Hibernate example source code file (basic_mapping.xml)
This example Hibernate source code file (basic_mapping.xml) is included in the DevDaily.com
"Java Source Code
Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.
<?xml version="1.0" encoding="UTF-8"?>
<!--
~ Hibernate, Relational Persistence for Idiomatic Java
~
~ Copyright (c) 2008, Red Hat Middleware LLC or third-party contributors as
~ indicated by the @author tags or express copyright attribution
~ statements applied by the authors. All third-party contributions are
~ distributed under license by Red Hat Middleware LLC.
~
~ This copyrighted material is made available to anyone wishing to use, modify,
~ copy, or redistribute it subject to the terms and conditions of the GNU
~ Lesser General Public License, as published by the Free Software Foundation.
~
~ This program is distributed in the hope that it will be useful,
~ but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
~ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
~ for more details.
~
~ You should have received a copy of the GNU Lesser General Public License
~ along with this distribution; if not, write to:
~ Free Software Foundation, Inc.
~ 51 Franklin Street, Fifth Floor
~ Boston, MA 02110-1301 USA
-->
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
"http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd" [
<!ENTITY % BOOK_ENTITIES SYSTEM "../HIBERNATE_-_Relational_Persistence_for_Idiomatic_Java.ent">
%BOOK_ENTITIES;
]>
<chapter id="mapping">
<title>Basic O/R Mapping
<section id="mapping-declaration" revision="2">
<title>Mapping declaration
<para>Object/relational mappings can be defined in three
approaches:</para>
<itemizedlist>
<listitem>
<para>using Java 5 annotations (via the Java Persistence 2
annotations)</para>
</listitem>
<listitem>
<para>using JPA 2 XML deployment descriptors (described in chapter
XXX)</para>
</listitem>
<listitem>
<para>using the Hibernate legacy XML files approach known as
hbm.xml</para>
</listitem>
</itemizedlist>
<para>Annotations are split in two categories, the logical mapping
annotations (describing the object model, the association between two
entities etc.) and the physical mapping annotations (describing the
physical schema, tables, columns, indexes, etc). We will mix annotations
from both categories in the following code examples.</para>
<para>JPA annotations are in the javax.persistence.*
package. Hibernate specific extensions are in
<literal>org.hibernate.annotations.*. You favorite IDE can
auto-complete annotations and their attributes for you (even without a
specific "JPA" plugin, since JPA annotations are plain Java 5
annotations).</para>
<para>Here is an example of mapping
<programlisting role="JAVA">package eg;
@Entity
@Table(name="cats") @Inheritance(strategy=SINGLE_TABLE)
@DiscriminatorValue("C") @DiscriminatorColumn(name="subclass", discriminatorType=CHAR)
public class Cat {
@Id @GeneratedValue
public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }
private Integer id;
public BigDecimal getWeight() { return weight; }
public void setWeight(BigDecimal weight) { this.weight = weight; }
private BigDecimal weight;
@Temporal(DATE) @NotNull @Column(updatable=false)
public Date getBirthdate() { return birthdate; }
public void setBirthdate(Date birthdate) { this.birthdate = birthdate; }
private Date birthdate;
@org.hibernate.annotations.Type(type="eg.types.ColorUserType")
@NotNull @Column(updatable=false)
public ColorType getColor() { return color; }
public void setColor(ColorType color) { this.color = color; }
private ColorType color;
@NotNull @Column(updatable=false)
public String getSex() { return sex; }
public void setSex(String sex) { this.sex = sex; }
private String sex;
@NotNull @Column(updatable=false)
public Integer getLitterId() { return litterId; }
public void setLitterId(Integer litterId) { this.litterId = litterId; }
private Integer litterId;
@ManyToOne @JoinColumn(name="mother_id", updatable=false)
public Cat getMother() { return mother; }
public void setMother(Cat mother) { this.mother = mother; }
private Cat mother;
@OneToMany(mappedBy="mother") @OrderBy("litterId")
public Set<Cat> getKittens() { return kittens; }
public void setKittens(Set<Cat> kittens) { this.kittens = kittens; }
private Set<Cat> kittens = new HashSet<Cat>();
}
@Entity @DiscriminatorValue("D")
public class DomesticCat extends Cat {
public String getName() { return name; }
public void setName(String name) { this.name = name }
private String name;
}
@Entity
public class Dog { ... }</programlisting>
<para>The legacy hbm.xml approach uses an XML schema designed to be
readable and hand-editable. The mapping language is Java-centric, meaning
that mappings are constructed around persistent class declarations and not
table declarations.</para>
<para>Please note that even though many Hibernate users choose to write
the XML by hand, a number of tools exist to generate the mapping document.
These include XDoclet, Middlegen and AndroMDA.</para>
<para>Here is an example mapping:
<programlisting role="XML"><?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="eg">
<class name="Cat"
table="cats"
discriminator-value="C">
<id name="id">
<generator class="native"/>
</id>
<discriminator column="subclass"
type="character"/>
<property name="weight"/>
<property name="birthdate"
type="date"
not-null="true"
update="false"/>
<property name="color"
type="eg.types.ColorUserType"
not-null="true"
update="false"/>
<property name="sex"
not-null="true"
update="false"/>
<property name="litterId"
column="litterId"
update="false"/>
<many-to-one name="mother"
column="mother_id"
update="false"/>
<set name="kittens"
inverse="true"
order-by="litter_id">
<key column="mother_id"/>
<one-to-many class="Cat"/>
</set>
<subclass name="DomesticCat"
discriminator-value="D">
<property name="name"
type="string"/>
</subclass>
</class>
<class name="Dog">
<!-- mapping for Dog could go here -->
</class>
</hibernate-mapping></programlisting>
<para>We will now discuss the concepts of the mapping documents (both
annotations and XML). We will only describe, however, the document
elements and attributes that are used by Hibernate at runtime. The mapping
document also contains some extra optional attributes and elements that
affect the database schemas exported by the schema export tool (for
example, the <literal> not-null attribute).
<section id="mapping-declaration-class" revision="4">
<title>Entity
<para>An entity is a regular Java object (aka POJO) which will be
persisted by Hibernate.</para>
<para>To mark an object as an entity in annotations, use the
<classname>@Entity annotation.
<programlisting language="JAVA" role="JAVA">@Entity
public class Flight implements Serializable {
Long id;
@Id
public Long getId() { return id; }
public void setId(Long id) { this.id = id; }
} </programlisting>
<para>That's pretty much it, the rest is optional. There are however any
options to tweak your entity mapping, let's explore them.</para>
<para>@Table lets you define the table the entity
will be persisted into. If undefined, the table name is the unqualified
class name of the entity. You can also optionally define the catalog,
the schema as well as unique constraints on the table.</para>
<programlisting role="JAVA">@Entity
@Table(name="TBL_FLIGHT",
schema="AIR_COMMAND",
uniqueConstraints=
@UniqueConstraint(
name="flight_number",
columnNames={"comp_prefix", "flight_number"} ) )
public class Flight implements Serializable {
@Column(name="comp_prefix")
public String getCompagnyPrefix() { return companyPrefix; }
@Column(name="flight_number")
public String getNumber() { return number; }
}</programlisting>
<para>The constraint name is optional (generated if left undefined). The
column names composing the constraint correspond to the column names as
defined before the Hibernate <classname>NamingStrategy is
applied.</para>
<tip>
<para>Be sure to use the database-level column names for the columnNames
property of a <literal>@UniqueConstraint. For example, whilst for simple types the
database-level column name may be the same as the entity-level property name, this is often
not the case for relational properties.
</para>
</tip>
<para>@Entity.name lets you define the shortcut name
of the entity you can used in JP-QL and HQL queries. It defaults to the
unqualified class name of the class.</para>
<para>Hibernate goes beyond the JPA specification and provide additional
configurations. Some of them are hosted on
<classname>@org.hibernate.annotations.Entity:
<itemizedlist>
<listitem>
<para>dynamicInsert /
<literal>dynamicUpdate (defaults to false): specifies that
<literal>INSERT / UPDATE SQL should be
generated at runtime and contain only the columns whose values are
not null. The <literal>dynamic-update and
<literal>dynamic-insert settings are not inherited by
subclasses. Although these settings can increase performance in some
cases, they can actually decrease performance in others.</para>
</listitem>
<listitem>
<para>selectBeforeUpdate (defaults to false):
specifies that Hibernate should <emphasis>never perform
an SQL <literal>UPDATE unless it is certain that an object
is actually modified. Only when a transient object has been
associated with a new session using <literal>update(),
will Hibernate perform an extra SQL <literal>SELECT to
determine if an <literal>UPDATE is actually required. Use
of <literal>select-before-update will usually decrease
performance. It is useful to prevent a database update trigger being
called unnecessarily if you reattach a graph of detached instances
to a <literal>Session.
</listitem>
<listitem>
<para>polymorphisms (defaults to
<literal>IMPLICIT): determines whether implicit or
explicit query polymorphisms is used. <emphasis>Implicit
polymorphisms means that instances of the class will be returned by
a query that names any superclass or implemented interface or class,
and that instances of any subclass of the class will be returned by
a query that names the class itself. <emphasis>Explicit
polymorphisms means that class instances will be returned only by
queries that explicitly name that class. Queries that name the class
will return only instances of subclasses mapped. For most purposes,
the default <literal>polymorphisms=IMPLICIT is
appropriate. Explicit polymorphisms is useful when two different
classes are mapped to the same table This allows a "lightweight"
class that contains a subset of the table columns.</para>
</listitem>
<listitem>
<para>persister: specifies a custom
<literal>ClassPersister. The persister
attribute lets you customize the persistence strategy used for the
class. You can, for example, specify your own subclass of
<literal>org.hibernate.persister.EntityPersister, or you
can even provide a completely new implementation of the interface
<literal>org.hibernate.persister.ClassPersister that
implements, for example, persistence via stored procedure calls,
serialization to flat files or LDAP. See
<literal>org.hibernate.test.CustomPersister for a simple
example of "persistence" to a <literal>Hashtable.
</listitem>
<listitem>
<para>optimisticLock (defaults to
<literal>VERSION): determines the optimistic locking
strategy. If you enable <literal>dynamicUpdate, you will
have a choice of optimistic locking strategies:</para>
<itemizedlist>
<listitem>
<para>version: check the version/timestamp
columns</para>
</listitem>
<listitem>
<para>all: check all columns
</listitem>
<listitem>
<para>dirty: check the changed columns,
allowing some concurrent updates</para>
</listitem>
<listitem>
<para>none: do not use optimistic
locking</para>
</listitem>
</itemizedlist>
<para>It is strongly recommended that you use
version/timestamp columns for optimistic locking with Hibernate.
This strategy optimizes performance and correctly handles
modifications made to detached instances (i.e. when
<literal>Session.merge() is used).
</listitem>
</itemizedlist>
<tip>
<para>Be sure to import
<classname>@javax.persistence.Entity to mark a class as an
entity. It's a common mistake to import
<classname>@org.hibernate.annotations.Entity by
accident.</para>
</tip>
<para>Some entities are not mutable. They cannot be updated or deleted
by the application. This allows Hibernate to make some minor performance
optimizations.. Use the <classname>@Immutable
annotation.</para>
<para>You can also alter how Hibernate deals with lazy initialization
for this class. On <classname>@Proxy, use
<literal>lazy=false to disable lazy fetching (not
recommended). You can also specify an interface to use for lazy
initializing proxies (defaults to the class itself): use
<literal>proxyClass on @Proxy.
Hibernate will initially return proxies (Javassist or CGLIB) that
implement the named interface. The persistent object will load when a
method of the proxy is invoked. See "Initializing collections and
proxies" below.</para>
<para>@BatchSize specifies a "batch size" for
fetching instances of this class by identifier. Not yet loaded instances
are loaded batch-size at a time (default 1).</para>
<para>You can specific an arbitrary SQL WHERE condition to be used when
retrieving objects of this class. Use <classname>@Where for
that.</para>
<para>In the same vein, @Check lets you define an
SQL expression used to generate a multi-row <emphasis>check
constraint for automatic schema generation.</para>
<para>There is no difference between a view and a base table for a
Hibernate mapping. This is transparent at the database level, although
some DBMS do not support views properly, especially with updates.
Sometimes you want to use a view, but you cannot create one in the
database (i.e. with a legacy schema). In this case, you can map an
immutable and read-only entity to a given SQL subselect expression using
<classname>@org.hibernate.annotations.Subselect:
<programlisting role="JAVA">@Entity
@Subselect("select item.name, max(bid.amount), count(*) "
+ "from item "
+ "join bid on bid.item_id = item.id "
+ "group by item.name")
@Synchronize( {"item", "bid"} ) //tables impacted
public class Summary {
@Id
public String getId() { return id; }
...
}</programlisting>
<para>Declare the tables to synchronize this entity with, ensuring that
auto-flush happens correctly and that queries against the derived entity
do not return stale data. The <literal><subselect> is
available both as an attribute and a nested mapping element.</para>
<para>We will now explore the same options using the hbm.xml structure.
You can declare a persistent class using the <literal>class
element. For example:</para>
<programlistingco role="XML">
<areaspec>
<area coords="2" id="class1" />
<area coords="3" id="class2" />
<area coords="4" id="class3" />
<area coords="5" id="class4" />
<area coords="6" id="class5" />
<area coords="7" id="class6" />
<area coords="8" id="class7" />
<area coords="9" id="class8" />
<area coords="10" id="class9" />
<area coords="11" id="class10" />
<area coords="12" id="class11" />
<area coords="13" id="class12" />
<area coords="14" id="class13" />
<area coords="15" id="class14" />
<area coords="16" id="class15" />
<area coords="17" id="class16" />
<area coords="18" id="class17" />
<area coords="19" id="class18" />
<area coords="20" id="class19" />
<area coords="21" id="class20" />
<area coords="22" id="class21" />
</areaspec>
<programlisting><class
name="ClassName"
table="tableName"
discriminator-value="discriminator_value"
mutable="true|false"
schema="owner"
catalog="catalog"
proxy="ProxyInterface"
dynamic-update="true|false"
dynamic-insert="true|false"
select-before-update="true|false"
polymorphism="implicit|explicit"
where="arbitrary sql where condition"
persister="PersisterClass"
batch-size="N"
optimistic-lock="none|version|dirty|all"
lazy="true|false"
entity-name="EntityName"
check="arbitrary sql check condition"
rowid="rowid"
subselect="SQL expression"
abstract="true|false"
node="element-name"
/></programlisting>
<calloutlist>
<callout arearefs="class1">
<para>name (optional): the fully qualified Java
class name of the persistent class or interface. If this attribute
is missing, it is assumed that the mapping is for a non-POJO
entity.</para>
</callout>
<callout arearefs="class2">
<para>table (optional - defaults to the
unqualified class name): the name of its database table.</para>
</callout>
<callout arearefs="class3">
<para>discriminator-value (optional - defaults
to the class name): a value that distinguishes individual
subclasses that is used for polymorphic behavior. Acceptable
values include <literal>null and not
null</literal>.
</callout>
<callout arearefs="class4">
<para>mutable (optional - defaults to
<literal>true): specifies that instances of the class
are (not) mutable.</para>
</callout>
<callout arearefs="class5">
<para>schema (optional): overrides the schema
name specified by the root
<literal><hibernate-mapping> element.
</callout>
<callout arearefs="class6">
<para>catalog (optional): overrides the catalog
name specified by the root
<literal><hibernate-mapping> element.
</callout>
<callout arearefs="class7">
<para>proxy (optional): specifies an interface
to use for lazy initializing proxies. You can specify the name of
the class itself.</para>
</callout>
<callout arearefs="class8">
<para>dynamic-update (optional - defaults to
<literal>false): specifies that
<literal>UPDATE SQL should be generated at runtime and
can contain only those columns whose values have changed.</para>
</callout>
<callout arearefs="class9">
<para>dynamic-insert (optional - defaults to
<literal>false): specifies that
<literal>INSERT SQL should be generated at runtime and
contain only the columns whose values are not null.</para>
</callout>
<callout arearefs="class10">
<para>select-before-update (optional - defaults
to <literal>false): specifies that Hibernate should
<emphasis>never perform an SQL
<literal>UPDATE unless it is certain that an object is
actually modified. Only when a transient object has been
associated with a new session using <literal>update(),
will Hibernate perform an extra SQL <literal>SELECT to
determine if an <literal>UPDATE is actually
required.</para>
</callout>
<callout arearefs="class11">
<para>polymorphisms (optional - defaults to
<literal>implicit): determines whether implicit or
explicit query polymorphisms is used.</para>
</callout>
<callout arearefs="class12">
<para>where (optional): specifies an arbitrary
SQL <literal>WHERE condition to be used when retrieving
objects of this class.</para>
</callout>
<callout arearefs="class13">
<para>persister (optional): specifies a custom
<literal>ClassPersister.
</callout>
<callout arearefs="class14">
<para>batch-size (optional - defaults to
<literal>1): specifies a "batch size" for fetching
instances of this class by identifier.</para>
</callout>
<callout arearefs="class15">
<para>optimistic-lock (optional - defaults to
<literal>version): determines the optimistic locking
strategy.</para>
</callout>
<callout arearefs="class16">
<para>lazy (optional): lazy fetching can be
disabled by setting <literal>lazy="false".
</callout>
<callout arearefs="class17">
<para>entity-name (optional - defaults to the
class name): Hibernate3 allows a class to be mapped multiple
times, potentially to different tables. It also allows entity
mappings that are represented by Maps or XML at the Java level. In
these cases, you should provide an explicit arbitrary name for the
entity. See <xref linkend="persistent-classes-dynamicmodels" />
and <xref linkend="xml" /> for more information.
</callout>
<callout arearefs="class18">
<para>check (optional): an SQL expression used
to generate a multi-row <emphasis>check constraint for
automatic schema generation.</para>
</callout>
<callout arearefs="class19">
<para>rowid (optional): Hibernate can use
ROWIDs on databases. On Oracle, for example, Hibernate can use the
<literal>rowid extra column for fast updates once this
option has been set to <literal>rowid. A ROWID is an
implementation detail and represents the physical location of a
stored tuple.</para>
</callout>
<callout arearefs="class20">
<para>subselect (optional): maps an immutable
and read-only entity to a database subselect. This is useful if
you want to have a view instead of a base table. See below for
more information.</para>
</callout>
<callout arearefs="class21">
<para>abstract (optional): is used to mark
abstract superclasses in <literal><union-subclass>
hierarchies.</para>
</callout>
</calloutlist>
</programlistingco>
<para>It is acceptable for the named persistent class to be an
interface. You can declare implementing classes of that interface using
the <literal><subclass> element. You can persist any
<emphasis>static inner class. Specify the class name using
the standard form i.e. <literal>e.g.Foo$Bar.
<para>Here is how to do a virtual view (subselect) in XML:
<programlisting role="XML"><class name="Summary">
<subselect>
select item.name, max(bid.amount), count(*)
from item
join bid on bid.item_id = item.id
group by item.name
</subselect>
<synchronize table="item"/>
<synchronize table="bid"/>
<id name="name"/>
...
</class></programlisting>
<para>The <subselect> is available both as an
attribute and a nested mapping element.</para>
</section>
<section id="mapping-declaration-id" revision="4">
<title>Identifiers
<para>Mapped classes must declare the primary key
column of the database table. Most classes will also have a
JavaBeans-style property holding the unique identifier of an
instance.</para>
<para>Mark the identifier property with
<classname>@Id.
<programlisting role="JAVA">@Entity
public class Person {
@Id Integer getId() { ... }
...
}</programlisting>
<para>In hbm.xml, use the <id> element which
defines the mapping from that property to the primary key column.</para>
<programlistingco role="XML">
<areaspec>
<area coords="2" id="id1" />
<area coords="3" id="id2" />
<area coords="4" id="id3" />
<area coords="5" id="id4" />
<area coords="6" id="id5" />
</areaspec>
<programlisting><id
name="propertyName"
type="typename"
column="column_name"
unsaved-value="null|any|none|undefined|id_value"
access="field|property|ClassName">
node="element-name|@attribute-name|element/@attribute|."
