m = 0; m <= maxOrder; ++m) { if (n + m <= maxOrder) { Assert.assertEquals(0, zero.getPartialDerivative(n, m), epsilon); } } } } } } } @Test public void testHypotNoOverflow() { DerivativeStructure dsX = new DerivativeStructure(2, 5, 0, +3.0e250); DerivativeStructure dsY = new DerivativeStructure(2, 5, 1, -4.0e250); DerivativeStructure hypot = DerivativeStructure.hypot(dsX, dsY); Assert.assertEquals(5.0e250, hypot.getValue(), 1.0e235); Assert.assertEquals(dsX.getValue() / hypot.getValue(), hypot.getPartialDerivative(1, 0), 1.0e-10); Assert.assertEquals(dsY.getValue() / hypot.getValue(), hypot.getPartialDerivative(0, 1), 1.0e-10); DerivativeStructure sqrt = dsX.multiply(dsX).add(dsY.multiply(dsY)).sqrt(); Assert.assertTrue(Double.isInfinite(sqrt.getValue())); } @Test public void testHypotNeglectible() { DerivativeStructure dsSmall = new DerivativeStructure(2, 5, 0, +3.0e-10); DerivativeStructure dsLarge = new DerivativeStructure(2, 5, 1, -4.0e25); Assert.assertEquals(dsLarge.abs().getValue(), DerivativeStructure.hypot(dsSmall, dsLarge).getValue(), 1.0e-10); Assert.assertEquals(0, DerivativeStructure.hypot(dsSmall, dsLarge).getPartialDerivative(1, 0), 1.0e-10); Assert.assertEquals(-1, DerivativeStructure.hypot(dsSmall, dsLarge).getPartialDerivative(0, 1), 1.0e-10); Assert.assertEquals(dsLarge.abs().getValue(), DerivativeStructure.hypot(dsLarge, dsSmall).getValue(), 1.0e-10); Assert.assertEquals(0, DerivativeStructure.hypot(dsLarge, dsSmall).getPartialDerivative(1, 0), 1.0e-10); Assert.assertEquals(-1, DerivativeStructure.hypot(dsLarge, dsSmall).getPartialDerivative(0, 1), 1.0e-10); } @Test public void testHypotSpecial() { Assert.assertTrue(Double.isNaN(DerivativeStructure.hypot(new DerivativeStructure(2, 5, 0, Double.NaN), new DerivativeStructure(2, 5, 0, +3.0e250)).getValue())); Assert.assertTrue(Double.isNaN(DerivativeStructure.hypot(new DerivativeStructure(2, 5, 0, +3.0e250), new DerivativeStructure(2, 5, 0, Double.NaN)).getValue())); Assert.assertTrue(Double.isInfinite(DerivativeStructure.hypot(new DerivativeStructure(2, 5, 0, Double.POSITIVE_INFINITY), new DerivativeStructure(2, 5, 0, +3.0e250)).getValue())); Assert.assertTrue(Double.isInfinite(DerivativeStructure.hypot(new DerivativeStructure(2, 5, 0, +3.0e250), new DerivativeStructure(2, 5, 0, Double.POSITIVE_INFINITY)).getValue())); } @Test public void testPrimitiveRemainder() { double epsilon = 1.0e-15; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = -1.7; x < 2; x += 0.2) { DerivativeStructure dsX = new DerivativeStructure(2, maxOrder, 0, x); for (double y = -1.7; y < 2; y += 0.2) { DerivativeStructure remainder = dsX.remainder(y); DerivativeStructure ref = dsX.subtract(x - FastMath.IEEEremainder(x, y)); DerivativeStructure zero = remainder.subtract(ref); for (int n = 0; n <= maxOrder; ++n) { for (int m = 0; m <= maxOrder; ++m) { if (n + m <= maxOrder) { Assert.assertEquals(0, zero.getPartialDerivative(n, m), epsilon); } } } } } } } @Test public void testRemainder() { double epsilon = 2.0e-15; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = -1.7; x < 2; x += 0.2) { DerivativeStructure dsX = new DerivativeStructure(2, maxOrder, 0, x); for (double y = -1.7; y < 2; y += 0.2) { DerivativeStructure dsY = new DerivativeStructure(2, maxOrder, 1, y); DerivativeStructure remainder = dsX.remainder(dsY); DerivativeStructure ref = dsX.subtract(dsY.multiply((x - FastMath.IEEEremainder(x, y)) / y)); DerivativeStructure zero = remainder.subtract(ref); for (int n = 0; n <= maxOrder; ++n) { for (int m = 0; m <= maxOrder; ++m) { if (n + m <= maxOrder) { Assert.assertEquals(0, zero.getPartialDerivative(n, m), epsilon); } } } } } } } @Override @Test public void testExp() { double[] epsilon = new double[] { 1.0e-16, 1.0e-16, 1.0e-16, 1.0e-16, 1.0e-16 }; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { double refExp = FastMath.exp(x); DerivativeStructure exp = new DerivativeStructure(1, maxOrder, 0, x).exp(); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(refExp, exp.