alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (MathBenchmarking.java)

This example Java source code file (MathBenchmarking.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

array_mask, array_size, biginteger, math, mathbenchmarking, max_exponent, random, random_source, util

The MathBenchmarking.java Java example source code

/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.math;

import java.math.BigInteger;
import java.util.Random;

/**
 * Utilities for benchmarks.
 *
 * In many cases, we wish to vary the order of magnitude of the input as much as we
 * want to vary the input itself, so most methods which generate values use
 * an exponential distribution varying the order of magnitude of the generated values
 * uniformly at random.
 *
 * @author Louis Wasserman
 */
final class MathBenchmarking {
  static final int ARRAY_SIZE = 0x10000;
  static final int ARRAY_MASK = 0x0ffff;
  static final Random RANDOM_SOURCE = new Random(314159265358979L);
  static final int MAX_EXPONENT = 100;

  /*
   * Duplicated from LongMath.
   * binomial(biggestBinomials[k], k) fits in a long, but not
   * binomial(biggestBinomials[k] + 1, k).
   */
  static final int[] biggestBinomials =
      {Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, 3810779, 121977, 16175, 4337, 1733,
          887, 534, 361, 265, 206, 169, 143, 125, 111, 101, 94, 88, 83, 79, 76, 74, 72, 70, 69, 68,
          67, 67, 66, 66, 66, 66};

  /**
   * Generates values in a distribution equivalent to randomNonNegativeBigInteger
   * but omitting zero.
   */
  static BigInteger randomPositiveBigInteger(int numBits) {
    BigInteger result;
    do {
      result = randomNonNegativeBigInteger(numBits);
    } while (result.signum() == 0);
    return result;
  }

  /**
   * Generates a number in [0, 2^numBits) with an exponential distribution.
   * The floor of the log2 of the result is chosen uniformly at random in
   * [0, numBits), and then the result is chosen in that range uniformly at random.
   * Zero is treated as having log2 == 0.
   */
  static BigInteger randomNonNegativeBigInteger(int numBits) {
    int digits = RANDOM_SOURCE.nextInt(numBits);
    if (digits == 0) {
      return new BigInteger(1, RANDOM_SOURCE);
    } else {
      return new BigInteger(digits, RANDOM_SOURCE)
          .setBit(digits);
    }
  }

  /**
   * Equivalent to calling randomPositiveBigInteger(numBits) and then flipping
   * the sign with 50% probability.
   */
  static BigInteger randomNonZeroBigInteger(int numBits) {
    BigInteger result = randomPositiveBigInteger(numBits);
    return RANDOM_SOURCE.nextBoolean() ? result : result.negate();
  }

  /**
   * Chooses a number in (-2^numBits, 2^numBits) at random, with density
   * concentrated in numbers of lower magnitude.
   */
  static BigInteger randomBigInteger(int numBits) {
    while (true) {
      if (RANDOM_SOURCE.nextBoolean()) {
        return randomNonNegativeBigInteger(numBits);
      }
      BigInteger neg = randomNonNegativeBigInteger(numBits).negate();
      if (neg.signum() != 0) {
        return neg;
      }
    }
  }

  /**
   * Generates a number in [0, 2^numBits) with an exponential distribution.
   * The floor of the log2 of the absolute value of the result is chosen uniformly
   * at random in [0, numBits), and then the result is chosen from those possibilities
   * uniformly at random.
   *
   * Zero is treated as having log2 == 0.
   */
  static double randomDouble(int maxExponent) {
    double result = RANDOM_SOURCE.nextDouble();
    result = Math.scalb(result, RANDOM_SOURCE.nextInt(maxExponent + 1));
    return RANDOM_SOURCE.nextBoolean() ? result : -result;
  }

  /**
   * Returns a random integer between zero and {@code MAX_EXPONENT}.
   */
  static int randomExponent() {
    return RANDOM_SOURCE.nextInt(MAX_EXPONENT + 1);
  }

  static double randomPositiveDouble() {
    return Math.exp(randomDouble(6));
  }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java MathBenchmarking.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.