<generator class="generatorClass"/>
</id></programlisting>
<calloutlist>
<callout arearefs="id1">
<para>name (optional): the name of the
identifier property.</para>
</callout>
<callout arearefs="id2">
<para>type (optional): a name that indicates
the Hibernate type.</para>
</callout>
<callout arearefs="id3">
<para>column (optional - defaults to the
property name): the name of the primary key column.</para>
</callout>
<callout arearefs="id4">
<para>unsaved-value (optional - defaults to a
"sensible" value): an identifier property value that indicates an
instance is newly instantiated (unsaved), distinguishing it from
detached instances that were saved or loaded in a previous
session.</para>
</callout>
<callout arearefs="id5">
<para>access (optional - defaults to
<literal>property): the strategy Hibernate should use
for accessing the property value.</para>
</callout>
</calloutlist>
</programlistingco>
<para>If the name attribute is missing, it is assumed
that the class has no identifier property.</para>
<para>The unsaved-value attribute is almost never
needed in Hibernate3 and indeed has no corresponding element in
annotations.</para>
<para>You can also declare the identifier as a composite identifier.
This allows access to legacy data with composite keys. Its use is
strongly discouraged for anything else.</para>
<section>
<title>Composite identifier
<para>You can define a composite primary key through several
syntaxes:</para>
<itemizedlist>
<listitem>
<para>use a component type to represent the identifier and map it
as a property in the entity: you then annotated the property as
<classname>@EmbeddedId. The component type has to be
<classname>Serializable.
</listitem>
<listitem>
<para>map multiple properties as @Id
properties: the identifier type is then the entity class itself
and needs to be <classname>Serializable. This approach
is unfortunately not standard and only supported by
Hibernate.</para>
</listitem>
<listitem>
<para>map multiple properties as @Id
properties and declare an external class to be the identifier
type. This class, which needs to be
<classname>Serializable, is declared on the entity via
the <classname>@IdClass annotation. The identifier
type must contain the same properties as the identifier properties
of the entity: each property name must be the same, its type must
be the same as well if the entity property is of a basic type, its
type must be the type of the primary key of the associated entity
if the entity property is an association (either a
<classname>@OneToOne or a
<classname>@ManyToOne).
</listitem>
</itemizedlist>
<para>As you can see the last case is far from obvious. It has been
inherited from the dark ages of EJB 2 for backward compatibilities and
we recommend you not to use it (for simplicity sake).</para>
<para>Let's explore all three cases using examples.
<section>
<title>id as a property using a component type
<para>Here is a simple example of
<classname>@EmbeddedId.
<programlisting language="JAVA" role="JAVA">@Entity
class User {
@EmbeddedId
@AttributeOverride(name="firstName", column=@Column(name="fld_firstname")
UserId id;
Integer age;
}
@Embeddable
class UserId implements Serializable {
String firstName;
String lastName;
}</programlisting>
<para>You can notice that the UserId class is
serializable. To override the column mapping, use
<classname>@AttributeOverride.
<para>An embedded id can itself contains the primary key of an
associated entity.</para>
<programlisting language="JAVA" role="JAVA">@Entity
class Customer {
@EmbeddedId CustomerId id;
boolean preferredCustomer;
@MapsId("userId")
@JoinColumns({
@JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
@JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
})
@OneToOne User user;
}
@Embeddable
class CustomerId implements Serializable {
UserId userId;
String customerNumber;
//implements equals and hashCode
}
@Entity
class User {
@EmbeddedId UserId id;
Integer age;
}
@Embeddable
class UserId implements Serializable {
String firstName;
String lastName;
//implements equals and hashCode
}</programlisting>
<para>In the embedded id object, the association is represented as
the identifier of the associated entity. But you can link its value
to a regular association in the entity via the
<classname>@MapsId annotation. The
<classname>@MapsId value correspond to the property name
of the embedded id object containing the associated entity's
identifier. In the database, it means that the
<literal>Customer.user and the
<literal>CustomerId.userId properties share the same
underlying column (<literal>user_fk in this case).
<tip>
<para>The component type used as identifier must implement
<methodname>equals() and
<methodname>hashCode().
</tip>
<para>In practice, your code only sets the
<literal>Customer.user property and the user id value is
copied by Hibernate into the <literal>CustomerId.userId
property.</para>
<warning>
<para>The id value can be copied as late as flush time, don't rely
on it until after flush time.</para>
</warning>
<para>While not supported in JPA, Hibernate lets you place your
association directly in the embedded id component (instead of having
to use the <classname>@MapsId annotation).
<programlisting language="JAVA" role="JAVA">@Entity
class Customer {
@EmbeddedId CustomerId id;
boolean preferredCustomer;
}
@Embeddable
class CustomerId implements Serializable {
@OneToOne
@JoinColumns({
@JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
@JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
})
User user;
String customerNumber;
//implements equals and hashCode
}
@Entity
class User {
@EmbeddedId UserId id;
Integer age;
}
@Embeddable
class UserId implements Serializable {
String firstName;
String lastName;
//implements equals and hashCode
}</programlisting>
<para>Let's now rewrite these examples using the hbm.xml
syntax.</para>
<programlisting role="XML"><composite-id
name="propertyName"
class="ClassName"
mapped="true|false"
access="field|property|ClassName"
node="element-name|.">
<key-property name="propertyName" type="typename" column="column_name"/>
<key-many-to-one name="propertyName" class="ClassName" column="column_name"/>
......
</composite-id></programlisting>
<para>First a simple example:
<programlisting role="XML"><class name="User">
<composite-id name="id" class="UserId">
<key-property name="firstName" column="fld_firstname"/>
<key-property name="lastName"/>
</composite-id>
</class></programlisting>
<para>Then an example showing how an association can be
mapped.</para>
<programlisting role="XML"><class name="Customer">
<composite-id name="id" class="CustomerId">
<key-property name="firstName" column="userfirstname_fk"/>
<key-property name="lastName" column="userfirstname_fk"/>
<key-property name="customerNumber"/>
</composite-id>
<property name="preferredCustomer"/>
<many-to-one name="user">
<column name="userfirstname_fk" updatable="false" insertable="false"/>
<column name="userlastname_fk" updatable="false" insertable="false"/>
</many-to-one>
</class>
<class name="User">
<composite-id name="id" class="UserId">
<key-property name="firstName"/>
<key-property name="lastName"/>
</composite-id>
<property name="age"/>
</class></programlisting>
<para>Notice a few things in the previous example:
<itemizedlist>
<listitem>
<para>the order of the properties (and column) matters. It must
be the same between the association and the primary key of the
associated entity</para>
</listitem>
<listitem>
<para>the many to one uses the same columns as the primary key
and thus must be marked as read only
(<literal>insertable and updatable
to false).</para>
</listitem>
<listitem>
<para>unlike with @MapsId, the id value
of the associated entity is not transparently copied, check the
<literal>foreign id generator for more
information.</para>
</listitem>
</itemizedlist>
<para>The last example shows how to map association directly in the
embedded id component.</para>
<programlisting role="XML"><class name="Customer">
<composite-id name="id" class="CustomerId">
<key-many-to-one name="user">
<column name="userfirstname_fk"/>
<column name="userlastname_fk"/>
</key-many-to-one>
<key-property name="customerNumber"/>
</composite-id>
<property name="preferredCustomer"/>
</class>
<class name="User">
<composite-id name="id" class="UserId">
<key-property name="firstName"/>
<key-property name="lastName"/>
</composite-id>
<property name="age"/>
</class></programlisting>
<para>This is the recommended approach to map composite identifier.
The following options should not be considered unless some
constraint are present.</para>
</section>
<section>
<title>Multiple id properties without identifier type
<para>Another, arguably more natural, approach is to place
<classname>@Id on multiple properties of your entity.
This approach is only supported by Hibernate (not JPA compliant) but
does not require an extra embeddable component.</para>
<programlisting language="JAVA" role="JAVA">@Entity
class Customer implements Serializable {
@Id @OneToOne
@JoinColumns({
@JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
@JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
})
User user;
@Id String customerNumber;
boolean preferredCustomer;
//implements equals and hashCode
}
@Entity
class User {
@EmbeddedId UserId id;
Integer age;
}
@Embeddable
class UserId implements Serializable {
String firstName;
String lastName;
//implements equals and hashCode
}</programlisting>
<para>In this case Customer is its own
identifier representation: it must implement
<classname>Serializable and must implement
<methodname>equals() and
<methodname>hashCode().
<para>In hbm.xml, the same mapping is:
<programlisting role="XML"><class name="Customer">
<composite-id>
<key-many-to-one name="user">
<column name="userfirstname_fk"/>
<column name="userlastname_fk"/>
</key-many-to-one>
<key-property name="customerNumber"/>
</composite-id>
<property name="preferredCustomer"/>
</class>
<class name="User">
<composite-id name="id" class="UserId">
<key-property name="firstName"/>
<key-property name="lastName"/>
</composite-id>
<property name="age"/>
</class></programlisting>
</section>
<section>
<title>Multiple id properties with with a dedicated identifier
type</title>
<para>@IdClass on an entity points to the
class (component) representing the identifier of the class. The
properties marked <classname>@Id on the entity must have
their corresponding property on the <classname>@IdClass.
The return type of search twin property must be either identical for
basic properties or must correspond to the identifier class of the
associated entity for an association.</para>
<warning>
<para>This approach is inherited from the EJB 2 days and we
recommend against its use. But, after all it's your application
and Hibernate supports it.</para>
</warning>
<programlisting language="JAVA" role="JAVA">@Entity
@IdClass(CustomerId.class)
class Customer implements Serializable {
@Id @OneToOne
@JoinColumns({
@JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
@JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
})
User user;
@Id String customerNumber;
boolean preferredCustomer;
}
class CustomerId implements Serializable {
UserId user;
String customerNumber;
//implements equals and hashCode
}
@Entity
class User {
@EmbeddedId UserId id;
Integer age;
//implements equals and hashCode
}
@Embeddable
class UserId implements Serializable {
String firstName;
String lastName;
//implements equals and hashCode
}</programlisting>
<para>Customer and
<classname>CustomerId do have the same properties
<literal>customerNumber as well as
<literal>user. CustomerId must be
<classname>Serializable and implement
<classname>equals() and
<classname>hashCode().
<para>While not JPA standard, Hibernate let's you declare the
vanilla associated property in the
<classname>@IdClass.
<programlisting language="JAVA" role="JAVA">@Entity
@IdClass(CustomerId.class)
class Customer implements Serializable {
@Id @OneToOne
@JoinColumns({
@JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
@JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
})
User user;
@Id String customerNumber;
boolean preferredCustomer;
}
class CustomerId implements Serializable {
@OneToOne User user;
String customerNumber;
//implements equals and hashCode
}
@Entity
class User {
@EmbeddedId UserId id;
Integer age;
//implements equals and hashCode
}
@Embeddable
class UserId implements Serializable {
String firstName;
String lastName;
}</programlisting>
<para>This feature is of limited interest though as you are likely
to have chosen the <classname>@IdClass approach to stay
JPA compliant or you have a quite twisted mind.</para>
<para>Here are the equivalent on hbm.xml files:
<programlisting role="XML"><class name="Customer">
<composite-id class="CustomerId" mapped="true">
<key-many-to-one name="user">
<column name="userfirstname_fk"/>
<column name="userlastname_fk"/>
</key-many-to-one>
<key-property name="customerNumber"/>
</composite-id>
<property name="preferredCustomer"/>
</class>
<class name="User">
<composite-id name="id" class="UserId">
<key-property name="firstName"/>
<key-property name="lastName"/>
</composite-id>
<property name="age"/>
</class></programlisting>
</section>
</section>
<section id="mapping-declaration-id-generator" revision="2">
<title>Identifier generator
<para>Hibernate can generate and populate identifier values for you
automatically. This is the recommended approach over "business" or
"natural" id (especially composite ids).</para>
<para>Hibernate offers various generation strategies, let's explore
the most common ones first that happens to be standardized by
JPA:</para>
<itemizedlist>
<listitem>
<para>IDENTITY: supports identity columns in DB2, MySQL, MS SQL
Server, Sybase and HypersonicSQL. The returned identifier is of
type <literal>long, short or
<literal>int.
</listitem>
<listitem>
<para>SEQUENCE (called seqhilo in Hibernate):
uses a hi/lo algorithm to efficiently generate identifiers of type
<literal>long, short or
<literal>int, given a named database sequence.
</listitem>
<listitem>
<para>TABLE (called
<classname>MultipleHiLoPerTableGenerator in Hibernate)
: uses a hi/lo algorithm to efficiently generate identifiers of
type <literal>long, short or
<literal>int, given a table and column as a source of hi
values. The hi/lo algorithm generates identifiers that are unique
only for a particular database.</para>
</listitem>
<listitem>
<para>AUTO: selects IDENTITY,
<literal>SEQUENCE or TABLE depending
upon the capabilities of the underlying database.</para>
</listitem>
</itemizedlist>
<important>
<para>We recommend all new projects to use the new enhanced
identifier generators. They are deactivated by default for entities
using annotations but can be activated using
<code>hibernate.id.new_generator_mappings=true. These new
generators are more efficient and closer to the JPA 2 specification
semantic.</para>
<para>However they are not backward compatible with existing
Hibernate based application (if a sequence or a table is used for id
generation). See XXXXXXX <xref linkend="ann-setup-properties" /> for
more information on how to activate them.</para>
</important>
<para>To mark an id property as generated, use the
<classname>@GeneratedValue annotation. You can specify the
strategy used (default to <literal>AUTO) by setting
<literal>strategy.
<programlisting role="JAVA">@Entity
public class Customer {
@Id @GeneratedValue
Integer getId() { ... };
}
@Entity
public class Invoice {
@Id @GeneratedValue(strategy=GenerationType.IDENTITY)
Integer getId() { ... };
}</programlisting>
<para>SEQUENCE and TABLE require
additional configurations that you can set using
<classname>@SequenceGenerator and
<classname>@TableGenerator:
<itemizedlist>
<listitem>
<para>name: name of the generator
</listitem>
<listitem>
<para>table / sequenceName:
name of the table or the sequence (defaulting respectively to
<literal>hibernate_sequences and
<literal>hibernate_sequence)
</listitem>
<listitem>
<para>catalog /
<literal>schema:
</listitem>
<listitem>
<para>initialValue: the value from which the id
is to start generating</para>
</listitem>
<listitem>
<para>allocationSize: the amount to increment
by when allocating id numbers from the generator</para>
</listitem>
</itemizedlist>
<para>In addition, the TABLE strategy also let
you customize:</para>
<itemizedlist>
<listitem>
<para>pkColumnName: the column name containing
the entity identifier</para>
</listitem>
<listitem>
<para>valueColumnName: the column name
containing the identifier value</para>
</listitem>
<listitem>
<para>pkColumnValue: the entity
identifier</para>
</listitem>
<listitem>
<para>uniqueConstraints: any potential column
constraint on the table containing the ids</para>
</listitem>
</itemizedlist>
<para>To link a table or sequence generator definition with an actual
generated property, use the same name in both the definition
<literal>name and the generator value
<literal>generator as shown below.
<programlisting language="JAVA" role="JAVA">@Id
@GeneratedValue(
strategy=GenerationType.SEQUENCE,
generator="SEQ_GEN")
@javax.persistence.SequenceGenerator(
name="SEQ_GEN",
sequenceName="my_sequence",
allocationSize=20
)
public Integer getId() { ... } </programlisting>
<para>The scope of a generator definition can be the application or
the class. Class-defined generators are not visible outside the class
and can override application level generators. Application level
generators are defined in JPA's XML deployment descriptors (see XXXXXX
<xref linkend="xml-overriding" />):
<programlisting language="JAVA" role="JAVA"><table-generator name="EMP_GEN"
table="GENERATOR_TABLE"
pk-column-name="key"
value-column-name="hi"
pk-column-value="EMP"
allocation-size="20"/>
//and the annotation equivalent
@javax.persistence.TableGenerator(
name="EMP_GEN",
table="GENERATOR_TABLE",
pkColumnName = "key",
valueColumnName = "hi"
pkColumnValue="EMP",
allocationSize=20
)
<sequence-generator name="SEQ_GEN"
sequence-name="my_sequence"
allocation-size="20"/>
//and the annotation equivalent
@javax.persistence.SequenceGenerator(
name="SEQ_GEN",
sequenceName="my_sequence",
allocationSize=20
)
</programlisting>
<para>If a JPA XML descriptor (like
<filename>META-INF/orm.xml) is used to define the
generators, <literal>EMP_GEN and SEQ_GEN
are application level generators.</para>
<note>
<para>Package level definition is not supported by the JPA
specification. However, you can use the
<literal>@GenericGenerator at the package level (see
</note>
<para>These are the four standard JPA generators. Hibernate goes
beyond that and provide additional generators or additional options as
we will see below. You can also write your own custom identifier
generator by implementing
<classname>org.hibernate.id.IdentifierGenerator.
<para>To define a custom generator, use the
<classname>@GenericGenerator annotation (and its plural
counter part <classname>@GenericGenerators) that describes
the class of the identifier generator or its short cut name (as
described below) and a list of key/value parameters. When using
<classname>@GenericGenerator and assigning it via
<classname>@GeneratedValue.generator, the
<classname>@GeneratedValue.strategy is ignored: leave it
blank.</para>
<programlisting language="JAVA" role="JAVA">@Id @GeneratedValue(generator="system-uuid")
@GenericGenerator(name="system-uuid", strategy = "uuid")
public String getId() {
@Id @GeneratedValue(generator="trigger-generated")
@GenericGenerator(
name="trigger-generated",
strategy = "select",
parameters = @Parameter(name="key", value = "socialSecurityNumber")
)
public String getId() {</programlisting>
<para>The hbm.xml approach uses the optional
<literal><generator> child element inside
<literal><id>. If any parameters are required to
configure or initialize the generator instance, they are passed using
the <literal><param> element.
<programlisting role="XML"><id name="id" type="long" column="cat_id">
<generator class="org.hibernate.id.TableHiLoGenerator">
<param name="table">uid_table</param>
<param name="column">next_hi_value_column</param>
</generator>
</id></programlisting>
<section>
<title>Various additional generators
<para>All generators implement the interface
<literal>org.hibernate.id.IdentifierGenerator. This is a
very simple interface. Some applications can choose to provide their
own specialized implementations, however, Hibernate provides a range
of built-in implementations. The shortcut names for the built-in
generators are as follows: <variablelist>
<varlistentry>
<term>increment
<listitem>
<para>generates identifiers of type long,
<literal>short or int that are
unique only when no other process is inserting data into the
same table. <emphasis>Do not use in a
cluster.</emphasis>
</listitem>
</varlistentry>
<varlistentry>
<term>identity
<listitem>
<para>supports identity columns in DB2, MySQL, MS SQL
Server, Sybase and HypersonicSQL. The returned identifier is
of type <literal>long, short or
<literal>int.
</listitem>
</varlistentry>
<varlistentry>
<term>sequence
<listitem>
<para>uses a sequence in DB2, PostgreSQL, Oracle, SAP DB,
McKoi or a generator in Interbase. The returned identifier
is of type <literal>long, short
or <literal>int
</listitem>
</varlistentry>
<varlistentry>
<term>hilo
<listitem>
<para id="mapping-declaration-id-hilodescription"
revision="1">uses a hi/lo algorithm to efficiently generate
identifiers of type <literal>long,
<literal>short or int, given a
table and column (by default
<literal>hibernate_unique_key and
<literal>next_hi respectively) as a source of hi
values. The hi/lo algorithm generates identifiers that are
unique only for a particular database.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>seqhilo
<listitem>
<para>uses a hi/lo algorithm to efficiently generate
identifiers of type <literal>long,
<literal>short or int, given a
named database sequence.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>uuid
<listitem>
<para>Generates a 128-bit UUID based on a custom algorithm.