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testExpm1Definition() { double epsilon = 3.0e-16; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure expm11 = dsX.expm1(); DerivativeStructure expm12 = dsX.exp().subtract(dsX.getField().getOne()); DerivativeStructure zero = expm11.subtract(expm12); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0, zero.getPartialDerivative(n), epsilon); } } } } @Override @Test public void testLog() { double[] epsilon = new double[] { 1.0e-16, 1.0e-16, 3.0e-14, 7.0e-13, 3.0e-11 }; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure log = new DerivativeStructure(1, maxOrder, 0, x).log(); Assert.assertEquals(FastMath.log(x), log.getValue(), epsilon[0]); for (int n = 1; n <= maxOrder; ++n) { double refDer = -CombinatoricsUtils.factorial(n - 1) / FastMath.pow(-x, n); Assert.assertEquals(refDer, log.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testLog1pDefinition() { double epsilon = 3.0e-16; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure log1p1 = dsX.log1p(); DerivativeStructure log1p2 = dsX.add(dsX.getField().getOne()).log(); DerivativeStructure zero = log1p1.subtract(log1p2); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0, zero.getPartialDerivative(n), epsilon); } } } } @Test public void testLog10Definition() { double[] epsilon = new double[] { 3.0e-16, 3.0e-16, 8.0e-15, 3.0e-13, 8.0e-12 }; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure log101 = dsX.log10(); DerivativeStructure log102 = dsX.log().divide(FastMath.log(10.0)); DerivativeStructure zero = log101.subtract(log102); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0, zero.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testLogExp() { double[] epsilon = new double[] { 2.0e-16, 2.0e-16, 3.0e-16, 2.0e-15, 6.0e-15 }; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure rebuiltX = dsX.exp().log(); DerivativeStructure zero = rebuiltX.subtract(dsX); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0.0, zero.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testLog1pExpm1() { double[] epsilon = new double[] { 6.0e-17, 3.0e-16, 5.0e-16, 9.0e-16, 6.0e-15 }; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure rebuiltX = dsX.expm1().log1p(); DerivativeStructure zero = rebuiltX.subtract(dsX); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0.0, zero.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testLog10Power() { double[] epsilon = new double[] { 3.0e-16, 3.0e-16, 9.0e-16, 6.0e-15, 6.0e-14 }; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure rebuiltX = new DerivativeStructure(1, maxOrder, 10.0).pow(dsX).log10(); DerivativeStructure zero = rebuiltX.subtract(dsX); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0, zero.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testSinCos() { double epsilon = 5.0e-16; for (int maxOrder = 0; maxOrder < 6; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure sin = dsX.sin(); DerivativeStructure cos = dsX.cos(); double s = FastMath.sin(x); double c = FastMath.cos(x); for (int n = 0; n <= maxOrder; ++n) { switch (n % 4) { case 0 : Assert.assertEquals( s, sin.getPartialDerivative(n), epsilon); Assert.assertEquals( c, cos.getPartialDerivative(n), epsilon); break; case 1 : Assert.assertEquals( c, sin.getPartialDerivative(n), epsilon); Assert.assertEquals(-s, cos.getPartialDerivative(n), epsilon); break; case 2 : Assert.assertEquals(-s, sin.getPartialDerivative(n), epsilon); Assert.assertEquals(-c, cos.getPartialDerivative(n), epsilon); break; default : Assert.assertEquals(-c, sin.getPartialDerivative(n), epsilon); Assert.assertEquals( s, cos.getPartialDerivative(n), epsilon); break; } } } } } @Test public void testSinAsin() { double[] epsilon = new double[] { 3.0e-16, 5.0e-16, 3.0e-15, 2.0e-14, 4.0e-13 }; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure rebuiltX = dsX.sin().asin(); DerivativeStructure zero = rebuiltX.subtract(dsX); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0.0, zero.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testCosAcos() { double[] epsilon = new double[] { 6.0e-16, 6.0e-15, 2.0e-13, 4.0e-12, 2.0e-10 }; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure rebuiltX = dsX.cos().acos(); DerivativeStructure zero = rebuiltX.subtract(dsX); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0.0, zero.