|
Java example source code file (plot.py)
The plot.py Java example source codeimport math from matplotlib.pyplot import hist, title, subplot, scatter, plot import matplotlib.pyplot as plt import numpy as np from PIL import Image import seaborn # improves matplotlib look and feel import sys import time ''' Optimization Methods Visualalization Graph tools to help visualize how optimization is performing ''' GLOBAL_TIME = 1.5 def load_file(path): return np.loadtxt(path, delimiter=',') def sigmoid(hidden_mean): return 1 / (1 + np.exp(-hidden_mean)) def render_plot(values, plot_type='histogram', chart_title=''): if np.product(values.shape) < 2: values = np.zeros((3, 3)) chart_title += '-fake' if plot_type == 'histogram': hist(values) elif plot_type == "scatter": scatter(values) else: print "The " + plot_type + " format is not supported. Please choose histogram or scatter." magnitude = ' mm %g ' % np.mean(np.fabs(values)) chart_title += ' ' + magnitude title(chart_title) def render_activation_probability(dataPath, filename): hidden_mean = load_file(dataPath) img = Image.fromarray(sigmoid(hidden_mean) * 256) if img.mode != 'RGB': img = img.convert('RGB') img.save(filename, 'PNG') def plot_single_graph(path, chart_title, filename): print 'Graphing ' + chart_title + '\n' values = load_file(path) plt.plot(values, 'b') plt.title(chart_title) plt.savefig(filename, format='png') plt.show(block=False) time.sleep(GLOBAL_TIME) plt.close() def plot_matrices(orig_path, plot_type, filename): paths = orig_path.split(',') for idx, path in enumerate(paths): if idx % 2 == 0: title = paths[idx + 1] print 'Loading matrix ' + title + '\n' matrix = load_file(path) subplot(2, len(paths)/4, idx/2+1) render_plot(matrix, plot_type, chart_title=title) plt.tight_layout() plt.savefig(filename, format='png') plt.show(block=False) time.sleep(GLOBAL_TIME) plt.close() # TODO Finish adapting. Code still does not fully run through. # def render_filter(data_path, n_rows, n_cols, filename): # weight_data = load_file(data_path).reshape((n_rows, n_cols)) # patch_width = weight_data.shape[1] # patch_height = 1 # # # Initialize background to dark gray # filter_frame = np.ones((n_rows*patch_width, n_cols * patch_height), dtype='uint8') # # for row in xrange(int(n_rows/n_cols)): # for col in xrange(n_cols): # patch = weight_data[row * n_cols + col].reshape((patch_width, patch_height)) # norm_patch = ((patch - patch.min()) / (patch.max() - patch.min() + 1e-6)) # filter_frame[row * patch_width: row * patch_width + patch_width, # col * patch_height:col * patch_height + patch_height] = norm_patch * 255 # img = Image.fromarray(filter_frame) # img.savefig(filename) # img.show() # # def render_filter(data_path, filename, filter_width=10, filter_height=10): # print 'Rendering filter image...' # weight_data = load_file(data_path) # n_rows = weight_data.shape[0] # n_cols = weight_data.shape[1] # padding = 1 # # # Initialize background to dark gray # filter_frame = np.ones(((filter_width+padding) * filter_width, (filter_height+padding) * filter_height), dtype='uint8') * 51 # # for row in xrange(n_rows): # for col in xrange(n_cols): # patch = weight_data[row * n_cols + col].reshape((filter_width, filter_height)) # norm_patch = ((patch - patch.min()) / (patch.max() - patch.min() + 1e-6)) # filter_frame[row * (filter_height+padding): row * (filter_height+padding)+filter_height, col * (filter_width+padding): col * (filter_width+padding)+filter_width] = norm_patch * 255 # filter_frame[row * (filter_height+padding): row * (filter_height+padding) + filter_height, col * (filter_width+padding): col *(filter_width+padding) + filter_width] # img = Image.fromarray(filter_frame) # if img.mode != 'RGB': # img = img.convert('RGB') # img.save(filename) # def vis_square(data_path, filename, n_rows=28, n_cols=28, padsize=1, padval=0): # data = load_file(data_path) # data = data.reshape(n_rows, n_cols) # # data -= data.min() # data /= data.max() # # # force the number of filters to be square # n = int(np.ceil(np.sqrt(data.shape[0]))) # padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3) # data = np.pad(data, padding, mode='constant', constant_values=(padval, padval)) # # # tile the filters into an image # data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1))) # data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:]) # # plt.imshow(data) # time.sleep(GLOBAL_TIME) # plt.savefig(data, filename) if __name__ == '__main__': if len(sys.argv) < 4: print 'Please specify a command: One of hbias,weights,plot and a file path' sys.exit(1) plot_type = sys.argv[1] path = sys.argv[2] filename = sys.argv[3] if plot_type == 'activations': render_activation_probability(path, filename) elif plot_type == 'single_matrix': render_plot(path) elif plot_type == 'histogram': plot_matrices(path, plot_type, filename) elif plot_type == 'scatter': plot_matrices(path, plot_type, filename) elif plot_type == 'loss': plot_single_graph(path, plot_type, filename) elif plot_type == 'accuracy': plot_single_graph(path, plot_type, filename) # elif sys.argv[1] == 'filter': # if sys.argv[7]: # n_rows = int(sys.argv[4]) # n_cols = int(sys.argv[5]) # filter_width = int(sys.argv[6]) # filter_height = int(sys.argv[7]) # render_filter(path, filename, n_rows, n_cols, filter_height, filter_width) # elif sys.argv[5]: # n_rows = int(sys.argv[4]) # n_cols = int(sys.argv[5]) # render_filter(path, filename, n_rows, n_cols) # else: # render_filter(path, filename) Other Java examples (source code examples)Here is a short list of links related to this Java plot.py source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.