The value generated is represented as a string of 32
hexidecimal digits. Users can also configure it to use a
separator (config parameter "separator") which separates the
hexidecimal digits into 8{sep}8{sep}4{sep}8{sep}4. Note
specifically that this is different than the IETF RFC 4122
representation of 8-4-4-4-12. If you need RFC 4122 compliant
UUIDs, consider using "uuid2" generator discussed
below.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>uuid2
<listitem>
<para>Generates a IETF RFC 4122 compliant (variant 2)
128-bit UUID. The exact "version" (the RFC term) generated
depends on the pluggable "generation strategy" used (see
below). Capable of generating values as
<classname>java.util.UUID,
<classname>java.lang.String or as a byte array
of length 16 (<literal>byte[16]). The "generation
strategy" is defined by the interface
<interfacename>org.hibernate.id.UUIDGenerationStrategy.
The generator defines 2 configuration parameters for
defining which generation strategy to use: <variablelist>
<varlistentry>
<term>uuid_gen_strategy_class
<listitem>
<para>Names the UUIDGenerationStrategy class to
use</para>
</listitem>
</varlistentry>
<varlistentry>
<term>uuid_gen_strategy
<listitem>
<para>Names the UUIDGenerationStrategy instance to
use</para>
</listitem>
</varlistentry>
</variablelist>
<para>Out of the box, comes with the following strategies:
<itemizedlist>
<listitem>
<para>org.hibernate.id.uuid.StandardRandomStrategy
(the default) - generates "version 3" (aka, "random")
UUID values via the
<methodname>randomUUID method of
<classname>java.util.UUID
</listitem>
<listitem>
<para>org.hibernate.id.uuid.CustomVersionOneStrategy
- generates "version 1" UUID values, using IP address
since mac address not available. If you need mac
address to be used, consider leveraging one of the
existing third party UUID generators which sniff out
mac address and integrating it via the
<interfacename>org.hibernate.id.UUIDGenerationStrategy
contract. Two such libraries known at time of this
writing include <ulink
url="http://johannburkard.de/software/uuid/">http://johannburkard.de/software/uuid/</ulink>
and <ulink
url="http://commons.apache.org/sandbox/id/uuid.html">http://commons.apache.org/sandbox/id/uuid.html</ulink>
</listitem>
</itemizedlist>
</listitem>
</varlistentry>
<varlistentry>
<term>guid
<listitem>
<para>uses a database-generated GUID string on MS SQL Server
and MySQL.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>native
<listitem>
<para>selects identity,
<literal>sequence or hilo
depending upon the capabilities of the underlying
database.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>assigned
<listitem>
<para>lets the application assign an identifier to the
object before <literal>save() is called. This is
the default strategy if no
<literal><generator> element is
specified.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>select
<listitem>
<para>retrieves a primary key, assigned by a database
trigger, by selecting the row by some unique key and
retrieving the primary key value.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>foreign
<listitem>
<para>uses the identifier of another associated object. It
is usually used in conjunction with a
<literal><one-to-one> primary key
association.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>sequence-identity
<listitem>
<para>a specialized sequence generation strategy that
utilizes a database sequence for the actual value
generation, but combines this with JDBC3 getGeneratedKeys to
return the generated identifier value as part of the insert
statement execution. This strategy is only supported on
Oracle 10g drivers targeted for JDK 1.4. Comments on these
insert statements are disabled due to a bug in the Oracle
drivers.</para>
</listitem>
</varlistentry>
</variablelist>
</section>
<section id="mapping-declaration-id-hilo" revision="1">
<title>Hi/lo algorithm
<para>The hilo and seqhilo
generators provide two alternate implementations of the hi/lo
algorithm. The first implementation requires a "special" database
table to hold the next available "hi" value. Where supported, the
second uses an Oracle-style sequence.</para>
<programlisting role="XML"><id name="id" type="long" column="cat_id">
<generator class="hilo">
<param name="table">hi_value</param>
<param name="column">next_value</param>
<param name="max_lo">100</param>
</generator>
</id></programlisting>
<programlisting role="XML"><id name="id" type="long" column="cat_id">
<generator class="seqhilo">
<param name="sequence">hi_value</param>
<param name="max_lo">100</param>
</generator>
</id></programlisting>
<para>Unfortunately, you cannot use hilo when
supplying your own <literal>Connection to Hibernate. When
Hibernate uses an application server datasource to obtain
connections enlisted with JTA, you must configure the
<literal>hibernate.transaction.manager_lookup_class.
</section>
<section id="mapping-declaration-id-uuid">
<title>UUID algorithm
<para>The UUID contains: IP address, startup time of the JVM that is
accurate to a quarter second, system time and a counter value that
is unique within the JVM. It is not possible to obtain a MAC address
or memory address from Java code, so this is the best option without
using JNI.</para>
</section>
<section id="mapping-declaration-id-sequences">
<title>Identity columns and sequences
<para>For databases that support identity columns (DB2, MySQL,
Sybase, MS SQL), you can use <literal>identity key
generation. For databases that support sequences (DB2, Oracle,
PostgreSQL, Interbase, McKoi, SAP DB) you can use
<literal>sequence style key generation. Both of these
strategies require two SQL queries to insert a new object. For
example:</para>
<programlisting role="XML"><id name="id" type="long" column="person_id">
<generator class="sequence">
<param name="sequence">person_id_sequence</param>
</generator>
</id></programlisting>
<programlisting role="XML"><id name="id" type="long" column="person_id" unsaved-value="0">
<generator class="identity"/>
</id></programlisting>
<para>For cross-platform development, the native
strategy will, depending on the capabilities of the underlying
database, choose from the <literal>identity,
<literal>sequence and hilo
strategies.</para>
</section>
<section id="mapping-declaration-id-assigned">
<title>Assigned identifiers
<para>If you want the application to assign identifiers, as opposed
to having Hibernate generate them, you can use the
<literal>assigned generator. This special generator uses
the identifier value already assigned to the object's identifier
property. The generator is used when the primary key is a natural
key instead of a surrogate key. This is the default behavior if you
do not specify <classname>@GeneratedValue nor
<literal><generator> elements.
<para>The assigned generator makes Hibernate use
<literal>unsaved-value="undefined". This forces Hibernate
to go to the database to determine if an instance is transient or
detached, unless there is a version or timestamp property, or you
define <literal>Interceptor.isUnsaved().
</section>
<section id="mapping-declaration-id-select">
<title>Primary keys assigned by triggers
<para>Hibernate does not generate DDL with triggers. It is for
legacy schemas only.</para>
<programlisting role="XML"><id name="id" type="long" column="person_id">
<generator class="select">
<param name="key">socialSecurityNumber</param>
</generator>
</id></programlisting>
<para>In the above example, there is a unique valued property named
<literal>socialSecurityNumber. It is defined by the class,
as a natural key and a surrogate key named
<literal>person_id, whose value is generated by a
trigger.</para>
</section>
<section>
<title>Identity copy (foreign generator)
<para>Finally, you can ask Hibernate to copy the identifier from
another associated entity. In the Hibernate jargon, it is known as a
foreign generator but the JPA mapping reads better and is
encouraged.</para>
<programlisting language="JAVA" role="JAVA">@Entity
class MedicalHistory implements Serializable {
@Id @OneToOne
@JoinColumn(name = "person_id")
Person patient;
}
@Entity
public class Person implements Serializable {
@Id @GeneratedValue Integer id;
}</programlisting>
<para>Or alternatively
<programlisting language="JAVA" role="JAVA">@Entity
class MedicalHistory implements Serializable {
@Id Integer id;
@MapsId @OneToOne
@JoinColumn(name = "patient_id")
Person patient;
}
@Entity
class Person {
@Id @GeneratedValue Integer id;
}</programlisting>
<para>In hbm.xml use the following approach:
<programlisting role="XML"><class name="MedicalHistory">
<id name="id">
<generator class="foreign">
<param name="property">patient</param>
</generator>
</id>
<one-to-one name="patient" class="Person" constrained="true"/>
</class></programlisting>
</section>
</section>
<section id="mapping-declaration-id-enhanced">
<title>Enhanced identifier generators
<para>Starting with release 3.2.3, there are 2 new generators which
represent a re-thinking of 2 different aspects of identifier
generation. The first aspect is database portability; the second is
optimization Optimization means that you do not have to query the
database for every request for a new identifier value. These two new
generators are intended to take the place of some of the named
generators described above, starting in 3.3.x. However, they are
included in the current releases and can be referenced by FQN.</para>
<para>The first of these new generators is
<literal>org.hibernate.id.enhanced.SequenceStyleGenerator
which is intended, firstly, as a replacement for the
<literal>sequence generator and, secondly, as a better
portability generator than <literal>native. This is because
<literal>native generally chooses between
<literal>identity and sequence which have
largely different semantics that can cause subtle issues in
applications eyeing portability.
<literal>org.hibernate.id.enhanced.SequenceStyleGenerator,
however, achieves portability in a different manner. It chooses
between a table or a sequence in the database to store its
incrementing values, depending on the capabilities of the dialect
being used. The difference between this and <literal>native
is that table-based and sequence-based storage have the same exact
semantic. In fact, sequences are exactly what Hibernate tries to
emulate with its table-based generators. This generator has a number
of configuration parameters: <itemizedlist spacing="compact">
<listitem>
<para>sequence_name (optional, defaults to
<literal>hibernate_sequence): the name of the sequence
or table to be used.</para>
</listitem>
<listitem>
<para>initial_value (optional, defaults to
<literal>1): the initial value to be retrieved from
the sequence/table. In sequence creation terms, this is
analogous to the clause typically named "STARTS WITH".</para>
</listitem>
<listitem>
<para>increment_size (optional - defaults to
<literal>1): the value by which subsequent calls to
the sequence/table should differ. In sequence creation terms,
this is analogous to the clause typically named "INCREMENT
BY".</para>
</listitem>
<listitem>
<para>force_table_use (optional - defaults to
<literal>false): should we force the use of a table as
the backing structure even though the dialect might support
sequence?</para>
</listitem>
<listitem>
<para>value_column (optional - defaults to
<literal>next_val): only relevant for table
structures, it is the name of the column on the table which is
used to hold the value.</para>
</listitem>
<listitem>
<para>optimizer (optional - defaults to
<literal>none): See
</listitem>
</itemizedlist>
<para>The second of these new generators is
<literal>org.hibernate.id.enhanced.TableGenerator, which is
intended, firstly, as a replacement for the <literal>table
generator, even though it actually functions much more like
<literal>org.hibernate.id.MultipleHiLoPerTableGenerator, and
secondly, as a re-implementation of
<literal>org.hibernate.id.MultipleHiLoPerTableGenerator that
utilizes the notion of pluggable optimizers. Essentially this
generator defines a table capable of holding a number of different
increment values simultaneously by using multiple distinctly keyed
rows. This generator has a number of configuration parameters:
<itemizedlist spacing="compact">
<listitem>
<para>table_name (optional - defaults to
<literal>hibernate_sequences): the name of the table
to be used.</para>
</listitem>
<listitem>
<para>value_column_name (optional - defaults
to <literal>next_val): the name of the column on the
table that is used to hold the value.</para>
</listitem>
<listitem>
<para>segment_column_name (optional -
defaults to <literal>sequence_name): the name of the
column on the table that is used to hold the "segment key". This
is the value which identifies which increment value to
use.</para>
</listitem>
<listitem>
<para>segment_value (optional - defaults to
<literal>default): The "segment key" value for the
segment from which we want to pull increment values for this
generator.</para>
</listitem>
<listitem>
<para>segment_value_length (optional -
defaults to <literal>255): Used for schema generation;
the column size to create this segment key column.</para>
</listitem>
<listitem>
<para>initial_value (optional - defaults to
<literal>1): The initial value to be retrieved from
the table.</para>
</listitem>
<listitem>
<para>increment_size (optional - defaults to
<literal>1): The value by which subsequent calls to
the table should differ.</para>
</listitem>
<listitem>
<para>optimizer (optional - defaults to
<literal>??): See
</listitem>
</itemizedlist>
<section id="mapping-declaration-id-enhanced-optimizers">
<title>Identifier generator optimization
<para>For identifier generators that store values in the database,
it is inefficient for them to hit the database on each and every
call to generate a new identifier value. Instead, you can group a
bunch of them in memory and only hit the database when you have
exhausted your in-memory value group. This is the role of the
pluggable optimizers. Currently only the two enhanced generators
(<xref linkend="mapping-declaration-id-enhanced" /> support this
operation.</para>
<itemizedlist spacing="compact">
<listitem>
<para>none (generally this is the default if
no optimizer was specified): this will not perform any
optimizations and hit the database for each and every
request.</para>
</listitem>
<listitem>
<para>hilo: applies a hi/lo algorithm around
the database retrieved values. The values from the database for
this optimizer are expected to be sequential. The values
retrieved from the database structure for this optimizer
indicates the "group number". The
<literal>increment_size is multiplied by that value in
memory to define a group "hi value".</para>
</listitem>
<listitem>
<para>pooled: as with the case of
<literal>hilo, this optimizer attempts to minimize the
number of hits to the database. Here, however, we simply store
the starting value for the "next group" into the database
structure rather than a sequential value in combination with an
in-memory grouping algorithm. Here,
<literal>increment_size refers to the values coming
from the database.</para>
</listitem>
</itemizedlist>
</section>
</section>
<section>
<title>Partial identifier generation
<para>Hibernate supports the automatic generation of some of the
identifier properties. Simply use the
<classname>@GeneratedValue annotation on one or several id
properties.</para>
<warning>
<para>The Hibernate team has always felt such a construct as
fundamentally wrong. Try hard to fix your data model before using
this feature.</para>
</warning>
<programlisting language="JAVA" role="JAVA">@Entity
public class CustomerInventory implements Serializable {
@Id
@TableGenerator(name = "inventory",
table = "U_SEQUENCES",
pkColumnName = "S_ID",
valueColumnName = "S_NEXTNUM",
pkColumnValue = "inventory",
allocationSize = 1000)
@GeneratedValue(strategy = GenerationType.TABLE, generator = "inventory")
Integer id;
@Id @ManyToOne(cascade = CascadeType.MERGE)
Customer customer;
}
@Entity
public class Customer implements Serializable {
@Id
private int id;
}</programlisting>
<para>You can also generate properties inside an
<classname>@EmbeddedId class.
</section>
</section>
<section>
<title>Optimistic locking properties (optional)
<para>When using long transactions or conversations that span several
database transactions, it is useful to store versioning data to ensure
that if the same entity is updated by two conversations, the last to
commit changes will be informed and not override the other
conversation's work. It guarantees some isolation while still allowing
for good scalability and works particularly well in read-often
write-sometimes situations.</para>
<para>You can use two approaches: a dedicated version number or a
timestamp.</para>
<para>A version or timestamp property should never be null for a
detached instance. Hibernate will detect any instance with a null
version or timestamp as transient, irrespective of what other
<literal>unsaved-value strategies are specified.
<emphasis>Declaring a nullable version or timestamp property is an easy
way to avoid problems with transitive reattachment in Hibernate. It is
especially useful for people using assigned identifiers or composite
keys</emphasis>.
<section id="entity-mapping-entity-version">
<title>Version number
<para>You can add optimistic locking capability to an entity using the
<literal>@Version annotation:
<programlisting language="JAVA" role="JAVA">@Entity
public class Flight implements Serializable {
...
@Version
@Column(name="OPTLOCK")
public Integer getVersion() { ... }
} </programlisting>
<para>The version property will be mapped to the
<literal>OPTLOCK column, and the entity manager will use it
to detect conflicting updates (preventing lost updates you might
otherwise see with the last-commit-wins strategy).</para>
<para>The version column may be a numeric. Hibernate supports any kind
of type provided that you define and implement the appropriate
<classname>UserVersionType.
<para>The application must not alter the version number set up by
Hibernate in any way. To artificially increase the version number,
check in Hibernate Entity Manager's reference documentation
<literal>LockModeType.OPTIMISTIC_FORCE_INCREMENT or
<literal>LockModeType.PESSIMISTIC_FORCE_INCREMENT.
<para>If the version number is generated by the database (via a
trigger for example), make sure to use
<code>@org.hibernate.annotations.Generated(GenerationTime.ALWAYS).
<para>To declare a version property in hbm.xml, use:
<programlistingco role="XML">
<areaspec>
<area coords="2" id="version1" />
<area coords="3" id="version2" />
<area coords="4" id="version3" />
<area coords="5" id="version4" />
<area coords="6" id="version5" />
<area coords="7" id="version6" />
<area coords="8" id="version7" />
</areaspec>
<programlisting><version
column="version_column"
name="propertyName"
type="typename"
access="field|property|ClassName"
unsaved-value="null|negative|undefined"
generated="never|always"
insert="true|false"
node="element-name|@attribute-name|element/@attribute|."
/></programlisting>
<calloutlist>
<callout arearefs="version1">
<para>column (optional - defaults to the
property name): the name of the column holding the version
number.</para>
</callout>
<callout arearefs="version2">
<para>name: the name of a property of the
persistent class.</para>
</callout>
<callout arearefs="version3">
<para>type (optional - defaults to
<literal>integer): the type of the version
number.</para>
</callout>
<callout arearefs="version4">
<para>access (optional - defaults to
<literal>property): the strategy Hibernate uses to
access the property value.</para>
</callout>
<callout arearefs="version5">
<para>unsaved-value (optional - defaults to
<literal>undefined): a version property value that
indicates that an instance is newly instantiated (unsaved),
distinguishing it from detached instances that were saved or
loaded in a previous session. <literal>Undefined
specifies that the identifier property value should be
used.</para>
</callout>
<callout arearefs="version6">
<para>generated (optional - defaults to
<literal>never): specifies that this version property
value is generated by the database. See the discussion of <link
linkend="mapping-generated">generated properties</link> for more
information.</para>
</callout>
<callout arearefs="version7">
<para>insert (optional - defaults to
<literal>true): specifies whether the version column
should be included in SQL insert statements. It can be set to
<literal>false if the database column is defined with
a default value of <literal>0.
</callout>
</calloutlist>
</programlistingco>
</section>
<section id="mapping-declaration-timestamp" revision="4">
<title>Timestamp
<para>Alternatively, you can use a timestamp. Timestamps are a less
safe implementation of optimistic locking. However, sometimes an
application might use the timestamps in other ways as well.</para>
<para>Simply mark a property of type Date or
<classname>Calendar as
<classname>@Version.
<programlisting language="JAVA" role="JAVA">@Entity
public class Flight implements Serializable {
...
@Version
public Date getLastUpdate() { ... }
} </programlisting>
<para>When using timestamp versioning you can tell Hibernate where to
retrieve the timestamp value from - database or JVM - by optionally
adding the <classname>@org.hibernate.annotations.Source
annotation to the property. Possible values for the value attribute of
the annotation are
<classname>org.hibernate.annotations.SourceType.VM and
<classname>org.hibernate.annotations.SourceType.DB. The
default is <classname>SourceType.DB which is also used in
case there is no <classname>@Source annotation at
all.</para>
<para>Like in the case of version numbers, the timestamp can also be
generated by the database instead of Hibernate. To do that, use
<code>@org.hibernate.annotations.Generated(GenerationTime.ALWAYS).
<para>In hbm.xml, use the <timestamp>
element:</para>
<programlistingco role="XML">
<areaspec>
<area coords="2" id="timestamp1" />
<area coords="3" id="timestamp2" />
<area coords="4" id="timestamp3" />
<area coords="5" id="timestamp4" />
<area coords="6" id="timestamp5" />
<area coords="7" id="timestamp6" />
</areaspec>
<programlisting><timestamp
column="timestamp_column"
name="propertyName"
access="field|property|ClassName"
unsaved-value="null|undefined"
source="vm|db"
generated="never|always"
node="element-name|@attribute-name|element/@attribute|."