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testTanAtan() { double[] epsilon = new double[] { 6.0e-17, 2.0e-16, 2.0e-15, 4.0e-14, 2.0e-12 }; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure rebuiltX = dsX.tan().atan(); DerivativeStructure zero = rebuiltX.subtract(dsX); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0.0, zero.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testTangentDefinition() { double[] epsilon = new double[] { 5.0e-16, 2.0e-15, 3.0e-14, 5.0e-13, 2.0e-11 }; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure tan1 = dsX.sin().divide(dsX.cos()); DerivativeStructure tan2 = dsX.tan(); DerivativeStructure zero = tan1.subtract(tan2); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0, zero.getPartialDerivative(n), epsilon[n]); } } } } @Override @Test public void testAtan2() { double[] epsilon = new double[] { 5.0e-16, 3.0e-15, 2.2e-14, 1.0e-12, 8.0e-11 }; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = -1.7; x < 2; x += 0.2) { DerivativeStructure dsX = new DerivativeStructure(2, maxOrder, 0, x); for (double y = -1.7; y < 2; y += 0.2) { DerivativeStructure dsY = new DerivativeStructure(2, maxOrder, 1, y); DerivativeStructure atan2 = DerivativeStructure.atan2(dsY, dsX); DerivativeStructure ref = dsY.divide(dsX).atan(); if (x < 0) { ref = (y < 0) ? ref.subtract(FastMath.PI) : ref.add(FastMath.PI); } DerivativeStructure zero = atan2.subtract(ref); for (int n = 0; n <= maxOrder; ++n) { for (int m = 0; m <= maxOrder; ++m) { if (n + m <= maxOrder) { Assert.assertEquals(0, zero.getPartialDerivative(n, m), epsilon[n + m]); } } } } } } } @Test public void testAtan2SpecialCases() { DerivativeStructure pp = DerivativeStructure.atan2(new DerivativeStructure(2, 2, 1, +0.0), new DerivativeStructure(2, 2, 1, +0.0)); Assert.assertEquals(0, pp.getValue(), 1.0e-15); Assert.assertEquals(+1, FastMath.copySign(1, pp.getValue()), 1.0e-15); DerivativeStructure pn = DerivativeStructure.atan2(new DerivativeStructure(2, 2, 1, +0.0), new DerivativeStructure(2, 2, 1, -0.0)); Assert.assertEquals(FastMath.PI, pn.getValue(), 1.0e-15); DerivativeStructure np = DerivativeStructure.atan2(new DerivativeStructure(2, 2, 1, -0.0), new DerivativeStructure(2, 2, 1, +0.0)); Assert.assertEquals(0, np.getValue(), 1.0e-15); Assert.assertEquals(-1, FastMath.copySign(1, np.getValue()), 1.0e-15); DerivativeStructure nn = DerivativeStructure.atan2(new DerivativeStructure(2, 2, 1, -0.0), new DerivativeStructure(2, 2, 1, -0.0)); Assert.assertEquals(-FastMath.PI, nn.getValue(), 1.0e-15); } @Test public void testSinhDefinition() { double[] epsilon = new double[] { 3.0e-16, 3.0e-16, 5.0e-16, 2.0e-15, 6.0e-15 }; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure sinh1 = dsX.exp().subtract(dsX.exp().reciprocal()).multiply(0.5); DerivativeStructure sinh2 = dsX.sinh(); DerivativeStructure zero = sinh1.subtract(sinh2); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0, zero.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testCoshDefinition() { double[] epsilon = new double[] { 3.0e-16, 3.0e-16, 5.0e-16, 2.0e-15, 6.0e-15 }; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure cosh1 = dsX.exp().add(dsX.exp().reciprocal()).multiply(0.5); DerivativeStructure cosh2 = dsX.cosh(); DerivativeStructure zero = cosh1.subtract(cosh2); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0, zero.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testTanhDefinition() { double[] epsilon = new double[] { 3.0e-16, 5.0e-16, 7.0e-16, 3.0e-15, 2.0e-14 }; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure tanh1 = dsX.exp().subtract(dsX.exp().reciprocal()).divide(dsX.exp().add(dsX.exp().reciprocal())); DerivativeStructure tanh2 = dsX.tanh(); DerivativeStructure zero = tanh1.subtract(tanh2); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0, zero.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testSinhAsinh() { double[] epsilon = new double[] { 3.0e-16, 3.0e-16, 4.0e-16, 7.0e-16, 3.0e-15, 8.0e-15 }; for (int maxOrder = 0; maxOrder < 6; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure rebuiltX = dsX.sinh().asinh(); DerivativeStructure zero = rebuiltX.subtract(dsX); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0.0, zero.