/></programlisting>
<calloutlist>
<callout arearefs="timestamp1">
<para>column (optional - defaults to the
property name): the name of a column holding the
timestamp.</para>
</callout>
<callout arearefs="timestamp2">
<para>name: the name of a JavaBeans style
property of Java type <literal>Date or
<literal>Timestamp of the persistent class.
</callout>
<callout arearefs="timestamp3">
<para>access (optional - defaults to
<literal>property): the strategy Hibernate uses for
accessing the property value.</para>
</callout>
<callout arearefs="timestamp4">
<para>unsaved-value (optional - defaults to
<literal>null): a version property value that
indicates that an instance is newly instantiated (unsaved),
distinguishing it from detached instances that were saved or
loaded in a previous session. <literal>Undefined
specifies that the identifier property value should be
used.</para>
</callout>
<callout arearefs="timestamp5">
<para>source (optional - defaults to
<literal>vm): Where should Hibernate retrieve the
timestamp value from? From the database, or from the current
JVM? Database-based timestamps incur an overhead because
Hibernate must hit the database in order to determine the "next
value". It is safer to use in clustered environments. Not all
<literal>Dialects are known to support the retrieval
of the database's current timestamp. Others may also be unsafe
for usage in locking due to lack of precision (Oracle 8, for
example).</para>
</callout>
<callout arearefs="timestamp6">
<para>generated (optional - defaults to
<literal>never): specifies that this timestamp
property value is actually generated by the database. See the
discussion of <link linkend="mapping-generated">generated
properties</link> for more information.
</callout>
</calloutlist>
</programlistingco>
<note>
<title>Note
<para><Timestamp> is equivalent to
<literal><version type="timestamp">. And
<literal><timestamp source="db"> is equivalent to
<literal><version type="dbtimestamp">
</note>
</section>
</section>
<section id="mapping-declaration-property" revision="4">
<title>Property
<para>You need to decide which property needs to be made persistent in a
given entity. This differs slightly between the annotation driven
metadata and the hbm.xml files.</para>
<section>
<title>Property mapping with annotations
<para>In the annotations world, every non static non transient
property (field or method depending on the access type) of an entity
is considered persistent, unless you annotate it as
<literal>@Transient. Not having an annotation for your
property is equivalent to the appropriate <literal>@Basic
annotation.</para>
<para>The @Basic annotation allows you to declare
the fetching strategy for a property. If set to
<literal>LAZY, specifies that this property should be
fetched lazily when the instance variable is first accessed. It
requires build-time bytecode instrumentation, if your classes are not
instrumented, property level lazy loading is silently ignored. The
default is <literal>EAGER. You can also mark a property as
not optional thanks to the <classname>@Basic.optional
attribute. This will ensure that the underlying column are not
nullable (if possible). Note that a better approach is to use the
<classname>@NotNull annotation of the Bean Validation
specification.</para>
<para>Let's look at a few examples:
<programlisting language="JAVA" role="JAVA">public transient int counter; //transient property
private String firstname; //persistent property
@Transient
String getLengthInMeter() { ... } //transient property
String getName() {... } // persistent property
@Basic
int getLength() { ... } // persistent property
@Basic(fetch = FetchType.LAZY)
String getDetailedComment() { ... } // persistent property
@Temporal(TemporalType.TIME)
java.util.Date getDepartureTime() { ... } // persistent property
@Enumerated(EnumType.STRING)
Starred getNote() { ... } //enum persisted as String in database</programlisting>
<para>counter, a transient field, and
<literal>lengthInMeter, a method annotated as
<literal>@Transient, and will be ignored by the Hibernate.
<literal>name, length, and
<literal>firstname properties are mapped persistent and
eagerly fetched (the default for simple properties). The
<literal>detailedComment property value will be lazily
fetched from the database once a lazy property of the entity is
accessed for the first time. Usually you don't need to lazy simple
properties (not to be confused with lazy association fetching). The
recommended alternative is to use the projection capability of JP-QL
(Java Persistence Query Language) or Criteria queries.</para>
<para>JPA support property mapping of all basic types supported by
Hibernate (all basic Java types , their respective wrappers and
serializable classes). Hibernate Annotations supports out of the box
enum type mapping either into a ordinal column (saving the enum
ordinal) or a string based column (saving the enum string
representation): the persistence representation, defaulted to ordinal,
can be overridden through the <literal>@Enumerated
annotation as shown in the <literal>note property
example.</para>
<para>In plain Java APIs, the temporal precision of time is not
defined. When dealing with temporal data you might want to describe
the expected precision in database. Temporal data can have
<literal>DATE, TIME, or
<literal>TIMESTAMP precision (ie the actual date, only the
time, or both). Use the <literal>@Temporal annotation to
fine tune that.</para>
<para>@Lob indicates that the property should be
persisted in a Blob or a Clob depending on the property type:
<classname>java.sql.Clob,
<classname>Character[], char[] and
java.lang.<classname>String will be persisted in a Clob.
<classname>java.sql.Blob, Byte[],
<classname>byte[] and Serializable
type will be persisted in a Blob.</para>
<programlisting language="JAVA" role="JAVA">@Lob
public String getFullText() {
return fullText;
}
@Lob
public byte[] getFullCode() {
return fullCode;
}</programlisting>
<para>If the property type implements
<classname>java.io.Serializable and is not a basic type,
and if the property is not annotated with <literal>@Lob,
then the Hibernate <literal>serializable type is
used.</para>
<section>
<title>Type
<para>You can also manually specify a type using the
<literal>@org.hibernate.annotations.Type and some
parameters if needed. <classname>@Type.type could
be:</para>
<orderedlist spacing="compact">
<listitem>
<para>The name of a Hibernate basic type: integer,
string, character, date, timestamp, float, binary, serializable,
object, blob</literal> etc.
</listitem>
<listitem>
<para>The name of a Java class with a default basic type:
<literal>int, float, char, java.lang.String, java.util.Date,
java.lang.Integer, java.sql.Clob</literal> etc.
</listitem>
<listitem>
<para>The name of a serializable Java class.
</listitem>
<listitem>
<para>The class name of a custom type:
<literal>com.illflow.type.MyCustomType etc.
</listitem>
</orderedlist>
<para>If you do not specify a type, Hibernate will use reflection
upon the named property and guess the correct Hibernate type.
Hibernate will attempt to interpret the name of the return class of
the property getter using, in order, rules 2, 3, and 4.</para>
<para>@org.hibernate.annotations.TypeDef and
<literal>@org.hibernate.annotations.TypeDefs allows you to
declare type definitions. These annotations can be placed at the
class or package level. Note that these definitions are global for
the session factory (even when defined at the class level). If the
type is used on a single entity, you can place the definition on the
entity itself. Otherwise, it is recommended to place the definition
at the package level. In the example below, when Hibernate
encounters a property of class <literal>PhoneNumer, it
delegates the persistence strategy to the custom mapping type
<literal>PhoneNumberType. However, properties belonging to
other classes, too, can delegate their persistence strategy to
<literal>PhoneNumberType, by explicitly using the
<literal>@Type annotation.
<note>
<para>Package level annotations are placed in a file named
<filename>package-info.java in the appropriate package.
Place your annotations before the package declaration.</para>
</note>
<programlisting language="JAVA" role="JAVA">@TypeDef(
name = "phoneNumber",
defaultForType = PhoneNumber.class,
typeClass = PhoneNumberType.class
)
@Entity
public class ContactDetails {
[...]
private PhoneNumber localPhoneNumber;
@Type(type="phoneNumber")
private OverseasPhoneNumber overseasPhoneNumber;
[...]
}</programlisting>
<para>The following example shows the usage of the
<literal>parameters attribute to customize the
TypeDef.</para>
<programlisting language="JAVA" role="JAVA">//in org/hibernate/test/annotations/entity/package-info.java
@TypeDefs(
{
@TypeDef(
name="caster",
typeClass = CasterStringType.class,
parameters = {
@Parameter(name="cast", value="lower")
}
)
}
)
package org.hibernate.test.annotations.entity;
//in org/hibernate/test/annotations/entity/Forest.java
public class Forest {
@Type(type="caster")
public String getSmallText() {
...
} </programlisting>
<para>When using composite user type, you will have to express
column definitions. The <literal>@Columns has been
introduced for that purpose.</para>
<programlisting language="JAVA" role="JAVA">@Type(type="org.hibernate.test.annotations.entity.MonetaryAmountUserType")
@Columns(columns = {
@Column(name="r_amount"),
@Column(name="r_currency")
})
public MonetaryAmount getAmount() {
return amount;
}
public class MonetaryAmount implements Serializable {
private BigDecimal amount;
private Currency currency;
...
}</programlisting>
</section>
<section>
<title>Access type
<para>By default the access type of a class hierarchy is defined by
the position of the <classname>@Id or
<classname>@EmbeddedId annotations. If these annotations
are on a field, then only fields are considered for persistence and
the state is accessed via the field. If there annotations are on a
getter, then only the getters are considered for persistence and the
state is accessed via the getter/setter. That works well in practice
and is the recommended approach.<note>
<para>The placement of annotations within a class hierarchy has
to be consistent (either field or on property) to be able to
determine the default access type. It is recommended to stick to
one single annotation placement strategy throughout your whole
application.</para>
</note>
<para>However in some situations, you need to:
<itemizedlist>
<listitem>
<para>force the access type of the entity hierarchy
</listitem>
<listitem>
<para>override the access type of a specific entity in the class
hierarchy</para>
</listitem>
<listitem>
<para>override the access type of an embeddable type
</listitem>
</itemizedlist>
<para>The best use case is an embeddable class used by several
entities that might not use the same access type. In this case it is
better to force the access type at the embeddable class
level.</para>
<para>To force the access type on a given class, use the
<classname>@Access annotation as showed below:
<programlisting language="JAVA" role="JAVA">@Entity
public class Order {
@Id private Long id;
public Long getId() { return id; }
public void setId(Long id) { this.id = id; }
@Embedded private Address address;
public Address getAddress() { return address; }
public void setAddress() { this.address = address; }
}
@Entity
public class User {
private Long id;
@Id public Long getId() { return id; }
public void setId(Long id) { this.id = id; }
private Address address;
@Embedded public Address getAddress() { return address; }
public void setAddress() { this.address = address; }
}
@Embeddable
@Access(AcessType.PROPERTY)
public class Address {
private String street1;
public String getStreet1() { return street1; }
public void setStreet1() { this.street1 = street1; }
private hashCode; //not persistent
}</programlisting>
<para>You can also override the access type of a single property
while keeping the other properties standard.</para>
<programlisting language="JAVA" role="JAVA">@Entity
public class Order {
@Id private Long id;
public Long getId() { return id; }
public void setId(Long id) { this.id = id; }
@Transient private String userId;
@Transient private String orderId;
@Access(AccessType.PROPERTY)
public String getOrderNumber() { return userId + ":" + orderId; }
public void setOrderNumber() { this.userId = ...; this.orderId = ...; }
}</programlisting>
<para>In this example, the default access type is
<classname>FIELD except for the
<literal>orderNumber property. Note that the corresponding
field, if any must be marked as <classname>@Transient or
<code>transient.
<note>
<title>@org.hibernate.annotations.AccessType
<para>The annotation
<classname>@org.hibernate.annotations.AccessType
should be considered deprecated for FIELD and PROPERTY access. It
is still useful however if you need to use a custom access
type.</para>
</note>
</section>
<section>
<title>Optimistic lock
<para>It is sometimes useful to avoid increasing the version number
even if a given property is dirty (particularly collections). You
can do that by annotating the property (or collection) with
<literal>@OptimisticLock(excluded=true).
<para>More formally, specifies that updates to this property do not
require acquisition of the optimistic lock.</para>
</section>
<section id="entity-mapping-property-column">
<title>Declaring column attributes
<para>The column(s) used for a property mapping can be defined using
the <literal>@Column annotation. Use it to override
default values (see the JPA specification for more information on
the defaults). You can use this annotation at the property level for
properties that are:</para>
<itemizedlist>
<listitem>
<para>not annotated at all
</listitem>
<listitem>
<para>annotated with @Basic
</listitem>
<listitem>
<para>annotated with @Version
</listitem>
<listitem>
<para>annotated with @Lob
</listitem>
<listitem>
<para>annotated with @Temporal
</listitem>
</itemizedlist>
<programlisting language="JAVA" role="JAVA">
@Entity
public class Flight implements Serializable {
...
@Column(updatable = false, name = "flight_name", nullable = false, length=50)
public String getName() { ... }
</programlisting>
<para>The name property is mapped to the
<literal>flight_name column, which is not nullable, has a
length of 50 and is not updatable (making the property
immutable).</para>
<para>This annotation can be applied to regular properties as well
as <literal>@Id or @Version
properties.</para>
<programlistingco>
<areaspec>
<area coords="2" id="hm1" />
<area coords="3" id="hm2" />
<area coords="4" id="hm3" />
<area coords="5" id="hm4" />
<area coords="6" id="hm5" />
<area coords="7" id="hm6" />
<area coords="8" id="hm7" />
<area coords="9" id="hm8" />
<area coords="10" id="hm9" />
<area coords="11" id="hm10" />
</areaspec>
<programlisting>@Column(
name="columnName";
boolean unique() default false;
boolean nullable() default true;
boolean insertable() default true;
boolean updatable() default true;
String columnDefinition() default "";
String table() default "";
int length() default 255;
int precision() default 0; // decimal precision
int scale() default 0; // decimal scale</programlisting>
<calloutlist>
<callout arearefs="hm1">
<para>name (optional): the column name
(default to the property name)</para>
</callout>
<callout arearefs="hm2">
<para>unique (optional): set a unique
constraint on this column or not (default false)</para>
</callout>
<callout arearefs="hm3">
<para>nullable (optional): set the column
as nullable (default true).</para>
</callout>
<callout arearefs="hm4">
<para>insertable (optional): whether or not
the column will be part of the insert statement (default
true)</para>
</callout>
<callout arearefs="hm5">
<para>updatable (optional): whether or not
the column will be part of the update statement (default
true)</para>
</callout>
<callout arearefs="hm6">
<para>columnDefinition (optional): override
the sql DDL fragment for this particular column (non
portable)</para>
</callout>
<callout arearefs="hm7">
<para>table (optional): define the targeted
table (default primary table)</para>
</callout>
<callout arearefs="hm8">
<para>length (optional):
column length (default 255)</para>
</callout>
<callout arearefs="hm8">
<para>precision
(optional): column decimal precision (default 0)</para>
</callout>
<callout arearefs="hm10">
<para>scale (optional):
column decimal scale if useful (default 0)</para>
</callout>
</calloutlist>
</programlistingco>
</section>
<section>
<title>Formula
<para>Sometimes, you want the Database to do some computation for
you rather than in the JVM, you might also create some kind of
virtual column. You can use a SQL fragment (aka formula) instead of
mapping a property into a column. This kind of property is read only
(its value is calculated by your formula fragment).</para>
<programlisting language="JAVA" role="JAVA">@Formula("obj_length * obj_height * obj_width")
public long getObjectVolume()</programlisting>
<para>The SQL fragment can be as complex as you want and even
include subselects.</para>
</section>
<section>
<title>Non-annotated property defaults
<para>If a property is not annotated, the following rules
apply:<itemizedlist>
<listitem>
<para>If the property is of a single type, it is mapped as
@Basic</para>
</listitem>
<listitem>
<para>Otherwise, if the type of the property is annotated as
@Embeddable, it is mapped as @Embedded</para>
</listitem>
<listitem>
<para>Otherwise, if the type of the property is
<classname>Serializable, it is mapped as
<classname>@Basic in a column holding the object
in its serialized version</para>
</listitem>
<listitem>
<para>Otherwise, if the type of the property is
<classname>java.sql.Clob or
<classname>java.sql.Blob, it is mapped as
<classname>@Lob with the appropriate
<classname>LobType
</listitem>
</itemizedlist>
</section>
</section>
<section>
<title>Property mapping with hbm.xml
<para>The <property> element declares a
persistent JavaBean style property of the class.</para>
<programlistingco role="XML">
<areaspec>
<area coords="2" id="property1" />
<area coords="3" id="property2" />
<area coords="4" id="property3" />
<areaset coords="" id="property4-5">
<area coords="5" id="property4" />
<area coords="6" id="property5" />
</areaset>
<area coords="7" id="property6" />
<area coords="8" id="property7" />
<area coords="9" id="property8" />
<area coords="10" id="property9" />
<area coords="11" id="property10" />
<area coords="12" id="property11" />
<area coords="13" id="property12" />
</areaspec>
<programlisting><property
name="propertyName"
column="column_name"
type="typename"
update="true|false"
insert="true|false"
formula="arbitrary SQL expression"
access="field|property|ClassName"
lazy="true|false"
unique="true|false"
not-null="true|false"
optimistic-lock="true|false"
generated="never|insert|always"
node="element-name|@attribute-name|element/@attribute|."
index="index_name"
unique_key="unique_key_id"
length="L"
precision="P"
scale="S"
/></programlisting>
<calloutlist>
<callout arearefs="property1">
<para>name: the name of the property, with an
initial lowercase letter.</para>
</callout>
<callout arearefs="property2">
<para>column (optional - defaults to the
property name): the name of the mapped database table column.
This can also be specified by nested
<literal><column> element(s).
</callout>
<callout arearefs="property3">
<para>type (optional): a name that indicates
the Hibernate type.</para>
</callout>
<callout arearefs="property4-5">
<para>update, insert (optional - defaults to
<literal>true): specifies that the mapped columns
should be included in SQL <literal>UPDATE and/or
<literal>INSERT statements. Setting both to
<literal>false allows a pure "derived" property whose
value is initialized from some other property that maps to the
same column(s), or by a trigger or other application.</para>
</callout>
<callout arearefs="property6">
<para>formula (optional): an SQL expression
that defines the value for a <emphasis>computed
property. Computed properties do not have a column mapping of
their own.</para>
</callout>
<callout arearefs="property7">
<para>access (optional - defaults to
<literal>property): the strategy Hibernate uses for
accessing the property value.</para>
</callout>
<callout arearefs="property8">
<para>lazy (optional - defaults to
<literal>false): specifies that this property should
be fetched lazily when the instance variable is first accessed.
It requires build-time bytecode instrumentation.</para>
</callout>
<callout arearefs="property9">
<para>unique (optional): enables the DDL
generation of a unique constraint for the columns. Also, allow
this to be the target of a
<literal>property-ref.
</callout>
<callout arearefs="property10">
<para>not-null (optional): enables the DDL
generation of a nullability constraint for the columns.</para>
</callout>
<callout arearefs="property11">
<para>optimistic-lock (optional - defaults to
<literal>true): specifies that updates to this
property do or do not require acquisition of the optimistic
lock. In other words, it determines if a version increment
should occur when this property is dirty.</para>
</callout>
<callout arearefs="property12">
<para>generated (optional - defaults to
<literal>never): specifies that this property value is
actually generated by the database. See the discussion of <link
linkend="mapping-generated">generated properties</link> for more
information.</para>
</callout>
</calloutlist>
</programlistingco>
<para>typename could be:
<orderedlist spacing="compact">
<listitem>
<para>The name of a Hibernate basic type: integer,
string, character, date, timestamp, float, binary, serializable,
object, blob</literal> etc.
</listitem>
<listitem>
<para>The name of a Java class with a default basic type:
<literal>int, float, char, java.lang.String, java.util.Date,
java.lang.Integer, java.sql.Clob</literal> etc.
</listitem>
<listitem>
<para>The name of a serializable Java class.
</listitem>
<listitem>
<para>The class name of a custom type:
<literal>com.illflow.type.MyCustomType etc.
</listitem>
</orderedlist>
<para>If you do not specify a type, Hibernate will use reflection upon
the named property and guess the correct Hibernate type. Hibernate
will attempt to interpret the name of the return class of the property
getter using, in order, rules 2, 3, and 4. In certain cases you will
need the <literal>type attribute. For example, to
distinguish between <literal>Hibernate.DATE and
<literal>Hibernate.TIMESTAMP, or to specify a custom
type.</para>
<para>The access attribute allows you to control
how Hibernate accesses the property at runtime. By default, Hibernate
will call the property get/set pair. If you specify
<literal>access="field", Hibernate will bypass the get/set
pair and access the field directly using reflection. You can specify
your own strategy for property access by naming a class that
implements the interface
<literal>org.hibernate.property.PropertyAccessor.
<para>A powerful feature is derived properties. These properties are
by definition read-only. The property value is computed at load time.
You declare the computation as an SQL expression. This then translates
to a <literal>SELECT clause subquery in the SQL query that
loads an instance:</para>
<programlisting role="XML">
<property name="totalPrice"
formula="( SELECT SUM (li.quantity*p.price) FROM LineItem li, Product p
WHERE li.productId = p.productId
AND li.customerId = customerId
AND li.orderNumber = orderNumber )"/></programlisting>
<para>You can reference the entity table by not declaring an alias on
a particular column. This would be <literal>customerId in
the given example. You can also use the nested
<literal><formula> mapping element if you do not want
to use the attribute.</para>
</section>
</section>
<section id="mapping-declaration-component">
<title>Embedded objects (aka components)
<para>Embeddable objects (or components) are objects whose properties
are mapped to the same table as the owning entity's table. Components
can, in turn, declare their own properties, components or
collections</para>
<para>It is possible to declare an embedded component inside an entity
and even override its column mapping. Component classes have to be
annotated at the class level with the <literal>@Embeddable
annotation. It is possible to override the column mapping of an embedded
object for a particular entity using the <literal>@Embedded
and <literal>@AttributeOverride annotation in the associated
property:</para>
<programlisting language="JAVA" role="JAVA">@Entity
public class Person implements Serializable {
// Persistent component using defaults
Address homeAddress;
@Embedded
@AttributeOverrides( {
@AttributeOverride(name="iso2", column = @Column(name="bornIso2") ),
@AttributeOverride(name="name", column = @Column(name="bornCountryName") )
} )
Country bornIn;
...
} </programlisting>
<programlisting language="JAVA" role="JAVA">@Embeddable
public class Address implements Serializable {
String city;
Country nationality; //no overriding here
} </programlisting>
<programlisting language="JAVA" role="JAVA">@Embeddable
public class Country implements Serializable {
private String iso2;
@Column(name="countryName") private String name;
public String getIso2() { return iso2; }
public void setIso2(String iso2) { this.iso2 = iso2; }
public String getName() { return name; }
public void setName(String name) { this.name = name; }
...
} </programlisting>
<para>An embeddable object inherits the access type of its owning entity
(note that you can override that using the <literal>@Access
annotation).</para>
<para>The Person entity has two component properties,
<literal>homeAddress and bornIn.
<literal>homeAddress property has not been annotated, but
Hibernate will guess that it is a persistent component by looking for
the <literal>@Embeddable annotation in the Address class. We
also override the mapping of a column name (to
<literal>bornCountryName) with the
<literal>@Embedded and @AttributeOverride
</literal>annotations for each mapped attribute of
<literal>Country. As you can see, Country
</literal>is also a nested component of Address,
again using auto-detection by Hibernate and JPA defaults. Overriding
columns of embedded objects of embedded objects is through dotted
expressions.</para>
<programlisting language="JAVA" role="JAVA"> @Embedded
@AttributeOverrides( {
@AttributeOverride(name="city", column = @Column(name="fld_city") ),
@AttributeOverride(name="nationality.iso2", column = @Column(name="nat_Iso2") ),
@AttributeOverride(name="nationality.name", column = @Column(name="nat_CountryName") )
//nationality columns in homeAddress are overridden
} )
Address homeAddress;</programlisting>
<para>Hibernate Annotations supports something that is not explicitly
supported by the JPA specification. You can annotate a embedded object
with the <literal>@MappedSuperclass annotation to make the
superclass properties persistent (see
<literal>@MappedSuperclass for more informations).
<para>You can also use association annotations in an embeddable object
(ie <literal>@OneToOne, @ManyToOne,
<classname>@OneToMany or @ManyToMany). To
override the association columns you can use
<literal>@AssociationOverride.
<para>If you want to have the same embeddable object type twice in the
same entity, the column name defaulting will not work as several
embedded objects would share the same set of columns. In plain JPA, you
need to override at least one set of columns. Hibernate, however, allows
you to enhance the default naming mechanism through the
<classname>NamingStrategy interface. You can write a
strategy that prevent name clashing in such a situation.
<classname>DefaultComponentSafeNamingStrategy is an example
of this.</para>
<para>If a property of the embedded object points back to the owning
entity, annotate it with the <classname>@Parent annotation.
Hibernate will make sure this property is properly loaded with the
entity reference.</para>
<para>In XML, use the <component>
element.</para>
<programlistingco role="XML">
<areaspec>
<area coords="2" id="component1" />
<area coords="3" id="component2" />
<area coords="4" id="component3" />
<area coords="5" id="component4" />
<area coords="6" id="component5" />
<area coords="7" id="component6" />
<area coords="8" id="component7" />
<area coords="9" id="component8" />
</areaspec>
<programlisting><component
name="propertyName"
class="className"
insert="true|false"
update="true|false"
access="field|property|ClassName"
lazy="true|false"
optimistic-lock="true|false"
unique="true|false"
node="element-name|."
>
<property ...../>
<many-to-one .... />
........
</component></programlisting>
<calloutlist>
<callout arearefs="component1">
<para>name: the name of the property.
</callout>
<callout arearefs="component2">
<para>class (optional - defaults to the
property type determined by reflection): the name of the component
(child) class.</para>
</callout>
<callout arearefs="component3">
<para>insert: do the mapped columns appear in
SQL <literal>INSERTs?
</callout>
<callout arearefs="component4">
<para>update: do the mapped columns appear in
SQL <literal>UPDATEs?
</callout>
<callout arearefs="component5">
<para>access (optional - defaults to
<literal>property): the strategy Hibernate uses for
accessing the property value.</para>
</callout>
<callout arearefs="component6">
<para>lazy (optional - defaults to
<literal>false): specifies that this component should be
fetched lazily when the instance variable is first accessed. It
requires build-time bytecode instrumentation.</para>
</callout>
<callout arearefs="component7">
<para>optimistic-lock (optional - defaults to
<literal>true): specifies that updates to this component
either do or do not require acquisition of the optimistic lock. It
determines if a version increment should occur when this property
is dirty.</para>
</callout>
<callout arearefs="component8">
<para>unique (optional - defaults to
<literal>false): specifies that a unique constraint
exists upon all mapped columns of the component.</para>
</callout>
</calloutlist>
</programlistingco>
<para>The child <property> tags map properties
of the child class to table columns.</para>
<para>The <component> element allows a
<literal><parent> subelement that maps a property of the
component class as a reference back to the containing entity.</para>
<para>The <dynamic-component> element allows a
<literal>Map to be mapped as a component, where the property
names refer to keys of the map. See <xref
linkend="components-dynamic" /> for more information. This feature is
not supported in annotations.</para>
</section>
<section>
<title>Inheritance strategy
<para>Java is a language supporting polymorphism: a class can inherit
from another. Several strategies are possible to persist a class
hierarchy:</para>
<itemizedlist>
<listitem>
<para>Single table per class hierarchy strategy: a single table
hosts all the instances of a class hierarchy</para>
</listitem>
<listitem>
<para>Joined subclass strategy: one table per class and subclass is
present and each table persist the properties specific to a given
subclass. The state of the entity is then stored in its
corresponding class table and all its superclasses</para>
</listitem>
<listitem>
<para>Table per class strategy: one table per concrete class and
subclass is present and each table persist the properties of the
class and its superclasses. The state of the entity is then stored
entirely in the dedicated table for its class.</para>
</listitem>
</itemizedlist>
<section id="mapping-declaration-subclass" revision="4">
<title>Single table per class hierarchy strategy
<para>With this approach the properties of all the subclasses in a
given mapped class hierarchy are stored in a single table.</para>
<para>Each subclass declares its own persistent properties and
subclasses. Version and id properties are assumed to be inherited from
the root class. Each subclass in a hierarchy must define a unique
discriminator value. If this is not specified, the fully qualified
Java class name is used.</para>
<programlisting language="JAVA" role="JAVA">@Entity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(
name="planetype",
discriminatorType=DiscriminatorType.STRING
)
@DiscriminatorValue("Plane")
public class Plane { ... }
@Entity
@DiscriminatorValue("A320")
public class A320 extends Plane { ... } </programlisting>
<para>In hbm.xml, for the table-per-class-hierarchy mapping strategy,
the <literal><subclass> declaration is used. For
example:</para>
<programlistingco role="XML">
<areaspec>
<area coords="2" id="subclass1" />
<area coords="3" id="subclass2" />
<area coords="4" id="subclass3" />
<area coords="5" id="subclass4" />
</areaspec>
<programlisting><subclass
name="ClassName"
discriminator-value="discriminator_value"
proxy="ProxyInterface"
lazy="true|false"
dynamic-update="true|false"
dynamic-insert="true|false"
entity-name="EntityName"
node="element-name"
extends="SuperclassName">
<property .... />
.....
</subclass></programlisting>
<calloutlist>
<callout arearefs="subclass1">
<para>name: the fully qualified class name of
the subclass.</para>
</callout>
<callout arearefs="subclass2">
<para>discriminator-value (optional -
defaults to the class name): a value that distinguishes
individual subclasses.</para>
</callout>
<callout arearefs="subclass3">
<para>proxy (optional): specifies a class or
interface used for lazy initializing proxies.</para>
</callout>
<callout arearefs="subclass4">
<para>lazy (optional - defaults to
<literal>true): setting
<literal>lazy="false" disables the use of lazy
fetching.</para>
</callout>
</calloutlist>
</programlistingco>
<para>For information about inheritance mappings see
<section id="mapping-declaration-discriminator" revision="3">
<title>Discriminator
<para>Discriminators are required for polymorphic persistence using
the table-per-class-hierarchy mapping strategy. It declares a
discriminator column of the table. The discriminator column contains
marker values that tell the persistence layer what subclass to
instantiate for a particular row. Hibernate Core supports the
follwoing restricted set of types as discriminator column:
<literal>string, character,
<literal>integer, byte,
<literal>short, boolean,
<literal>yes_no, true_false.
<para>Use the @DiscriminatorColumn to define
the discriminator column as well as the discriminator type. <note>
<para>The enum DiscriminatorType used in
<classname>javax.persitence.DiscriminatorColumn only
contains the values <constant>STRING,
<constant>CHAR and INTEGER which
means that not all Hibernate supported types are available via
the <classname>@DiscriminatorColumn
annotation.</para>
</note>You can also use
<classname>@DiscriminatorFormula to express in SQL a
virtual discriminator column. This is particularly useful when the
discriminator value can be extracted from one or more columns of the
table. Both <classname>@DiscriminatorColumn and
<classname>@DiscriminatorFormula are to be set on the
root entity (once per persisted hierarchy).</para>
<para>@org.hibernate.annotations.DiscriminatorOptions
allows to optionally specify Hibernate specific discriminator
options which are not standardized in JPA. The available options are
<literal>force and insert. The
<literal>force attribute is useful if the table contains
rows with "extra" discriminator values that are not mapped to a
persistent class. This could for example occur when working with a
legacy database. If <literal>force is set to
<constant>true Hibernate will specify the allowed
discriminator values in the <literal>SELECT query, even
when retrieving all instances of the root class. The second option -
<literal>insert - tells Hibernate whether or not to
include the discriminator column in SQL <literal>INSERTs.
Usually the column should be part of the <literal>INSERT
statement, but if your discriminator column is also part of a mapped
composite identifier you have to set this option to
<constant>false.
<para>There is also a
<classname>@org.hibernate.annotations.ForceDiscriminator
annotation which is deprecated since version 3.6. Use
<classname>@DiscriminatorOptions instead.
</tip>
<para>Finally, use @DiscriminatorValue on
each class of the hierarchy to specify the value stored in the
discriminator column for a given entity. If you do not set
<classname>@DiscriminatorValue on a class, the fully
qualified class name is used.</para>
<programlisting language="JAVA" role="JAVA">@Entity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(
name="planetype",
discriminatorType=DiscriminatorType.STRING
)
@DiscriminatorValue("Plane")
public class Plane { ... }
@Entity
@DiscriminatorValue("A320")
public class A320 extends Plane { ... } </programlisting>
<para>In hbm.xml, the <discriminator>
element is used to define the discriminator column or
formula:</para>
<programlistingco role="XML">
<areaspec>
<area coords="2" id="discriminator1" />
<area coords="3" id="discriminator2" />
<area coords="4" id="discriminator3" />
<area coords="5" id="discriminator4" />
<area coords="6" id="discriminator5" />
</areaspec>
<programlisting><discriminator
column="discriminator_column"
type="discriminator_type"
force="true|false"
insert="true|false"
formula="arbitrary sql expression"
/></programlisting>
<calloutlist>
<callout arearefs="discriminator1">
<para>column (optional - defaults to
<literal>class): the name of the discriminator
column.</para>
</callout>
<callout arearefs="discriminator2">
<para>type (optional - defaults to
<literal>string): a name that indicates the
Hibernate type</para>
</callout>
<callout arearefs="discriminator3">
<para>force (optional - defaults to
<literal>false): "forces" Hibernate to specify the
allowed discriminator values, even when retrieving all
instances of the root class.</para>
</callout>
<callout arearefs="discriminator4">
<para>insert (optional - defaults to
<literal>true): set this to false
if your discriminator column is also part of a mapped
composite identifier. It tells Hibernate not to include the
column in SQL <literal>INSERTs.
</callout>
<callout arearefs="discriminator5">
<para>formula (optional): an arbitrary SQL
expression that is executed when a type has to be evaluated.
It allows content-based discrimination.</para>
</callout>
</calloutlist>
</programlistingco>
<para>Actual values of the discriminator column are specified by the
<literal>discriminator-value attribute of the
<literal><class> and
<literal><subclass> elements.
<para>The formula attribute allows you to declare
an arbitrary SQL expression that will be used to evaluate the type
of a row. For example:</para>
<programlisting role="XML"><discriminator
formula="case when CLASS_TYPE in ('a', 'b', 'c') then 0 else 1 end"
type="integer"/></programlisting>
</section>
</section>
<section id="mapping-declaration-joinedsubclass" revision="3">
<title>Joined subclass strategy
<para>Each subclass can also be mapped to its own table. This is
called the table-per-subclass mapping strategy. An inherited state is
retrieved by joining with the table of the superclass. A discriminator
column is not required for this mapping strategy. Each subclass must,
however, declare a table column holding the object identifier. The
primary key of this table is also a foreign key to the superclass
table and described by the
<classname>@PrimaryKeyJoinColumns or the
<literal><key> element.
<programlisting language="JAVA" role="JAVA">@Entity @Table(name="CATS")
@Inheritance(strategy=InheritanceType.JOINED)
public class Cat implements Serializable {
@Id @GeneratedValue(generator="cat-uuid")
@GenericGenerator(name="cat-uuid", strategy="uuid")
String getId() { return id; }
...
}
@Entity @Table(name="DOMESTIC_CATS")
@PrimaryKeyJoinColumn(name="CAT")
public class DomesticCat extends Cat {
public String getName() { return name; }
} </programlisting>
<note>
<para>The table name still defaults to the non qualified class name.
Also if <classname>@PrimaryKeyJoinColumn is not set, the
primary key / foreign key columns are assumed to have the same names
as the primary key columns of the primary table of the
superclass.</para>
</note>
<para>In hbm.xml, use the <joined-subclass>
element. For example:</para>
<programlistingco role="XML">
<areaspec>
<area coords="2" id="joinedsubclass1" />
<area coords="3" id="joinedsubclass2" />
<area coords="4" id="joinedsubclass3" />
<area coords="5" id="joinedsubclass4" />
</areaspec>
<programlisting><joined-subclass
name="ClassName"
table="tablename"
proxy="ProxyInterface"
lazy="true|false"
dynamic-update="true|false"
dynamic-insert="true|false"
schema="schema"
catalog="catalog"
extends="SuperclassName"
persister="ClassName"
subselect="SQL expression"
entity-name="EntityName"
node="element-name">
<key .... >
<property .... />
.....
</joined-subclass></programlisting>
<calloutlist>
<callout arearefs="joinedsubclass1">
<para>name: the fully qualified class name of
the subclass.</para>
</callout>
<callout arearefs="joinedsubclass2">
<para>table: the name of the subclass
table.</para>
</callout>
<callout arearefs="joinedsubclass3">
<para>proxy (optional): specifies a class or
interface to use for lazy initializing proxies.</para>
</callout>
<callout arearefs="joinedsubclass4">
<para>lazy (optional, defaults to
<literal>true): setting
<literal>lazy="false" disables the use of lazy
fetching.</para>
</callout>
</calloutlist>
</programlistingco>
<para>Use the <key> element to declare the
primary key / foreign key column. The mapping at the start of the
chapter would then be re-written as:</para>
<programlisting role="XML"><?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD//EN"
"http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="eg">
<class name="Cat" table="CATS">
<id name="id" column="uid" type="long">
<generator class="hilo"/>
</id>
<property name="birthdate" type="date"/>
<property name="color" not-null="true"/>
<property name="sex" not-null="true"/>
<property name="weight"/>
<many-to-one name="mate"/>
<set name="kittens">
<key column="MOTHER"/>
<one-to-many class="Cat"/>
</set>
<joined-subclass name="DomesticCat" table="DOMESTIC_CATS">
<key column="CAT"/>
<property name="name" type="string"/>
</joined-subclass>
</class>
<class name="eg.Dog">
<!-- mapping for Dog could go here -->
</class>
</hibernate-mapping></programlisting>
<para>For information about inheritance mappings see
</section>
<section id="mapping-declaration-unionsubclass" revision="2">
<title>Table per class strategy
<para>A third option is to map only the concrete classes of an
inheritance hierarchy to tables. This is called the
table-per-concrete-class strategy. Each table defines all persistent
states of the class, including the inherited state. In Hibernate, it
is not necessary to explicitly map such inheritance hierarchies. You
can map each class as a separate entity root. However, if you wish use
polymorphic associations (e.g. an association to the superclass of
your hierarchy), you need to use the union subclass mapping.</para>
<programlisting language="JAVA" role="JAVA">@Entity
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public class Flight implements Serializable { ... } </programlisting>
<para>Or in hbm.xml:
<programlistingco role="XML">
<areaspec>
<area coords="2" id="unionsubclass1" />
<area coords="3" id="unionsubclass2" />
<area coords="4" id="unionsubclass3" />
<area coords="5" id="unionsubclass4" />
</areaspec>
<programlisting><union-subclass
name="ClassName"
table="tablename"
proxy="ProxyInterface"
lazy="true|false"
dynamic-update="true|false"
dynamic-insert="true|false"
schema="schema"
catalog="catalog"
extends="SuperclassName"
abstract="true|false"
persister="ClassName"
subselect="SQL expression"
entity-name="EntityName"
node="element-name">
<property .... />
.....
</union-subclass></programlisting>
<calloutlist>
<callout arearefs="unionsubclass1">
<para>name: the fully qualified class name of
the subclass.</para>
</callout>
<callout arearefs="unionsubclass2">
<para>table: the name of the subclass
table.</para>
</callout>
<callout arearefs="unionsubclass3">
<para>proxy (optional): specifies a class or
interface to use for lazy initializing proxies.</para>
</callout>
<callout arearefs="unionsubclass4">
<para>lazy (optional, defaults to
<literal>true): setting
<literal>lazy="false" disables the use of lazy
fetching.</para>
</callout>
</calloutlist>
</programlistingco>
<para>No discriminator column or key column is required for this
mapping strategy.</para>
<para>For information about inheritance mappings see
</section>
<section>
<title>Inherit properties from superclasses
<para>This is sometimes useful to share common properties through a
technical or a business superclass without including it as a regular
mapped entity (ie no specific table for this entity). For that purpose
you can map them as <literal>@MappedSuperclass.