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testCoshAcosh() { double[] epsilon = new double[] { 2.0e-15, 1.0e-14, 2.0e-13, 6.0e-12, 3.0e-10, 2.0e-8 }; for (int maxOrder = 0; maxOrder < 6; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure rebuiltX = dsX.cosh().acosh(); DerivativeStructure zero = rebuiltX.subtract(dsX); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0.0, zero.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testTanhAtanh() { double[] epsilon = new double[] { 3.0e-16, 2.0e-16, 7.0e-16, 4.0e-15, 3.0e-14, 4.0e-13 }; for (int maxOrder = 0; maxOrder < 6; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure rebuiltX = dsX.tanh().atanh(); DerivativeStructure zero = rebuiltX.subtract(dsX); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0.0, zero.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testCompositionOneVariableY() { double epsilon = 1.0e-13; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.1) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, x); for (double y = 0.1; y < 1.2; y += 0.1) { DerivativeStructure dsY = new DerivativeStructure(1, maxOrder, 0, y); DerivativeStructure f = dsX.divide(dsY).sqrt(); double f0 = FastMath.sqrt(x / y); Assert.assertEquals(f0, f.getValue(), FastMath.abs(epsilon * f0)); if (f.getOrder() > 0) { double f1 = -x / (2 * y * y * f0); Assert.assertEquals(f1, f.getPartialDerivative(1), FastMath.abs(epsilon * f1)); if (f.getOrder() > 1) { double f2 = (f0 - x / (4 * y * f0)) / (y * y); Assert.assertEquals(f2, f.getPartialDerivative(2), FastMath.abs(epsilon * f2)); if (f.getOrder() > 2) { double f3 = (x / (8 * y * f0) - 2 * f0) / (y * y * y); Assert.assertEquals(f3, f.getPartialDerivative(3), FastMath.abs(epsilon * f3)); } } } } } } } @Test public void testTaylorPolynomial() { for (double x = 0; x < 1.2; x += 0.1) { DerivativeStructure dsX = new DerivativeStructure(3, 4, 0, x); for (double y = 0; y < 1.2; y += 0.2) { DerivativeStructure dsY = new DerivativeStructure(3, 4, 1, y); for (double z = 0; z < 1.2; z += 0.2) { DerivativeStructure dsZ = new DerivativeStructure(3, 4, 2, z); DerivativeStructure f = dsX.multiply(dsY).add(dsZ).multiply(dsX).multiply(dsY); for (double dx = -0.2; dx < 0.2; dx += 0.2) { for (double dy = -0.2; dy < 0.2; dy += 0.1) { for (double dz = -0.2; dz < 0.2; dz += 0.1) { double ref = (x + dx) * (y + dy) * ((x + dx) * (y + dy) + (z + dz)); Assert.assertEquals(ref, f.taylor(dx, dy, dz), 2.0e-15); } } } } } } } @Test public void testTaylorAtan2() { double[] expected = new double[] { 0.214, 0.0241, 0.00422, 6.48e-4, 8.04e-5 }; double x0 = 0.1; double y0 = -0.3; for (int maxOrder = 0; maxOrder < 5; ++maxOrder) { DerivativeStructure dsX = new DerivativeStructure(2, maxOrder, 0, x0); DerivativeStructure dsY = new DerivativeStructure(2, maxOrder, 1, y0); DerivativeStructure atan2 = DerivativeStructure.atan2(dsY, dsX); double maxError = 0; for (double dx = -0.05; dx < 0.05; dx += 0.001) { for (double dy = -0.05; dy < 0.05; dy += 0.001) { double ref = FastMath.atan2(y0 + dy, x0 + dx); maxError = FastMath.max(maxError, FastMath.abs(ref - atan2.taylor(dx, dy))); } } Assert.assertEquals(0.0, expected[maxOrder] - maxError, 0.01 * expected[maxOrder]); } } @Override @Test public void testAbs() { DerivativeStructure minusOne = new DerivativeStructure(1, 1, 0, -1.0); Assert.assertEquals(+1.0, minusOne.abs().getPartialDerivative(0), 1.0e-15); Assert.assertEquals(-1.0, minusOne.abs().getPartialDerivative(1), 1.0e-15); DerivativeStructure plusOne = new DerivativeStructure(1, 1, 0, +1.0); Assert.assertEquals(+1.0, plusOne.abs().getPartialDerivative(0), 1.0e-15); Assert.assertEquals(+1.0, plusOne.abs().getPartialDerivative(1), 1.0e-15); DerivativeStructure minusZero = new DerivativeStructure(1, 1, 0, -0.0); Assert.assertEquals(+0.0, minusZero.abs().getPartialDerivative(0), 1.0e-15); Assert.assertEquals(-1.0, minusZero.abs().getPartialDerivative(1), 1.0e-15); DerivativeStructure plusZero = new DerivativeStructure(1, 1, 0, +0.0); Assert.assertEquals(+0.0, plusZero.abs().getPartialDerivative(0), 1.0e-15); Assert.assertEquals(+1.0, plusZero.abs().getPartialDerivative(1), 1.0e-15); } @Override @Test public void testSignum() { DerivativeStructure minusOne = new DerivativeStructure(1, 1, 0, -1.0); Assert.assertEquals(-1.0, minusOne.signum().getPartialDerivative(0), 1.0e-15); Assert.assertEquals( 0.0, minusOne.signum().getPartialDerivative(1), 