<programlisting language="JAVA" role="JAVA">@MappedSuperclass
public class BaseEntity {
@Basic
@Temporal(TemporalType.TIMESTAMP)
public Date getLastUpdate() { ... }
public String getLastUpdater() { ... }
...
}
@Entity class Order extends BaseEntity {
@Id public Integer getId() { ... }
...
}</programlisting>
<para>In database, this hierarchy will be represented as an
<literal>Order table having the id,
<literal>lastUpdate and lastUpdater
columns. The embedded superclass property mappings are copied into
their entity subclasses. Remember that the embeddable superclass is
not the root of the hierarchy though.</para>
<note>
<para>Properties from superclasses not mapped as
<literal>@MappedSuperclass are ignored.
</note>
<note>
<para>The default access type (field or methods) is used, unless you
use the <literal>@Access annotation.
</note>
<note>
<para>The same notion can be applied to
<literal>@Embeddable objects to persist properties from
their superclasses. You also need to use
<literal>@MappedSuperclass to do that (this should not be
considered as a standard EJB3 feature though)</para>
</note>
<note>
<para>It is allowed to mark a class as
<literal>@MappedSuperclass in the middle of the mapped
inheritance hierarchy.</para>
</note>
<note>
<para>Any class in the hierarchy non annotated with
<literal>@MappedSuperclass nor @Entity
will be ignored.</para>
</note>
<para>You can override columns defined in entity superclasses at the
root entity level using the <literal>@AttributeOverride
annotation.</para>
<programlisting language="JAVA" role="JAVA">@MappedSuperclass
public class FlyingObject implements Serializable {
public int getAltitude() {
return altitude;
}
@Transient
public int getMetricAltitude() {
return metricAltitude;
}
@ManyToOne
public PropulsionType getPropulsion() {
return metricAltitude;
}
...
}
@Entity
@AttributeOverride( name="altitude", column = @Column(name="fld_altitude") )
@AssociationOverride(
name="propulsion",
joinColumns = @JoinColumn(name="fld_propulsion_fk")
)
public class Plane extends FlyingObject {
...
}</programlisting>
<para>The altitude property will be persisted in an
<literal>fld_altitude column of table
<literal>Plane and the propulsion association will be
materialized in a <literal>fld_propulsion_fk foreign key
column.</para>
<para>You can define @AttributeOverride(s) and
<literal>@AssociationOverride(s) on
<literal>@Entity classes,
<literal>@MappedSuperclass classes and properties pointing
to an <literal>@Embeddable object.
<para>In hbm.xml, simply map the properties of the superclass in the
<literal><class> element of the entity that needs to
inherit them.</para>
</section>
<section id="mapping-declaration-join" revision="3">
<title>Mapping one entity to several tables
<para>While not recommended for a fresh schema, some legacy databases
force your to map a single entity on several tables.</para>
<para>Using the @SecondaryTable or
<literal>@SecondaryTables class level annotations. To
express that a column is in a particular table, use the
<literal>table parameter of @Column or
<literal>@JoinColumn.
<programlisting language="JAVA" role="JAVA">@Entity
@Table(name="MainCat")
@SecondaryTables({
@SecondaryTable(name="Cat1", pkJoinColumns={
@PrimaryKeyJoinColumn(name="cat_id", referencedColumnName="id")
),
@SecondaryTable(name="Cat2", uniqueConstraints={@UniqueConstraint(columnNames={"storyPart2"})})
})
public class Cat implements Serializable {
private Integer id;
private String name;
private String storyPart1;
private String storyPart2;
@Id @GeneratedValue
public Integer getId() {
return id;
}
public String getName() {
return name;
}
@Column(table="Cat1")
public String getStoryPart1() {
return storyPart1;
}
@Column(table="Cat2")
public String getStoryPart2() {
return storyPart2;
}
}</programlisting>
<para>In this example, name will be in
<literal>MainCat. storyPart1 will be in
<literal>Cat1 and storyPart2 will be in
<literal>Cat2. Cat1 will be joined to
<literal>MainCat using the cat_id as a
foreign key, and <literal>Cat2 using id
(ie the same column name, the <literal>MainCat id column
has). Plus a unique constraint on <literal>storyPart2 has
been set.</para>
<para>There is also additional tuning accessible via the
<classname>@org.hibernate.annotations.Table
annotation:</para>
<itemizedlist>
<listitem>
<para>fetch: If set to JOIN, the default,
Hibernate will use an inner join to retrieve a secondary table
defined by a class or its superclasses and an outer join for a
secondary table defined by a subclass. If set to
<classname>SELECT then Hibernate will use a sequential
select for a secondary table defined on a subclass, which will be
issued only if a row turns out to represent an instance of the
subclass. Inner joins will still be used to retrieve a secondary
defined by the class and its superclasses.</para>
</listitem>
<listitem>
<para>inverse: If true, Hibernate will not try
to insert or update the properties defined by this join. Default
to false.</para>
</listitem>
<listitem>
<para>optional: If enabled (the default),
Hibernate will insert a row only if the properties defined by this
join are non-null and will always use an outer join to retrieve
the properties.</para>
</listitem>
<listitem>
<para>foreignKey: defines the Foreign Key name
of a secondary table pointing back to the primary table.</para>
</listitem>
</itemizedlist>
<para>Make sure to use the secondary table name in the
<methodname>appliesto property
<programlisting language="JAVA" role="JAVA">@Entity
@Table(name="MainCat")
@SecondaryTable(name="Cat1")
@org.hibernate.annotations.Table(
appliesTo="Cat1",
fetch=FetchMode.SELECT,
optional=true)
public class Cat implements Serializable {
private Integer id;
private String name;
private String storyPart1;
private String storyPart2;
@Id @GeneratedValue
public Integer getId() {
return id;
}
public String getName() {
return name;
}
@Column(table="Cat1")
public String getStoryPart1() {
return storyPart1;
}
@Column(table="Cat2")
public String getStoryPart2() {
return storyPart2;
}
}</programlisting>
<para>In hbm.xml, use the <join>
element.</para>
<programlistingco role="XML">
<areaspec>
<area coords="2" id="join1" />
<area coords="3" id="join2" />
<area coords="4" id="join3" />
<area coords="5" id="join4" />
<area coords="6" id="join5" />
<area coords="7" id="join6" />
</areaspec>
<programlisting><join
table="tablename"
schema="owner"
catalog="catalog"
fetch="join|select"
inverse="true|false"
optional="true|false">
<key ... />
<property ... />
...
</join></programlisting>
<calloutlist>
<callout arearefs="join1">
<para>table: the name of the joined
table.</para>
</callout>
<callout arearefs="join2">
<para>schema (optional): overrides the schema
name specified by the root
<literal><hibernate-mapping> element.
</callout>
<callout arearefs="join3">
<para>catalog (optional): overrides the
catalog name specified by the root
<literal><hibernate-mapping> element.
</callout>
<callout arearefs="join4">
<para>fetch (optional - defaults to
<literal>join): if set to join, the
default, Hibernate will use an inner join to retrieve a
<literal><join> defined by a class or its
superclasses. It will use an outer join for a
<literal><join> defined by a subclass. If set to
<literal>select then Hibernate will use a sequential
select for a <literal><join> defined on a
subclass. This will be issued only if a row represents an
instance of the subclass. Inner joins will still be used to
retrieve a <literal><join> defined by the class
and its superclasses.</para>
</callout>
<callout arearefs="join5">
<para>inverse (optional - defaults to
<literal>false): if enabled, Hibernate will not insert
or update the properties defined by this join.</para>
</callout>
<callout arearefs="join6">
<para>optional (optional - defaults to
<literal>false): if enabled, Hibernate will insert a
row only if the properties defined by this join are non-null. It
will always use an outer join to retrieve the properties.</para>
</callout>
</calloutlist>
</programlistingco>
<para>For example, address information for a person can be mapped to a
separate table while preserving value type semantics for all
properties:</para>
<programlisting role="XML"><class name="Person"
table="PERSON">
<id name="id" column="PERSON_ID">...</id>
<join table="ADDRESS">
<key column="ADDRESS_ID"/>
<property name="address"/>
<property name="zip"/>
<property name="country"/>
</join>
...</programlisting>
<para>This feature is often only useful for legacy data models. We
recommend fewer tables than classes and a fine-grained domain model.
However, it is useful for switching between inheritance mapping
strategies in a single hierarchy, as explained later.</para>
</section>
</section>
<section>
<title>Mapping one to one and one to many associations
<para>To link one entity to an other, you need to map the association
property as a to one association. In the relational model, you can
either use a foreign key or an association table, or (a bit less common)
share the same primary key value between the two entities.</para>
<para>To mark an association, use either
<classname>@ManyToOne or
<classname>@OnetoOne.
<para>@ManyToOne and @OneToOne
have a parameter named <literal>targetEntity which describes
the target entity name. You usually don't need this parameter since the
default value (the type of the property that stores the association) is
good in almost all cases. However this is useful when you want to use
interfaces as the return type instead of the regular entity.</para>
<para>Setting a value of the cascade attribute to any
meaningful value other than nothing will propagate certain operations to
the associated object. The meaningful values are divided into three
categories.</para>
<orderedlist>
<listitem>
<para>basic operations, which include: persist, merge,
delete, save-update, evict, replicate, lock and
refresh</literal>;
</listitem>
<listitem>
<para>special values: delete-orphan or
<literal>all ;
</listitem>
<listitem>
<para>comma-separated combinations of operation names:
<literal>cascade="persist,merge,evict" or
<literal>cascade="all,delete-orphan". See in which case
Hibernate will proxy the association and load it when the state of the
associated entity is reached. You can force Hibernate not to use a proxy
by using <classname>@LazyToOne(NO_PROXY). In this case, the
property is fetched lazily when the instance variable is first accessed.
This requires build-time bytecode instrumentation. lazy="false"
specifies that the association will always be eagerly fetched.</para>
<para>With the default JPA options, single-ended associations are loaded
with a subsequent select if set to <literal>LAZY, or a SQL
JOIN is used for <literal>EAGER associations. You can however
adjust the fetching strategy, ie how data is fetched by using
<literal>@Fetch. FetchMode can be
<literal>SELECT (a select is triggered when the association
needs to be loaded) or <literal>JOIN (use a SQL JOIN to load
the association while loading the owner entity). <literal>JOIN
overrides any lazy attribute (an association loaded through a
<literal>JOIN strategy cannot be lazy).
<section id="mapping-declaration-manytoone" revision="5">
<title>Using a foreign key or an association table
<para>An ordinary association to another persistent class is declared
using a</para>
<itemizedlist>
<listitem>
<para>@ManyToOne if several entities can
point to the the target entity</para>
</listitem>
<listitem>
<para>@OneToOne if only a single entity can
point to the the target entity</para>
</listitem>
</itemizedlist>
<para>and a foreign key in one table is referencing the primary key
column(s) of the target table.</para>
<programlisting language="JAVA" role="JAVA">@Entity
public class Flight implements Serializable {
@ManyToOne( cascade = {CascadeType.PERSIST, CascadeType.MERGE} )
@JoinColumn(name="COMP_ID")
public Company getCompany() {
return company;
}
...
} </programlisting>
<para>The @JoinColumn attribute is optional, the
default value(s) is the concatenation of the name of the relationship
in the owner side, <keycap>_ (underscore), and the name of
the primary key column in the owned side. In this example
<literal>company_id because the property name is
<literal>company and the column id of Company is
<literal>id.
<programlisting language="JAVA" role="JAVA">@Entity
public class Flight implements Serializable {
@ManyToOne( cascade = {CascadeType.PERSIST, CascadeType.MERGE}, targetEntity=CompanyImpl.class )
@JoinColumn(name="COMP_ID")
public Company getCompany() {
return company;
}
...
}
public interface Company {
...
}</programlisting>
<para>You can also map a to one association through an association
table. This association table described by the
<literal>@JoinTable annotation will contains a foreign key
referencing back the entity table (through
<literal>@JoinTable.joinColumns) and a a foreign key
referencing the target entity table (through
<literal>@JoinTable.inverseJoinColumns).
<programlisting language="JAVA" role="JAVA">@Entity
public class Flight implements Serializable {
@ManyToOne( cascade = {CascadeType.PERSIST, CascadeType.MERGE} )
@JoinTable(name="Flight_Company",
joinColumns = @JoinColumn(name="FLIGHT_ID"),
inverseJoinColumns = @JoinColumn(name="COMP_ID")
)
public Company getCompany() {
return company;
}
...
} </programlisting>
<note>
<para>You can use a SQL fragment to simulate a physical join column
using the <classname>@JoinColumnOrFormula /
<classname>@JoinColumnOrformulas annotations (just like
you can use a SQL fragment to simulate a property column via the
<classname>@Formula annotation).
<programlisting language="JAVA" role="JAVA">@Entity
public class Ticket implements Serializable {
@ManyToOne
@JoinColumnOrFormula(formula="(firstname + ' ' + lastname)")
public Person getOwner() {
return person;
}
...
} </programlisting>
</note>
<para>You can mark an association as mandatory by using the
<literal>optional=false attribute. We recommend to use Bean
Validation's <classname>@NotNull annotation as a better
alternative however. As a consequence, the foreign key column(s) will
be marked as not nullable (if possible).</para>
<para>When Hibernate cannot resolve the association because the
expected associated element is not in database (wrong id on the
association column), an exception is raised. This might be
inconvenient for legacy and badly maintained schemas. You can ask
Hibernate to ignore such elements instead of raising an exception
using the <literal>@NotFound annotation.
<example>
<title>@NotFound annotation
<programlisting language="JAVA" role="JAVA">@Entity
public class Child {
...
@ManyToOne
@NotFound(action=NotFoundAction.IGNORE)
public Parent getParent() { ... }
...
}</programlisting>
</example>
<para>Sometimes you want to delegate to your database the deletion of
cascade when a given entity is deleted. In this case Hibernate
generates a cascade delete constraint at the database level.</para>
<example>
<title>@OnDelete annotation
<programlisting language="JAVA" role="JAVA">@Entity
public class Child {
...
@ManyToOne
@OnDelete(action=OnDeleteAction.CASCADE)
public Parent getParent() { ... }
...
}</programlisting>
</example>
<para>Foreign key constraints, while generated by Hibernate, have a
fairly unreadable name. You can override the constraint name using
<literal>@ForeignKey.
<example>
<title>@ForeignKey annotation
<programlisting language="JAVA" role="JAVA">@Entity
public class Child {
...
@ManyToOne
@ForeignKey(name="FK_PARENT")
public Parent getParent() { ... }
...
}
alter table Child add constraint FK_PARENT foreign key (parent_id) references Parent</programlisting>
</example>
<para>Sometimes, you want to link one entity to an other not by the
target entity primary key but by a different unique key. You can
achieve that by referencing the unique key column(s) in
<methodname>@JoinColumn.referenceColumnName.
<programlisting role="JAVA">@Entity
class Person {
@Id Integer personNumber;
String firstName;
@Column(name="I")
String initial;
String lastName;
}
@Entity
class Home {
@ManyToOne
@JoinColumns({
@JoinColumn(name="first_name", referencedColumnName="firstName"),
@JoinColumn(name="init", referencedColumnName="I"),
@JoinColumn(name="last_name", referencedColumnName="lastName"),
})
Person owner
}</programlisting>
<para>This is not encouraged however and should be reserved to legacy
mappings.</para>
<para>In hbm.xml, mapping an association is similar. The main
difference is that a <classname>@OneToOne is mapped as
<literal><many-to-one unique="true"/>, let's dive into
the subject.</para>
<programlistingco role="XML">
<areaspec>
<area coords="2" id="manytoone1" />
<area coords="3" id="manytoone2" />
<area coords="4" id="manytoone3" />
<area coords="5" id="manytoone4" />
<area coords="6" id="manytoone5" />
<areaset coords="" id="manytoone6-7">
<area coords="7" id="manytoone6" />
<area coords="8" id="manytoone7" />
</areaset>
<area coords="9" id="manytoone8" />
<area coords="10" id="manytoone9" />
<area coords="11" id="manytoone10" />
<area coords="12" id="manytoone11" />
<area coords="13" id="manytoone12" />
<area coords="14" id="manytoone13" />
<area coords="15" id="manytoone14" />
<area coords="16" id="manytoone15" />
<area coords="17" id="manytoone16" />
</areaspec>
<programlisting><many-to-one
name="propertyName"
column="column_name"
class="ClassName"
cascade="cascade_style"
fetch="join|select"
update="true|false"
insert="true|false"
property-ref="propertyNameFromAssociatedClass"
access="field|property|ClassName"
unique="true|false"
not-null="true|false"
optimistic-lock="true|false"
lazy="proxy|no-proxy|false"
not-found="ignore|exception"
entity-name="EntityName"
formula="arbitrary SQL expression"
node="element-name|@attribute-name|element/@attribute|."
embed-xml="true|false"
index="index_name"
unique_key="unique_key_id"
foreign-key="foreign_key_name"
/></programlisting>
<calloutlist>
<callout arearefs="manytoone1">
<para>name: the name of the property.
</callout>
<callout arearefs="manytoone2">
<para>column (optional): the name of the
foreign key column. This can also be specified by nested
<literal><column> element(s).
</callout>
<callout arearefs="manytoone3">
<para>class (optional - defaults to the
property type determined by reflection): the name of the
associated class.</para>
</callout>
<callout arearefs="manytoone4">
<para>cascade (optional): specifies which
operations should be cascaded from the parent object to the
associated object.</para>
</callout>
<callout arearefs="manytoone5">
<para>fetch (optional - defaults to
<literal>select): chooses between outer-join fetching
or sequential select fetching.</para>
</callout>
<callout arearefs="manytoone6-7">
<para>update, insert (optional - defaults to
<literal>true): specifies that the mapped columns
should be included in SQL <literal>UPDATE and/or
<literal>INSERT statements. Setting both to
<literal>false allows a pure "derived" association
whose value is initialized from another property that maps to
the same column(s), or by a trigger or other application.</para>
</callout>
<callout arearefs="manytoone8">
<para>property-ref (optional): the name of a
property of the associated class that is joined to this foreign
key. If not specified, the primary key of the associated class
is used.</para>
</callout>
<callout arearefs="manytoone9">
<para>access (optional - defaults to
<literal>property): the strategy Hibernate uses for
accessing the property value.</para>
</callout>
<callout arearefs="manytoone10">
<para>unique (optional): enables the DDL
generation of a unique constraint for the foreign-key column. By
allowing this to be the target of a
<literal>property-ref, you can make the association
multiplicity one-to-one.</para>
</callout>
<callout arearefs="manytoone11">
<para>not-null (optional): enables the DDL
generation of a nullability constraint for the foreign key
columns.</para>
</callout>
<callout arearefs="manytoone12">
<para>optimistic-lock (optional - defaults to
<literal>true): specifies that updates to this
property do or do not require acquisition of the optimistic
lock. In other words, it determines if a version increment
should occur when this property is dirty.</para>
</callout>
<callout arearefs="manytoone13">
<para>lazy (optional - defaults to
<literal>proxy): by default, single point associations
are proxied. <literal>lazy="no-proxy" specifies that
the property should be fetched lazily when the instance variable
is first accessed. This requires build-time bytecode
instrumentation. <literal>lazy="false" specifies that
the association will always be eagerly fetched.</para>
</callout>
<callout arearefs="manytoone14">
<para>not-found (optional - defaults to
<literal>exception): specifies how foreign keys that
reference missing rows will be handled.
<literal>ignore will treat a missing row as a null
association.</para>
</callout>
<callout arearefs="manytoone15">
<para>entity-name (optional): the entity name
of the associated class.</para>
</callout>
<callout arearefs="manytoone16">
<para>formula (optional): an SQL expression
that defines the value for a <emphasis>computed
foreign key.</para>
</callout>
</calloutlist>
</programlistingco>
<para>Setting a value of the cascade attribute to
any meaningful value other than <literal>none will propagate
certain operations to the associated object. The meaningful values are
divided into three categories. First, basic operations, which include:
<literal>persist, merge, delete, save-update, evict, replicate, lock
and refresh</literal>; second, special values:
<literal>delete-orphan; and third,all
comma-separated combinations of operation names:
<literal>cascade="persist,merge,evict" or
<literal>cascade="all,delete-orphan". See many-to-one
declaration:</para>
<programlisting role="XML"><many-to-one name="product" class="Product" column="PRODUCT_ID"/>
<para>The property-ref attribute should only be
used for mapping legacy data where a foreign key refers to a unique
key of the associated table other than the primary key. This is a
complicated and confusing relational model. For example, if the
<literal>Product class had a unique serial number that is
not the primary key. The <literal>unique attribute controls
Hibernate's DDL generation with the SchemaExport tool.</para>
<programlisting role="XML"><property name="serialNumber" unique="true" type="string" column="SERIAL_NUMBER"/>
<para>Then the mapping for OrderItem might
use:</para>
<programlisting role="XML"><many-to-one name="product" property-ref="serialNumber" column="PRODUCT_SERIAL_NUMBER"/>
<para>This is not encouraged, however.
<para>If the referenced unique key comprises multiple properties of
the associated entity, you should map the referenced properties inside
a named <literal><properties> element.
<para>If the referenced unique key is the property of a component, you
can specify a property path:</para>
<programlisting role="XML"><many-to-one name="owner" property-ref="identity.ssn" column="OWNER_SSN"/>
</section>
<section id="mapping-declaration-onetoone" revision="3">
<title>Sharing the primary key with the associated entity
<para>The second approach is to ensure an entity and its associated
entity share the same primary key. In this case the primary key column
is also a foreign key and there is no extra column. These associations
are always one to one.</para>
<example>
<title>One to One association
<programlisting language="JAVA" role="JAVA">@Entity
public class Body {
@Id
public Long getId() { return id; }
@OneToOne(cascade = CascadeType.ALL)
@MapsId
public Heart getHeart() {
return heart;
}
...
}
@Entity
public class Heart {
@Id
public Long getId() { ...}
} </programlisting>
</example>
<note>
<para>Many people got confused by these primary key based one to one
associations. They can only be lazily loaded if Hibernate knows that
the other side of the association is always present. To indicate to
Hibernate that it is the case, use
<classname>@OneToOne(optional=false).
</note>
<para>In hbm.xml, use the following mapping.
<programlistingco role="XML">
<areaspec>
<area coords="2" id="onetoone1" />
<area coords="3" id="onetoone2" />
<area coords="4" id="onetoone3" />
<area coords="5" id="onetoone4" />
<area coords="6" id="onetoone5" />
<area coords="7" id="onetoone6" />
<area coords="8" id="onetoone7" />
<area coords="9" id="onetoone8" />
<area coords="10" id="onetoone9" />
<area coords="11" id="onetoone10" />
</areaspec>
<programlisting><one-to-one
name="propertyName"
class="ClassName"
cascade="cascade_style"
constrained="true|false"
fetch="join|select"
property-ref="propertyNameFromAssociatedClass"
access="field|property|ClassName"
formula="any SQL expression"
lazy="proxy|no-proxy|false"
entity-name="EntityName"
node="element-name|@attribute-name|element/@attribute|."
embed-xml="true|false"
foreign-key="foreign_key_name"
/></programlisting>
<calloutlist>
<callout arearefs="onetoone1">
<para>name: the name of the property.
</callout>
<callout arearefs="onetoone2">
<para>class (optional - defaults to the
property type determined by reflection): the name of the
associated class.</para>
</callout>
<callout arearefs="onetoone3">
<para>cascade (optional): specifies which
operations should be cascaded from the parent object to the
associated object.</para>
</callout>
<callout arearefs="onetoone4">
<para>constrained (optional): specifies that
a foreign key constraint on the primary key of the mapped table
and references the table of the associated class. This option
affects the order in which <literal>save() and
<literal>delete() are cascaded, and determines whether
the association can be proxied. It is also used by the schema
export tool.</para>
</callout>
<callout arearefs="onetoone5">
<para>fetch (optional - defaults to
<literal>select): chooses between outer-join fetching
or sequential select fetching.</para>
</callout>
<callout arearefs="onetoone6">
<para>property-ref (optional): the name of a
property of the associated class that is joined to the primary
key of this class. If not specified, the primary key of the
associated class is used.</para>
</callout>
<callout arearefs="onetoone7">
<para>access (optional - defaults to
<literal>property): the strategy Hibernate uses for
accessing the property value.</para>
</callout>
<callout arearefs="onetoone8">
<para>formula (optional): almost all
one-to-one associations map to the primary key of the owning
entity. If this is not the case, you can specify another column,
columns or expression to join on using an SQL formula. See
<literal>org.hibernate.test.onetooneformula for an
example.</para>
</callout>
<callout arearefs="onetoone9">
<para>lazy (optional - defaults to
<literal>proxy): by default, single point associations
are proxied. <literal>lazy="no-proxy" specifies that
the property should be fetched lazily when the instance variable
is first accessed. It requires build-time bytecode
instrumentation. <literal>lazy="false" specifies that
the association will always be eagerly fetched. <emphasis>Note
that if <literal>constrained="false", proxying is
impossible and Hibernate will eagerly fetch the
association</emphasis>.
</callout>
<callout arearefs="onetoone10">
<para>entity-name (optional): the entity name
of the associated class.</para>
</callout>
</calloutlist>
</programlistingco>
<para>Primary key associations do not need an extra table column. If
two rows are related by the association, then the two table rows share
the same primary key value. To relate two objects by a primary key
association, ensure that they are assigned the same identifier
value.</para>
<para>For a primary key association, add the following mappings to
<literal>Employee and Person
respectively:</para>
<programlisting role="XML"><one-to-one name="person" class="Person"/>
<programlisting role="XML"><one-to-one name="employee" class="Employee" constrained="true"/>
<para>Ensure that the primary keys of the related rows in the PERSON
and EMPLOYEE tables are equal. You use a special Hibernate identifier
generation strategy called <literal>foreign:
<programlisting role="XML"><class name="person" table="PERSON">
<id name="id" column="PERSON_ID">
<generator class="foreign">
<param name="property">employee</param>
</generator>
</id>
...
<one-to-one name="employee"
class="Employee"
constrained="true"/>
</class></programlisting>
<para>A newly saved instance of Person is assigned
the same primary key value as the <literal>Employee instance
referred with the <literal>employee property of that
<literal>Person.
</section>
</section>
<section id="mapping-declaration-naturalid">
<title>Natural-id
<para>Although we recommend the use of surrogate keys as primary keys,
you should try to identify natural keys for all entities. A natural key
is a property or combination of properties that is unique and non-null.
It is also immutable. Map the properties of the natural key as
<classname>@NaturalId or map them inside the
<literal><natural-id> element. Hibernate will generate
the necessary unique key and nullability constraints and, as a result,
your mapping will be more self-documenting.</para>
<programlisting language="JAVA" role="JAVA">@Entity
public class Citizen {
@Id
@GeneratedValue
private Integer id;
private String firstname;
private String lastname;
@NaturalId
@ManyToOne
private State state;
@NaturalId
private String ssn;
...
}
//and later on query
List results = s.createCriteria( Citizen.class )
.add( Restrictions.naturalId().set( "ssn", "1234" ).set( "state", ste ) )
.list();</programlisting>
<para>Or in XML,
<programlisting role="XML"><natural-id mutable="true|false"/>
<property ... />
<many-to-one ... />
......
</natural-id></programlisting>
<para>It is recommended that you implement equals()
and <literal>hashCode() to compare the natural key properties
of the entity.</para>
<para>This mapping is not intended for use with entities that have
natural primary keys.</para>
<itemizedlist spacing="compact">
<listitem>
<para>mutable (optional - defaults to
<literal>false): by default, natural identifier properties
are assumed to be immutable (constant).</para>
</listitem>
</itemizedlist>
</section>
<section id="mapping-types-anymapping" revision="2">
<title>Any
<para>There is one more type of property mapping. The
<classname>@Any mapping defines a polymorphic association to
classes from multiple tables. This type of mapping requires more than
one column. The first column contains the type of the associated entity.
The remaining columns contain the identifier. It is impossible to
specify a foreign key constraint for this kind of association. This is
not the usual way of mapping polymorphic associations and you should use
this only in special cases. For example, for audit logs, user session
data, etc.</para>
<para>The @Any annotation describes the column
holding the metadata information. To link the value of the metadata
information and an actual entity type, The
<classname>@AnyDef and @AnyDefs
annotations are used. The <literal>metaType attribute allows
the application to specify a custom type that maps database column
values to persistent classes that have identifier properties of the type
specified by <literal>idType. You must specify the mapping
from values of the <literal>metaType to class names.
<programlisting language="JAVA" role="JAVA">@Any( metaColumn = @Column( name = "property_type" ), fetch=FetchType.EAGER )
@AnyMetaDef(
idType = "integer",
metaType = "string",
metaValues = {
@MetaValue( value = "S", targetEntity = StringProperty.class ),
@MetaValue( value = "I", targetEntity = IntegerProperty.class )
} )
@JoinColumn( name = "property_id" )
public Property getMainProperty() {
return mainProperty;
}</programlisting>
<para>Note that @AnyDef can be mutualized and
reused. It is recommended to place it as a package metadata in this
case.</para>
<programlisting language="JAVA" role="JAVA">//on a package
@AnyMetaDef( name="property"
idType = "integer",
metaType = "string",
metaValues = {
@MetaValue( value = "S", targetEntity = StringProperty.class ),
@MetaValue( value = "I", targetEntity = IntegerProperty.class )
} )
package org.hibernate.test.annotations.any;
//in a class
@Any( metaDef="property", metaColumn = @Column( name = "property_type" ), fetch=FetchType.EAGER )
@JoinColumn( name = "property_id" )
public Property getMainProperty() {
return mainProperty;
}</programlisting>
<para>The hbm.xml equivalent is:
<programlisting role="XML"><any name="being" id-type="long" meta-type="string">
<meta-value value="TBL_ANIMAL" class="Animal"/>
<meta-value value="TBL_HUMAN" class="Human"/>
<meta-value value="TBL_ALIEN" class="Alien"/>
<column name="table_name"/>
<column name="id"/>
</any></programlisting>
<note>
<para>You cannot mutualize the metadata in hbm.xml as you can in
annotations.</para>
</note>
<programlistingco role="XML">
<areaspec>
<area coords="2" id="any1" />
<area coords="3" id="any2" />
<area coords="4" id="any3" />
<area coords="5" id="any4" />
<area coords="6" id="any5" />
<area coords="7" id="any6" />
</areaspec>
<programlisting><any
name="propertyName"
id-type="idtypename"
meta-type="metatypename"
cascade="cascade_style"
access="field|property|ClassName"
optimistic-lock="true|false"
>
<meta-value ... />
<meta-value ... />
.....
<column .... />
<column .... />
.....
</any></programlisting>
<calloutlist>
<callout arearefs="any1">
<para>name: the property name.
</callout>
<callout arearefs="any2">
<para>id-type: the identifier type.
</callout>
<callout arearefs="any3">
<para>meta-type (optional - defaults to
<literal>string): any type that is allowed for a
discriminator mapping.</para>
</callout>
<callout arearefs="any4">
<para>cascade (optional- defaults to
<literal>none): the cascade style.
</callout>
<callout arearefs="any5">
<para>access (optional - defaults to
<literal>property): the strategy Hibernate uses for
accessing the property value.</para>
</callout>
<callout arearefs="any6">
<para>optimistic-lock (optional - defaults to
<literal>true): specifies that updates to this property
either do or do not require acquisition of the optimistic lock. It
defines whether a version increment should occur if this property
is dirty.</para>
</callout>
</calloutlist>
</programlistingco>
</section>
<section id="mapping-declaration-properties" revision="2">
<title>Properties
<para>The <properties> element allows the
definition of a named, logical grouping of the properties of a class.
The most important use of the construct is that it allows a combination
of properties to be the target of a <literal>property-ref. It
is also a convenient way to define a multi-column unique constraint. For
example:</para>
<programlistingco role="XML">
<areaspec>
<area coords="2" id="properties1" />
<area coords="3" id="properties2" />
<area coords="4" id="properties3" />
<area coords="5" id="properties4" />
<area coords="6" id="properties5" />
</areaspec>
<programlisting><properties
name="logicalName"
insert="true|false"
update="true|false"
optimistic-lock="true|false"
unique="true|false"
>
<property ...../>
<many-to-one .... />
........
</properties></programlisting>
<calloutlist>
<callout arearefs="properties1">
<para>name: the logical name of the grouping.
It is <emphasis>not an actual property name.
</callout>
<callout arearefs="properties2">
<para>insert: do the mapped columns appear in
SQL <literal>INSERTs?
</callout>
<callout arearefs="properties3">
<para>update: do the mapped columns appear in
SQL <literal>UPDATEs?
</callout>
<callout arearefs="properties4">
<para>optimistic-lock (optional - defaults to
<literal>true): specifies that updates to these
properties either do or do not require acquisition of the
optimistic lock. It determines if a version increment should occur
when these properties are dirty.</para>
</callout>
<callout arearefs="properties5">
<para>unique (optional - defaults to
<literal>false): specifies that a unique constraint
exists upon all mapped columns of the component.</para>
</callout>
</calloutlist>
</programlistingco>
<para>For example, if we have the following
<literal><properties> mapping:
<programlisting role="XML"><class name="Person">
<id name="personNumber"/>
...
<properties name="name"
unique="true" update="false">
<property name="firstName"/>
<property name="initial"/>
<property name="lastName"/>
</properties>
</class></programlisting>
<para>You might have some legacy data association that refers to this
unique key of the <literal>Person table, instead of to the
primary key:</para>
<programlisting role="XML"><many-to-one name="owner"
class="Person" property-ref="name">
<column name="firstName"/>
<column name="initial"/>
<column name="lastName"/>
</many-to-one></programlisting>
<note>
<para>When using annotations as a mapping strategy, such construct is
not necessary as the binding between a column and its related column
on the associated table is done directly</para>
<programlisting role="JAVA">@Entity
class Person {
@Id Integer personNumber;
String firstName;
@Column(name="I")
String initial;
String lastName;
}
@Entity
class Home {
@ManyToOne
@JoinColumns({
@JoinColumn(name="first_name", referencedColumnName="firstName"),
@JoinColumn(name="init", referencedColumnName="I"),
@JoinColumn(name="last_name", referencedColumnName="lastName"),
})
Person owner
}</programlisting>
</note>
<para>The use of this outside the context of mapping legacy data is not
recommended.</para>
</section>
<section>
<title>Some hbm.xml specificities
<para>The hbm.xml structure has some specificities naturally not present
when using annotations, let's describe them briefly.</para>
<section id="mapping-declaration-doctype" revision="3">
<title>Doctype
<para>All XML mappings should declare the doctype shown. The actual
DTD can be found at the URL above, in the directory
<literal>hibernate-x.x.x/src/org/hibernate , or in
<literal>hibernate3.jar. Hibernate will always look for the
DTD in its classpath first. If you experience lookups of the DTD using
an Internet connection, check the DTD declaration against the contents
of your classpath.</para>
<section id="mapping-declaration-entity-resolution">
<title>EntityResolver
<para>Hibernate will first attempt to resolve DTDs in its classpath.
It does this is by registering a custom
<literal>org.xml.sax.EntityResolver implementation with
the SAXReader it uses to read in the xml files. This custom
<literal>EntityResolver recognizes two different systemId
namespaces:</para>
<itemizedlist>
<listitem>
<para>a hibernate namespace is recognized
whenever the resolver encounters a systemId starting with
<literal>http://www.hibernate.org/dtd/. The resolver
attempts to resolve these entities via the classloader which
loaded the Hibernate classes.</para>
</listitem>
<listitem>
<para>a user namespace is recognized whenever
the resolver encounters a systemId using a
<literal>classpath:// URL protocol. The resolver will
attempt to resolve these entities via (1) the current thread
context classloader and (2) the classloader which loaded the
Hibernate classes.</para>
</listitem>
</itemizedlist>
<para>The following is an example of utilizing user
namespacing:</para>
<programlisting language="XML" role="XML">
<xi:include href="../extras/namespacing.xml_sample" parse="text"
xmlns:xi="http://www.w3.org/2001/XInclude" />
</programlisting>
<para>Where types.xml is a resource in the
<literal>your.domain package and contains a custom .
</section>
</section>
<section id="mapping-declaration-mapping" revision="3">
<title>Hibernate-mapping
<para>This element has several optional attributes. The
<literal>schema and catalog attributes
specify that tables referred to in this mapping belong to the named
schema and/or catalog. If they are specified, tablenames will be
qualified by the given schema and catalog names. If they are missing,
tablenames will be unqualified. The <literal>default-cascade
attribute specifies what cascade style should be assumed for
properties and collections that do not specify a
<literal>cascade attribute. By default, the
<literal>auto-import attribute allows you to use unqualified
class names in the query language.</para>
<programlistingco role="XML">
<areaspec>
<area coords="2" id="hm1" />
<area coords="3" id="hm2" />
<area coords="4" id="hm3" />
<area coords="5" id="hm4" />
<area coords="6" id="hm5" />
<area coords="7" id="hm6" />
<area coords="8" id="hm7" />
</areaspec>
<programlisting><hibernate-mapping
schema="schemaName"
catalog="catalogName"
default-cascade="cascade_style"
default-access="field|property|ClassName"
default-lazy="true|false"
auto-import="true|false"
package="package.name"
/></programlisting>
<calloutlist>
<callout arearefs="hm1">
<para>schema (optional): the name of a
database schema.</para>
</callout>
<callout arearefs="hm2">
<para>catalog (optional): the name of a
database catalog.</para>
</callout>
<callout arearefs="hm3">
<para>default-cascade (optional - defaults to
<literal>none): a default cascade style.
</callout>
<callout arearefs="hm4">
<para>default-access (optional - defaults to
<literal>property): the strategy Hibernate should use
for accessing all properties. It can be a custom implementation
of <literal>PropertyAccessor.
</callout>
<callout arearefs="hm5">
<para>default-lazy (optional - defaults to
<literal>true): the default value for unspecified
<literal>lazy attributes of class and collection
mappings.</para>
</callout>
<callout arearefs="hm6">
<para>auto-import (optional - defaults to
<literal>true): specifies whether we can use
unqualified class names of classes in this mapping in the query
language.</para>
</callout>
<callout arearefs="hm7">
<para>package (optional): specifies a package
prefix to use for unqualified class names in the mapping
document.</para>
</callout>
</calloutlist>
</programlistingco>
<para>If you have two persistent classes with the same unqualified
name, you should set <literal>auto-import="false". An
exception will result if you attempt to assign two classes to the same
"imported" name.</para>
<para>The hibernate-mapping element allows you to
nest several persistent <literal><class> mappings, as
shown above. It is, however, good practice (and expected by some
tools) to map only a single persistent class, or a single class
hierarchy, in one mapping file and name it after the persistent
superclass. For example, <literal>Cat.hbm.xml,
<literal>Dog.hbm.xml, or if using inheritance,
<literal>Animal.hbm.xml.
</section>
<section id="mapping-declaration-key">
<title id="section.key">Key
<para>The <key> element is featured a few
times within this guide. It appears anywhere the parent mapping
element defines a join to a new table that references the primary key
of the original table. It also defines the foreign key in the joined
table:</para>
<programlistingco role="XML">
<areaspec>
<area coords="2" id="key1" />
<area coords="3" id="key2" />
<area coords="4" id="key3" />
<area coords="5" id="key4" />
<area coords="6" id="key5" />
<area coords="7" id="key6" />
</areaspec>
<programlisting><key
column="columnname"
on-delete="noaction|cascade"
property-ref="propertyName"
not-null="true|false"
update="true|false"
unique="true|false"
/></programlisting>
<calloutlist>
<callout arearefs="key1">
<para>column (optional): the name of the
foreign key column. This can also be specified by nested
<literal><column> element(s).