1.0e-15); DerivativeStructure plusOne = new DerivativeStructure(1, 1, 0, +1.0); Assert.assertEquals(+1.0, plusOne.signum().getPartialDerivative(0), 1.0e-15); Assert.assertEquals( 0.0, plusOne.signum().getPartialDerivative(1), 1.0e-15); DerivativeStructure minusZero = new DerivativeStructure(1, 1, 0, -0.0); Assert.assertEquals(-0.0, minusZero.signum().getPartialDerivative(0), 1.0e-15); Assert.assertTrue(Double.doubleToLongBits(minusZero.signum().getValue()) < 0); Assert.assertEquals( 0.0, minusZero.signum().getPartialDerivative(1), 1.0e-15); DerivativeStructure plusZero = new DerivativeStructure(1, 1, 0, +0.0); Assert.assertEquals(+0.0, plusZero.signum().getPartialDerivative(0), 1.0e-15); Assert.assertTrue(Double.doubleToLongBits(plusZero.signum().getValue()) == 0); Assert.assertEquals( 0.0, plusZero.signum().getPartialDerivative(1), 1.0e-15); } @Test public void testCeilFloorRintLong() { DerivativeStructure x = new DerivativeStructure(1, 1, 0, -1.5); Assert.assertEquals(-1.5, x.getPartialDerivative(0), 1.0e-15); Assert.assertEquals(+1.0, x.getPartialDerivative(1), 1.0e-15); Assert.assertEquals(-1.0, x.ceil().getPartialDerivative(0), 1.0e-15); Assert.assertEquals(+0.0, x.ceil().getPartialDerivative(1), 1.0e-15); Assert.assertEquals(-2.0, x.floor().getPartialDerivative(0), 1.0e-15); Assert.assertEquals(+0.0, x.floor().getPartialDerivative(1), 1.0e-15); Assert.assertEquals(-2.0, x.rint().getPartialDerivative(0), 1.0e-15); Assert.assertEquals(+0.0, x.rint().getPartialDerivative(1), 1.0e-15); Assert.assertEquals(-2.0, x.subtract(x.getField().getOne()).rint().getPartialDerivative(0), 1.0e-15); Assert.assertEquals(-1l, x.round()); } @Test public void testCopySign() { DerivativeStructure minusOne = new DerivativeStructure(1, 1, 0, -1.0); Assert.assertEquals(+1.0, minusOne.copySign(+1.0).getPartialDerivative(0), 1.0e-15); Assert.assertEquals(-1.0, minusOne.copySign(+1.0).getPartialDerivative(1), 1.0e-15); Assert.assertEquals(-1.0, minusOne.copySign(-1.0).getPartialDerivative(0), 1.0e-15); Assert.assertEquals(+1.0, minusOne.copySign(-1.0).getPartialDerivative(1), 1.0e-15); Assert.assertEquals(+1.0, minusOne.copySign(+0.0).getPartialDerivative(0), 1.0e-15); Assert.assertEquals(-1.0, minusOne.copySign(+0.0).getPartialDerivative(1), 1.0e-15); Assert.assertEquals(-1.0, minusOne.copySign(-0.0).getPartialDerivative(0), 1.0e-15); Assert.assertEquals(+1.0, minusOne.copySign(-0.0).getPartialDerivative(1), 1.0e-15); Assert.assertEquals(+1.0, minusOne.copySign(Double.NaN).getPartialDerivative(0), 1.0e-15); Assert.assertEquals(-1.0, minusOne.copySign(Double.NaN).getPartialDerivative(1), 1.0e-15); DerivativeStructure plusOne = new DerivativeStructure(1, 1, 0, +1.0); Assert.assertEquals(+1.0, plusOne.copySign(+1.0).getPartialDerivative(0), 1.0e-15); Assert.assertEquals(+1.0, plusOne.copySign(+1.0).getPartialDerivative(1), 1.0e-15); Assert.assertEquals(-1.0, plusOne.copySign(-1.0).getPartialDerivative(0), 1.0e-15); Assert.assertEquals(-1.0, plusOne.copySign(-1.0).getPartialDerivative(1), 1.0e-15); Assert.assertEquals(+1.0, plusOne.copySign(+0.0).getPartialDerivative(0), 1.0e-15); Assert.assertEquals(+1.0, plusOne.copySign(+0.0).getPartialDerivative(1), 1.0e-15); Assert.assertEquals(-1.0, plusOne.copySign(-0.0).getPartialDerivative(0), 1.0e-15); Assert.assertEquals(-1.0, plusOne.copySign(-0.0).getPartialDerivative(1), 1.0e-15); Assert.assertEquals(+1.0, plusOne.copySign(Double.NaN).getPartialDerivative(0), 1.0e-15); Assert.assertEquals(+1.0, plusOne.copySign(Double.NaN).getPartialDerivative(1), 1.0e-15); } @Test public void testToDegreesDefinition() { double epsilon = 3.0e-16; for (int maxOrder = 0; maxOrder < 6; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); Assert.assertEquals(FastMath.toDegrees(x), dsX.toDegrees().getValue(), epsilon); for (int n = 1; n <= maxOrder; ++n) { if (n == 1) { Assert.assertEquals(180 / FastMath.PI, dsX.toDegrees().getPartialDerivative(1), epsilon); } else { Assert.assertEquals(0.0, dsX.toDegrees().getPartialDerivative(n), epsilon); } } } } } @Test public void testToRadiansDefinition() { double epsilon = 3.0e-16; for (int maxOrder = 0; maxOrder < 6; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); Assert.assertEquals(FastMath.toRadians(x), dsX.toRadians().getValue(), epsilon); for (int n = 1; n <= maxOrder; ++n) { if (n == 1) { Assert.assertEquals(FastMath.PI / 180, dsX.toRadians().getPartialDerivative(1), epsilon); } else { Assert.assertEquals(0.0, dsX.toRadians().getPartialDerivative(n), epsilon); } } } } } @Test public void testDegRad() { double epsilon = 3.0e-16; for (int maxOrder = 0; maxOrder < 6; ++maxOrder) { for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure rebuiltX = dsX.toDegrees().toRadians(); DerivativeStructure zero = rebuiltX.subtract(dsX); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0.0, zero.getPartialDerivative(n), epsilon); } } } } @Test(expected=DimensionMismatchException.class) public void testComposeMismatchedDimensions() { new DerivativeStructure(1, 3, 0, 1.2).compose(new double[3]); } @Test public void testCompose() { double[] epsilon = new double[] { 1.0e-20, 5.0e-14, 2.0e-13, 3.0e-13, 2.0e-13, 1.0e-20 }; PolynomialFunction poly = new PolynomialFunction(new double[] { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 }); for (int maxOrder = 0; maxOrder < 6; ++maxOrder) { PolynomialFunction[] p = new PolynomialFunction[maxOrder + 1]; p[0] = poly; for (int i = 1; i <= maxOrder; ++i) { p[i] = p[i - 1].polynomialDerivative(); } for (double x = 0.1; x < 1.2; x += 0.001) { DerivativeStructure dsX = new DerivativeStructure(1, maxOrder, 0, x); DerivativeStructure dsY1 = dsX.getField().getZero(); for (int i = poly.degree(); i >= 0; --i) { dsY1 = dsY1.multiply(dsX).add(poly.getCoefficients()[i]); } double[] f = new double[maxOrder + 1]; for (int i = 0; i < f.length; ++i) { f[i] = p[i].value(x); } DerivativeStructure dsY2 = dsX.compose(f); DerivativeStructure zero = dsY1.subtract(dsY2); for (int n = 0; n <= maxOrder; ++n) { Assert.assertEquals(0.0, zero.getPartialDerivative(n), epsilon[n]); } } } } @Test public void testField() { for (int maxOrder = 1; maxOrder < 5; ++maxOrder) { DerivativeStructure x = new DerivativeStructure(3, maxOrder, 0, 1.0); checkF0F1(x.getField().getZero(), 0.0, 0.0, 0.0, 0.0); checkF0F1(x.getField().getOne(), 1.0, 0.0, 0.0, 0.0); Assert.assertEquals(maxOrder, x.getField().getZero().getOrder()); Assert.assertEquals(3, x.getField().getZero().getFreeParameters()); Assert.assertEquals(DerivativeStructure.class, x.getField().getRuntimeClass()); } } @Test public void testOneParameterConstructor() { double x = 1.2; double cos = FastMath.cos(x); double sin = FastMath.sin(x); DerivativeStructure yRef = new DerivativeStructure(1, 4, 0, x).cos(); try { new DerivativeStructure(1, 4, 0.0, 0.0); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException dme) { // expected } catch (Exception e) { Assert.fail("wrong exceptionc caught " + e.getClass().getName()); } double[] derivatives = new double[] { cos, -sin, -cos, sin, cos }; DerivativeStructure y = new DerivativeStructure(1, 4, derivatives); checkEquals(yRef, y, 1.0e-15); TestUtils.assertEquals(derivatives, y.getAllDerivatives(), 1.0e-15); } @Test public void testOneOrderConstructor() { double x = 1.2; double y = 2.4; double z = 12.5; DerivativeStructure xRef = new DerivativeStructure(3, 1, 0, x); DerivativeStructure yRef = new DerivativeStructure(3, 1, 1, y); DerivativeStructure zRef = new DerivativeStructure(3, 1, 2, z); try { new DerivativeStructure(3, 1, x + y - z, 1.0, 1.0); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException dme) { // expected } catch (Exception e) { Assert.fail("wrong exceptionc caught " + e.getClass().getName()); } double[] derivatives = new double[] { x + y - z, 1.0, 1.0, -1.0 }; DerivativeStructure t = new DerivativeStructure(3, 1, derivatives); checkEquals(xRef.add(yRef.subtract(zRef)), t, 1.0e-15); TestUtils.assertEquals(derivatives, xRef.add(yRef.subtract(zRef)).getAllDerivatives(), 1.0e-15); } @Test public void testLinearCombination1DSDS() { final DerivativeStructure[] a = new DerivativeStructure[] { new DerivativeStructure(6, 1, 0, -1321008684645961.0 / 268435456.0), new DerivativeStructure(6, 1, 1, -5774608829631843.0 / 268435456.0), new DerivativeStructure(6, 1, 2, -7645843051051357.0 / 8589934592.0) }; final DerivativeStructure[] b = new DerivativeStructure[] { new DerivativeStructure(6, 1, 3, -5712344449280879.0 / 2097152.0), new DerivativeStructure(6, 1, 4, -4550117129121957.0 / 2097152.0), new DerivativeStructure(6, 1, 5, 8846951984510141.0 / 131072.0) }; final DerivativeStructure abSumInline = a[0].linearCombination(a[0], b[0], a[1], b[1], a[2], b[2]); final DerivativeStructure abSumArray = a[0].linearCombination(a, b); Assert.assertEquals(abSumInline.getValue(), abSumArray.getValue(), 0); Assert.assertEquals(-1.8551294182586248737720779899, abSumInline.getValue(), 1.0e-15); Assert.assertEquals(b[0].getValue(), abSumInline.getPartialDerivative(1, 0, 0, 0, 0, 0), 1.0e-15); Assert.assertEquals(b[1].getValue(), abSumInline.getPartialDerivative(0, 1, 0, 0, 0, 0), 1.0e-15); Assert.assertEquals(b[2].getValue(), abSumInline.getPartialDerivative(0, 0, 1, 0, 0, 0), 1.0e-15); Assert.assertEquals(a[0].getValue(), abSumInline.getPartialDerivative(0, 0, 0, 1, 0, 0), 1.0e-15); Assert.assertEquals(a[1].getValue(), abSumInline.getPartialDerivative(0, 0, 0, 0, 1, 0), 1.0e-15); Assert.assertEquals(a[2].getValue(), abSumInline.getPartialDerivative(0, 0, 0, 0, 0, 1), 1.0e-15); } @Test public void testLinearCombination1DoubleDS() { final double[] a = new double[] { -1321008684645961.0 / 268435456.0, -5774608829631843.0 / 268435456.0, -7645843051051357.0 / 8589934592.0 }; final DerivativeStructure[] b = new DerivativeStructure[] { new DerivativeStructure(3, 1, 0, -5712344449280879.0 / 2097152.0), new DerivativeStructure(3, 1, 1, -4550117129121957.0 / 2097152.0), new DerivativeStructure(3, 1, 2, 8846951984510141.0 / 131072.0) }; final DerivativeStructure abSumInline = b[0].linearCombination(a[0], b[0], a[1], b[1], a[2], b[2]); final DerivativeStructure abSumArray = b[0].linearCombination(a, b); Assert.assertEquals(abSumInline.getValue(), abSumArray.getValue(), 0); Assert.assertEquals(-1.8551294182586248737720779899, abSumInline.getValue(), 1.0e-15); Assert.assertEquals(a[0], abSumInline.getPartialDerivative(1, 0, 0), 1.0e-15); Assert.assertEquals(a[1], abSumInline.getPartialDerivative(0, 1, 0), 1.0e-15); Assert.assertEquals(a[2], abSumInline.getPartialDerivative(0, 0, 1), 1.0e-15); } @Test public void testLinearCombination2DSDS() { // we compare accurate versus naive dot product implementations // on regular vectors (i.e. not extreme cases like in the previous test) Well1024a random = new Well1024a(0xc6af886975069f11l); for (int i = 0; i < 10000; ++i) { final DerivativeStructure[] u = new DerivativeStructure[4]; final DerivativeStructure[] v = new DerivativeStructure[4]; for (int j = 0; j < u.length; ++j) { u[j] = new DerivativeStructure(u.length, 1, j, 1e17 * random.nextDouble()); v[j] = new DerivativeStructure(u.length, 1, 1e17 * random.nextDouble()); } DerivativeStructure lin = u[0].linearCombination(u[0], v[0], u[1], v[1]); double ref = u[0].getValue() * v[0].getValue() + u[1].getValue() * v[1].getValue(); Assert.assertEquals(ref, lin.getValue(), 1.0e-15 * FastMath.abs(ref)); Assert.assertEquals(v[0].getValue(), lin.getPartialDerivative(1, 0, 0, 0), 1.0e-15 * FastMath.abs(v[0].getValue())); Assert.assertEquals(v[1].getValue(), lin.getPartialDerivative(0, 1, 0, 0), 1.0e-15 * FastMath.abs(v[1].getValue())); lin = u[0].linearCombination(u[0], v[0], u[1], v[1], u[2], v[2]); ref = u[0].getValue() * v[0].getValue() + u[1].getValue() * v[1].getValue() + u[2].getValue() * v[2].getValue(); Assert.assertEquals(ref, lin.getValue(), 1.0e-15 * FastMath.abs(ref)); Assert.assertEquals(v[0].getValue(), lin.getPartialDerivative(1, 0, 0, 0), 1.0e-15 * FastMath.abs(v[0].getValue())); Assert.assertEquals(v[1].getValue(), lin.getPartialDerivative(0, 1, 0, 0), 1.0e-15 * FastMath.abs(v[1].getValue())); Assert.assertEquals(v[2].getValue(), lin.getPartialDerivative(0, 0, 1, 0), 1.0e-15 * FastMath.abs(v[2].getValue())); lin = u[0].linearCombination(u[0], v[0], u[1], v[1], u[2], v[2], u[3], v[3]); ref = u[0].getValue() * v[0].getValue() + u[1].getValue() * v[1].getValue() + u[2].getValue() * v[2].getValue() + u[3].getValue() * v[3].getValue(); Assert.assertEquals(ref, lin.getValue(), 1.0e-15 * FastMath.abs(ref)); Assert.assertEquals(v[0].getValue(), lin.getPartialDerivative(1, 0, 0, 0), 1.0e-15 * FastMath.abs(v[0].getValue())); Assert.assertEquals(v[1].getValue(), lin.getPartialDerivative(0, 1, 0, 0), 1.0e-15 * FastMath.abs(v[1].getValue())); Assert.assertEquals(v[2].getValue(), lin.getPartialDerivative(0, 0, 1, 0), 1.0e-15 * FastMath.abs(v[2].getValue())); Assert.assertEquals(v[3].getValue(), lin.getPartialDerivative(0, 0, 0, 1), 1.0e-15 * FastMath.abs(v[3].getValue())); } } @Test public void testLinearCombination2DoubleDS() { // we compare accurate versus naive dot product implementations // on regular vectors (i.e. not extreme cases like in the previous test) Well1024a random = new Well1024a(0xc6af886975069f11l); for (int i = 0; i < 10000; ++i) { final double[] u = new double[4]; final DerivativeStructure[] v = new DerivativeStructure[4]; for (int j = 0; j < u.length; ++j) { u[j] = 1e17 * random.nextDouble(); v[j] = new DerivativeStructure(u.length, 1, j, 1e17 * random.nextDouble()); } DerivativeStructure lin = v[0].linearCombination(u[0], v[0], u[1], v[1]); double ref = u[0] * v[0].getValue() + u[1] * v[1].getValue(); Assert.assertEquals(ref, lin.getValue(), 1.0e-15 * FastMath.abs(ref)); Assert.assertEquals(u[0], lin.getPartialDerivative(1, 0, 0, 0), 1.0e-15 * FastMath.abs(v[0].getValue())); Assert.assertEquals(u[1], lin.getPartialDerivative(0, 1, 0, 0), 1.0e-15 * FastMath.abs(v[1].getValue())); lin = v[0].linearCombination(u[0], v[0], u[1], v[1], u[2], v[2]); ref = u[0] * v[0].getValue() + u[1] * v[1].getValue() + u[2] * v[2].getValue(); Assert.assertEquals(ref, lin.getValue(), 1.0e-15 * FastMath.abs(ref)); Assert.assertEquals(u[0], lin.getPartialDerivative(1, 0, 0, 0), 1.0e-15 * FastMath.abs(v[0].getValue())); Assert.assertEquals(u[1], lin.getPartialDerivative(0, 1, 0, 0), 1.0e-15 * FastMath.abs(v[1].getValue())); Assert.assertEquals(u[2], lin.getPartialDerivative(0, 0, 1, 0), 1.0e-15 * FastMath.abs(v[2].getValue())); lin = v[0].linearCombination(u[0], v[0], u[1], v[1], u[2], v[2], u[3], v[3]); ref = u[0] * v[0].getValue() + u[1] * v[1].getValue() + u[2] * v[2].getValue() + u[3] * v[3].getValue(); Assert.assertEquals(ref, lin.getValue(), 1.0e-15 * FastMath.abs(ref)); Assert.assertEquals(u[0], lin.getPartialDerivative(1, 0, 0, 0), 1.0e-15 * FastMath.abs(v[0].getValue())); Assert.assertEquals(u[1], lin.getPartialDerivative(0, 1, 0, 0), 1.0e-15 * FastMath.abs(v[1].getValue())); Assert.assertEquals(u[2], lin.getPartialDerivative(0, 0, 1, 0), 1.0e-15 * FastMath.abs(v[2].getValue())); Assert.assertEquals(u[3], lin.getPartialDerivative(0, 0, 0, 1), 1.0e-15 * FastMath.abs(v[3].getValue())); } } @Test public void testSerialization() { DerivativeStructure a = new DerivativeStructure(3, 2, 0, 1.3); DerivativeStructure b = (DerivativeStructure) TestUtils.serializeAndRecover(a); Assert.assertEquals(a.getFreeParameters(), b.getFreeParameters()); Assert.assertEquals(a.getOrder(), b.getOrder()); checkEquals(a, b, 1.0e-15); } private void checkF0F1(DerivativeStructure ds, double value, double...derivatives) { // check dimension Assert.assertEquals(derivatives.length, ds.getFreeParameters()); // check value, directly and also as 0th order derivative Assert.assertEquals(value, ds.getValue(), 1.0e-15); Assert.assertEquals(value, ds.getPartialDerivative(new int[ds.getFreeParameters()]), 1.0e-15); // check first order derivatives for (int i = 0; i < derivatives.length; ++i) { int[] orders = new int[derivatives.length]; orders[i] = 1; Assert.assertEquals(derivatives[i], ds.getPartialDerivative(orders), 1.0e-15); } } private void checkEquals(DerivativeStructure ds1, DerivativeStructure ds2, double epsilon) { // check dimension Assert.assertEquals(ds1.getFreeParameters(), ds2.getFreeParameters()); Assert.assertEquals(ds1.getOrder(), ds2.getOrder()); int[] derivatives = new int[ds1.getFreeParameters()]; int sum = 0; while (true) { if (sum <= ds1.getOrder()) { Assert.assertEquals(ds1.getPartialDerivative(derivatives), ds2.getPartialDerivative(derivatives), epsilon); } boolean increment = true; sum = 0; for (int i = derivatives.length - 1; i >= 0; --i) { if (increment) { if (derivatives[i] == ds1.getOrder()) { derivatives[i] = 0; } else { derivatives[i]++; increment = false; } } sum += derivatives[i]; } if (increment) { return; } } } } Other Java examples (source code examples)Here is a short list of links related to this Java DerivativeStructureTest.java source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.