</callout>
<callout arearefs="key2">
<para>on-delete (optional - defaults to
<literal>noaction): specifies whether the foreign key
constraint has database-level cascade delete enabled.</para>
</callout>
<callout arearefs="key3">
<para>property-ref (optional): specifies that
the foreign key refers to columns that are not the primary key
of the original table. It is provided for legacy data.</para>
</callout>
<callout arearefs="key4">
<para>not-null (optional): specifies that the
foreign key columns are not nullable. This is implied whenever
the foreign key is also part of the primary key.</para>
</callout>
<callout arearefs="key5">
<para>update (optional): specifies that the
foreign key should never be updated. This is implied whenever
the foreign key is also part of the primary key.</para>
</callout>
<callout arearefs="key6">
<para>unique (optional): specifies that the
foreign key should have a unique constraint. This is implied
whenever the foreign key is also the primary key.</para>
</callout>
</calloutlist>
</programlistingco>
<para>For systems where delete performance is important, we recommend
that all keys should be defined
<literal>on-delete="cascade". Hibernate uses a
database-level <literal>ON CASCADE DELETE constraint,
instead of many individual <literal>DELETE statements. Be
aware that this feature bypasses Hibernate's usual optimistic locking
strategy for versioned data.</para>
<para>The not-null and update
attributes are useful when mapping a unidirectional one-to-many
association. If you map a unidirectional one-to-many association to a
non-nullable foreign key, you <emphasis>must declare the
key column using <literal><key
not-null="true"></literal>.
</section>
<section id="mapping-declaration-import">
<title>Import
<para>If your application has two persistent classes with the same
name, and you do not want to specify the fully qualified package name
in Hibernate queries, classes can be "imported" explicitly, rather
than relying upon <literal>auto-import="true". You can also
import classes and interfaces that are not explicitly mapped:</para>
<programlisting role="XML"><import class="java.lang.Object" rename="Universe"/>
<programlistingco role="XML">
<areaspec>
<area coords="2" id="import1" />
<area coords="3" id="import2" />
</areaspec>
<programlisting><import
class="ClassName"
rename="ShortName"
/></programlisting>
<calloutlist>
<callout arearefs="import1">
<para>class: the fully qualified class name
of any Java class.</para>
</callout>
<callout arearefs="import2">
<para>rename (optional - defaults to the
unqualified class name): a name that can be used in the query
language.</para>
</callout>
</calloutlist>
</programlistingco>
<note>
<para>This feature is unique to hbm.xml and is not supported in
annotations.</para>
</note>
</section>
<section id="mapping-column" revision="5">
<title>Column and formula elements
<para>Mapping elements which accept a column
attribute will alternatively accept a
<literal><column> subelement. Likewise,
<literal><formula> is an alternative to the
<literal>formula attribute. For example:
<programlisting role="XML"><column
name="column_name"
length="N"
precision="N"
scale="N"
not-null="true|false"
unique="true|false"
unique-key="multicolumn_unique_key_name"
index="index_name"
sql-type="sql_type_name"
check="SQL expression"
default="SQL expression"
read="SQL expression"
write="SQL expression"/></programlisting>
<programlisting role="XML"><formula>SQL expression</formula>
<para>Most of the attributes on column provide a
means of tailoring the DDL during automatic schema generation. The
<literal>read and write attributes allow
you to specify custom SQL that Hibernate will use to access the
column's value. For more on this, see the discussion of <link
linkend="mapping-column-read-and-write">column read and write
expressions</link>.
<para>The column and formula
elements can even be combined within the same property or association
mapping to express, for example, exotic join conditions.</para>
<programlisting role="XML"><many-to-one name="homeAddress" class="Address"
insert="false" update="false">
<column name="person_id" not-null="true" length="10"/>
<formula>'MAILING'</formula>
</many-to-one></programlisting>
</section>
</section>
</section>
<section id="mapping-types">
<title>Hibernate types
<section id="mapping-types-entitiesvalues" revision="1">
<title>Entities and values
<para>In relation to the persistence service, Java language-level
objects are classified into two groups:</para>
<para>An entity exists independently of any other
objects holding references to the entity. Contrast this with the usual
Java model, where an unreferenced object is garbage collected. Entities
must be explicitly saved and deleted. Saves and deletions, however, can
be <emphasis>cascaded from a parent entity to its children.
This is different from the ODMG model of object persistence by
reachability and corresponds more closely to how application objects are
usually used in large systems. Entities support circular and shared
references. They can also be versioned.</para>
<para>An entity's persistent state consists of references to other
entities and instances of <emphasis>value types. Values are
primitives: collections (not what is inside a collection), components
and certain immutable objects. Unlike entities, values in particular
collections and components, <emphasis>are persisted and
deleted by reachability. Since value objects and primitives are
persisted and deleted along with their containing entity, they cannot be
independently versioned. Values have no independent identity, so they
cannot be shared by two entities or collections.</para>
<para>Until now, we have been using the term "persistent class" to refer
to entities. We will continue to do that. Not all user-defined classes
with a persistent state, however, are entities. A
<emphasis>component is a user-defined class with value
semantics. A Java property of type <literal>java.lang.String
also has value semantics. Given this definition, all types (classes)
provided by the JDK have value type semantics in Java, while
user-defined types can be mapped with entity or value type semantics.
This decision is up to the application developer. An entity class in a
domain model will normally have shared references to a single instance
of that class, while composition or aggregation usually translates to a
value type.</para>
<para>We will revisit both concepts throughout this reference
guide.</para>
<para>The challenge is to map the Java type system, and the developers'
definition of entities and value types, to the SQL/database type system.
The bridge between both systems is provided by Hibernate. For entities,
<literal><class>, <subclass>
and so on are used. For value types we use
<literal><property>,
<literal><component>etc., that usually have a
<literal>type attribute. The value of this attribute is the
name of a Hibernate <emphasis>mapping type. Hibernate
provides a range of mappings for standard JDK value types out of the
box. You can write your own mapping types and implement your own custom
conversion strategies.</para>
<para>With the exception of collections, all built-in Hibernate types
support null semantics.</para>
</section>
<section id="mapping-types-basictypes" revision="4">
<title>Basic value types
<para>The built-in basic mapping types can be
roughly categorized into the following: <variablelist>
<varlistentry>
<term>integer, long, short, float, double, character,
byte, boolean, yes_no, true_false</literal>
<listitem>
<para>Type mappings from Java primitives or wrapper classes to
appropriate (vendor-specific) SQL column types.
<literal>boolean, yes_no and
<literal>true_false are all alternative encodings for
a Java <literal>boolean or
<literal>java.lang.Boolean.
</listitem>
</varlistentry>
<varlistentry>
<term>string
<listitem>
<para>A type mapping from java.lang.String to
<literal>VARCHAR (or Oracle
<literal>VARCHAR2).
</listitem>
</varlistentry>
<varlistentry>
<term>date, time, timestamp
<listitem>
<para>Type mappings from java.util.Date and
its subclasses to SQL types <literal>DATE,
<literal>TIME and TIMESTAMP (or
equivalent).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>calendar, calendar_date
<listitem>
<para>Type mappings from java.util.Calendar
to SQL types <literal>TIMESTAMP and
<literal>DATE (or equivalent).
</listitem>
</varlistentry>
<varlistentry>
<term>big_decimal, big_integer
<listitem>
<para>Type mappings from java.math.BigDecimal
and <literal>java.math.BigInteger to
<literal>NUMERIC (or Oracle
<literal>NUMBER).
</listitem>
</varlistentry>
<varlistentry>
<term>locale, timezone, currency
<listitem>
<para>Type mappings from java.util.Locale,
<literal>java.util.TimeZone and
<literal>java.util.Currency to
<literal>VARCHAR (or Oracle
<literal>VARCHAR2). Instances of
<literal>Locale and Currency are
mapped to their ISO codes. Instances of
<literal>TimeZone are mapped to their
<literal>ID.
</listitem>
</varlistentry>
<varlistentry>
<term>class
<listitem>
<para>A type mapping from java.lang.Class to
<literal>VARCHAR (or Oracle
<literal>VARCHAR2). A Class is
mapped to its fully qualified name.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>binary
<listitem>
<para>Maps byte arrays to an appropriate SQL binary type.
</listitem>
</varlistentry>
<varlistentry>
<term>text
<listitem>
<para>Maps long Java strings to a SQL LONGVARCHAR or
<literal>TEXT type.
</listitem>
</varlistentry>
<varlistentry>
<term>image
<listitem>
<para>Maps long byte arrays to a SQL LONGVARBINARY.
</listitem>
</varlistentry>
<varlistentry>
<term>serializable
<listitem>
<para>Maps serializable Java types to an appropriate SQL binary
type. You can also indicate the Hibernate type
<literal>serializable with the name of a serializable
Java class or interface that does not default to a basic
type.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>clob, blob
<listitem>
<para>Type mappings for the JDBC classes
<literal>java.sql.Clob and
<literal>java.sql.Blob. These types can be
inconvenient for some applications, since the blob or clob
object cannot be reused outside of a transaction. Driver support
is patchy and inconsistent.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>materialized_clob
<listitem>
<para>Maps long Java strings to a SQL CLOB
type. When read, the <literal>CLOB value is
immediately materialized into a Java string. Some drivers
require the <literal>CLOB value to be read within
a transaction. Once materialized, the Java string is
available outside of the transaction.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>materialized_blob
<listitem>
<para>Maps long Java byte arrays to a SQL BLOB
type. When read, the <literal>BLOB value is
immediately materialized into a byte array. Some drivers
require the <literal>BLOB value to be read within
a transaction. Once materialized, the byte array is
available outside of the transaction.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>imm_date, imm_time, imm_timestamp, imm_calendar,
imm_calendar_date, imm_serializable, imm_binary</literal>
<listitem>
<para>Type mappings for what are considered mutable Java types.
This is where Hibernate makes certain optimizations appropriate
only for immutable Java types, and the application treats the
object as immutable. For example, you should not call
<literal>Date.setTime() for an instance mapped as
<literal>imm_timestamp. To change the value of the
property, and have that change made persistent, the application
must assign a new, nonidentical, object to the property.</para>
</listitem>
</varlistentry>
</variablelist>
<para>Unique identifiers of entities and collections can be of any basic
type except <literal>binary, blob and
<literal>clob. Composite identifiers are also allowed. See
below for more information.</para>
<para>The basic value types have corresponding Type
constants defined on <literal>org.hibernate.Hibernate. For
example, <literal>Hibernate.STRING represents the
<literal>string type.
</section>
<section id="mapping-types-custom" revision="2">
<title>Custom value types
<para>It is relatively easy for developers to create their own value
types. For example, you might want to persist properties of type
<literal>java.lang.BigInteger to VARCHAR
columns. Hibernate does not provide a built-in type for this. Custom
types are not limited to mapping a property, or collection element, to a
single table column. So, for example, you might have a Java property
<literal>getName()/setName() of type
<literal>java.lang.String that is persisted to the columns
<literal>FIRST_NAME, INITIAL,
<literal>SURNAME.
<para>To implement a custom type, implement either
<literal>org.hibernate.UserType or
<literal>org.hibernate.CompositeUserType and declare
properties using the fully qualified classname of the type. View
<literal>org.hibernate.test.DoubleStringType to see the kind
of things that are possible.</para>
<programlisting role="XML"><property name="twoStrings" type="org.hibernate.test.DoubleStringType">
<column name="first_string"/>
<column name="second_string"/>
</property></programlisting>
<para>Notice the use of <column> tags to map a
property to multiple columns.</para>
<para>The CompositeUserType,
<literal>EnhancedUserType,
<literal>UserCollectionType, and
<literal>UserVersionType interfaces provide support for more
specialized uses.</para>
<para>You can even supply parameters to a UserType in
the mapping file. To do this, your <literal>UserType must
implement the
<literal>org.hibernate.usertype.ParameterizedType interface.
To supply parameters to your custom type, you can use the
<literal><type> element in your mapping files.
<programlisting role="XML"><property name="priority">
<type name="com.mycompany.usertypes.DefaultValueIntegerType">
<param name="default">0</param>
</type>
</property></programlisting>
<para>The UserType can now retrieve the value for the
parameter named <literal>default from the
<literal>Properties object passed to it.
<para>If you regularly use a certain UserType, it is
useful to define a shorter name for it. You can do this using the
<literal><typedef> element. Typedefs assign a name to a
custom type, and can also contain a list of default parameter values if
the type is parameterized.</para>
<programlisting role="XML"><typedef class="com.mycompany.usertypes.DefaultValueIntegerType" name="default_zero">
<param name="default">0</param>
</typedef></programlisting>
<programlisting role="XML"><property name="priority" type="default_zero"/>
<para>It is also possible to override the parameters supplied in a
typedef on a case-by-case basis by using type parameters on the property
mapping.</para>
<para>Even though Hibernate's rich range of built-in types and support
for components means you will rarely need to use a custom type, it is
considered good practice to use custom types for non-entity classes that
occur frequently in your application. For example, a
<literal>MonetaryAmount class is a good candidate for a
<literal>CompositeUserType, even though it could be mapped as
a component. One reason for this is abstraction. With a custom type,
your mapping documents would be protected against changes to the way
monetary values are represented.</para>
</section>
</section>
<section id="mapping-entityname">
<title>Mapping a class more than once
<para>It is possible to provide more than one mapping for a particular
persistent class. In this case, you must specify an <emphasis>entity
name</emphasis> to disambiguate between instances of the two mapped
entities. By default, the entity name is the same as the class name.
Hibernate lets you specify the entity name when working with persistent
objects, when writing queries, or when mapping associations to the named
entity.</para>
<programlisting><class name="Contract" table="Contracts"
entity-name="CurrentContract">
...
<set name="history" inverse="true"
order-by="effectiveEndDate desc">
<key column="currentContractId"/>
<one-to-many entity-name="HistoricalContract"/>
</set>
</class>
<class name="Contract" table="ContractHistory"
entity-name="HistoricalContract">
...
<many-to-one name="currentContract"
column="currentContractId"
entity-name="CurrentContract"/>
</class></programlisting>
<para>Associations are now specified using entity-name
instead of <literal>class.
<note>
<para>This feature is not supported in Annotations
</note>
</section>
<section id="mapping-quotedidentifiers">
<title>SQL quoted identifiers
<para>You can force Hibernate to quote an identifier in the generated SQL
by enclosing the table or column name in backticks in the mapping
document. Hibernate will use the correct quotation style for the SQL
<literal>Dialect. This is usually double quotes, but the SQL
Server uses brackets and MySQL uses backticks.</para>
<programlisting role="XML">@Entity @Table(name="`Line Item`")
class LineItem {
@id @Column(name="`Item Id`") Integer id;
@Column(name="`Item #`") int itemNumber
}
<class name="LineItem" table="`Line Item`">
<id name="id" column="`Item Id`"/><generator class="assigned"/></id>
<property name="itemNumber" column="`Item #`"/>
...
</class></programlisting>
</section>
<section id="mapping-generated" revision="1">
<title>Generated properties
<para>Generated properties are properties that have their values generated
by the database. Typically, Hibernate applications needed to
<literal>refresh objects that contain any properties for which
the database was generating values. Marking properties as generated,
however, lets the application delegate this responsibility to Hibernate.
When Hibernate issues an SQL INSERT or UPDATE for an entity that has
defined generated properties, it immediately issues a select afterwards to
retrieve the generated values.</para>
<para>Properties marked as generated must additionally be non-insertable
and non-updateable. Only <link
linkend="mapping-declaration-version">versions</link>, , and , can be
marked as generated.</para>
<para>never (the default): the given property value is
not generated within the database.</para>
<para>insert: the given property value is generated on
insert, but is not regenerated on subsequent updates. Properties like
created-date fall into this category. Even though <link
linkend="mapping-declaration-version">version</link> and properties can be
marked as generated, this option is not available.</para>
<para>always: the property value is generated both on
insert and on update.</para>
<para>To mark a property as generated, use
<classname>@Generated.
</section>
<section id="mapping-column-read-and-write" revision="1">
<title>Column transformers: read and write expressions
<para>Hibernate allows you to customize the SQL it uses to read and write
the values of columns mapped to <link
linkend="mapping-declaration-property">simple properties</link>. For
example, if your database provides a set of data encryption functions, you
can invoke them for individual columns like this:</para>
<programlisting role="JAVA">@Entity
class CreditCard {
@Column(name="credit_card_num")
@ColumnTransformer(
read="decrypt(credit_card_num)",
write="encrypt(?)")
public String getCreditCardNumber() { return creditCardNumber; }
public void setCreditCardNumber(String number) { this.creditCardNumber = number; }
private String creditCardNumber;
}</programlisting>
<para>or in XML
<programlisting role="XML"><property name="creditCardNumber">
<column
name="credit_card_num"
read="decrypt(credit_card_num)"
write="encrypt(?)"/>
</property></programlisting>
<note>
<para>You can use the plural form
<classname>@ColumnTransformers if more than one columns need
to define either of these rules.</para>
</note>
<para>If a property uses more that one column, you must use the
<literal>forColumn attribute to specify which column, the
expressions are targeting.</para>
<programlisting role="JAVA">@Entity
class User {
@Type(type="com.acme.type.CreditCardType")
@Columns( {
@Column(name="credit_card_num"),
@Column(name="exp_date") } )
@ColumnTransformer(
forColumn="credit_card_num",
read="decrypt(credit_card_num)",
write="encrypt(?)")
public CreditCard getCreditCard() { return creditCard; }
public void setCreditCard(CreditCard card) { this.creditCard = card; }
private CreditCard creditCard;
}</programlisting>
<para>Hibernate applies the custom expressions automatically whenever the
property is referenced in a query. This functionality is similar to a
derived-property <literal>formula with two differences:
<itemizedlist spacing="compact">
<listitem>
<para>The property is backed by one or more columns that are
exported as part of automatic schema generation.</para>
</listitem>
<listitem>
<para>The property is read-write, not read-only.
</listitem>
</itemizedlist>
<para>The write expression, if specified, must contain
exactly one '?' placeholder for the value.</para>
</section>
<section id="mapping-database-object">
<title>Auxiliary database objects
<para>Auxiliary database objects allow for the CREATE and DROP of
arbitrary database objects. In conjunction with Hibernate's schema
evolution tools, they have the ability to fully define a user schema
within the Hibernate mapping files. Although designed specifically for
creating and dropping things like triggers or stored procedures, any SQL
command that can be run via a
<literal>java.sql.Statement.execute() method is valid (for
example, ALTERs, INSERTS, etc.). There are essentially two modes for
defining auxiliary database objects:</para>
<para>The first mode is to explicitly list the CREATE and DROP commands in
the mapping file:</para>
<programlisting role="XML"><hibernate-mapping>
...
<database-object>
<create>CREATE TRIGGER my_trigger ...</create>
<drop>DROP TRIGGER my_trigger</drop>
</database-object>
</hibernate-mapping></programlisting>
<para>The second mode is to supply a custom class that constructs the
CREATE and DROP commands. This custom class must implement the
<literal>org.hibernate.mapping.AuxiliaryDatabaseObject
interface.</para>
<programlisting role="XML"><hibernate-mapping>
...
<database-object>
<definition class="MyTriggerDefinition"/>
</database-object>
</hibernate-mapping></programlisting>
<para>Additionally, these database objects can be optionally scoped so
that they only apply when certain dialects are used.</para>
<programlisting role="XML"><hibernate-mapping>
...
<database-object>
<definition class="MyTriggerDefinition"/>
<dialect-scope name="org.hibernate.dialect.Oracle9iDialect"/>
<dialect-scope name="org.hibernate.dialect.Oracle10gDialect"/>
</database-object>
</hibernate-mapping></programlisting>
<note>
<para>This feature is not supported in Annotations
</note>
</section>
</chapter>
Other Hibernate examples (source code examples)
Here is a short list of links related to this Hibernate basic_mapping.xml source code file: