alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

JMeter example source code file (Spline3.java)

This example JMeter source code file (Spline3.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - JMeter tags/keywords

d, d, default_max_iterations, default_max_iterations, default_precision, default_precision, error, maximal, minimal, n, n, new, spline3, warning

The JMeter Spline3.java source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 */

package org.apache.jmeter.visualizers;

import org.apache.jorphan.logging.LoggingManager;
import org.apache.log.Logger;

/*
 * TODO : - implement ImageProducer interface - suggestions ;-)
 */

/**
 * This class implements the representation of an interpolated Spline curve.
 * <P>
 * The curve described by such an object interpolates an arbitrary number of
 * fixed points called <I>nodes. The distance between two nodes should
 * currently be constant. This is about to change in a later version but it can
 * last a while as it's not really needed. Nevertheless, if you need the
 * feature, just <a href="mailto:norguet@bigfoot.com?subject=Spline3eq">write me
 * a note</a> and I'll write it asap.
 * <P>
 * The interpolated Spline curve can't be described by an polynomial analytic
 * equation, the degree of which would be as high as the number of nodes, which
 * would cause extreme oscillations of the curve on the edges.
 * <P>
 * The solution is to split the curve accross a lot of little <I>intervals :
 * an interval starts at one node and ends at the next one. Then, the
 * interpolation is done on each interval, according to the following conditions :
 * <OL>
 * <LI>the interpolated curve is degree 3 : it's a cubic curve ;
 * <LI>the interpolated curve contains the two points delimiting the interval.
 * This condition obviously implies the curve is continuous ;
 * <LI>the interpolated curve has a smooth slope : the curvature has to be the
 * same on the left and the right sides of each node ;
 * <LI>the curvature of the global curve is 0 at both edges.
 * </OL>
 * Every part of the global curve is represented by a cubic (degree-3)
 * polynomial, the coefficients of which have to be computed in order to meet
 * the above conditions.
 * <P>
 * This leads to a n-unknow n-equation system to resolve. One can resolve an
 * equation system by several manners ; this class uses the Jacobi iterative
 * method, particularly well adapted to this situation, as the diagonal of the
 * system matrix is strong compared to the other elements. This implies the
 * algorithm always converges ! This is not the case of the Gauss-Seidel
 * algorithm, which is quite faster (it uses intermediate results of each
 * iteration to speed up the convergence) but it doesn't converge in all the
 * cases or it converges to a wrong value. This is not acceptable and that's why
 * the Jacobi method is safer. Anyway, the gain of speed is about a factor of 3
 * but, for a 100x100 system, it means 10 ms instead of 30 ms, which is a pretty
 * good reason not to explore the question any further :)
 * <P>
 * Here is a little piece of code showing how to use this class :
 *
 * <PRE> // ... float[] nodes = {3F, 2F, 4F, 1F, 2.5F, 5F, 3F}; Spline3 curve =
 * new Spline3(nodes); // ... public void paint(Graphics g) { int[] plot =
 * curve.getPlots(); for (int i = 1; i < n; i++) { g.drawLine(i - 1, plot[i -
 * 1], i, plot[i]); } } // ...
 *
 * </PRE>
 *
 */
public class Spline3 {
    private static final Logger log = LoggingManager.getLoggerForClass();

    protected float[][] _coefficients;

    protected float[][] _A;

    protected float[] _B;

    protected float[] _r;

    protected float[] _rS;

    protected int _m; // number of nodes

    protected int _n; // number of non extreme nodes (_m-2)

    final static protected float DEFAULT_PRECISION = (float) 1E-1;

    final static protected int DEFAULT_MAX_ITERATIONS = 100;

    protected float _minPrecision = DEFAULT_PRECISION;

    protected int _maxIterations = DEFAULT_MAX_ITERATIONS;

    /**
     * Creates a new Spline curve by calculating the coefficients of each part
     * of the curve, i.e. by resolving the equation system implied by the
     * interpolation condition on every interval.
     *
     * @param r
     *            an array of float containing the vertical coordinates of the
     *            nodes to interpolate ; the vertical coordinates start at 0 and
     *            are equidistant with a step of 1.
     */
    public Spline3(float[] r) {
        int n = r.length;

        // the number of nodes is defined by the length of r
        this._m = n;
        // grab the nodes
        this._r = new float[n];
        for (int i = 0; i < n; i++) {
            _r[i] = r[i];
        }
        // the number of non extreme nodes is the number of intervals
        // minus 1, i.e. the length of r minus 2
        this._n = n - 2;
        // computes interpolation coefficients
        try {
            long startTime = System.currentTimeMillis();

            this.interpolation();
            if (log.isDebugEnabled()) {
                long endTime = System.currentTimeMillis();
                long elapsedTime = endTime - startTime;

                if (log.isDebugEnabled()) {
                    log.debug("New Spline curve interpolated in ");
                    log.debug(elapsedTime + " ms");
                }
            }
        } catch (Exception e) {
            log.error("Error when interpolating : ", e);
        }

    }

    /**
     * Computes the coefficients of the Spline interpolated curve, on each
     * interval. The matrix system to resolve is <CODE>AX=B
     */
    protected void interpolation() {
        // creation of the interpolation structure
        _rS = new float[_m];
        _B = new float[_n];
        _A = new float[_n][_n];
        _coefficients = new float[_n + 1][4];
        // local variables
        int i = 0, j = 0;

        // initialize system structures (just to be safe)
        for (i = 0; i < _n; i++) {
            _B[i] = 0;
            for (j = 0; j < _n; j++) {
                _A[i][j] = 0;
            }
            for (j = 0; j < 4; j++) {
                _coefficients[i][j] = 0;
            }
        }
        for (i = 0; i < _n; i++) {
            _rS[i] = 0;
        }
        // initialize the diagonal of the system matrix (A) to 4
        for (i = 0; i < _n; i++) {
            _A[i][i] = 4;
        }
        // initialize the two minor diagonals of A to 1
        for (i = 1; i < _n; i++) {
            _A[i][i - 1] = 1;
            _A[i - 1][i] = 1;
        }
        // initialize B
        for (i = 0; i < _n; i++) {
            _B[i] = 6 * (_r[i + 2] - 2 * _r[i + 1] + _r[i]);
        }
        // Jacobi system resolving
        this.jacobi(); // results are stored in _rS
        // computes the coefficients (di, ci, bi, ai) from the results
        for (i = 0; i < _n + 1; i++) {
            // di (degree 0)
            _coefficients[i][0] = _r[i];
            // ci (degree 1)
            _coefficients[i][1] = _r[i + 1] - _r[i] - (_rS[i + 1] + 2 * _rS[i]) / 6;
            // bi (degree 2)
            _coefficients[i][2] = _rS[i] / 2;
            // ai (degree 3)
            _coefficients[i][3] = (_rS[i + 1] - _rS[i]) / 6;
        }
    }

    /**
     * Resolves the equation system by a Jacobi algorithm. The use of the slower
     * Jacobi algorithm instead of Gauss-Seidel is choosen here because Jacobi
     * is assured of to be convergent for this particular equation system, as
     * the system matrix has a strong diagonal.
     */
    protected void jacobi() {
        // local variables
        int i = 0, j = 0, iterations = 0;
        // intermediate arrays
        float[] newX = new float[_n];
        float[] oldX = new float[_n];

        // Jacobi convergence test
        if (!converge()) {
            if (log.isDebugEnabled()) {
                log.debug("Warning : equation system resolving is unstable");
            }
        }
        // init newX and oldX arrays to 0
        for (i = 0; i < _n; i++) {
            newX[i] = 0;
            oldX[i] = 0;
        }
        // main iteration
        while ((this.precision(oldX, newX) > this._minPrecision) && (iterations < this._maxIterations)) {
            for (i = 0; i < _n; i++) {
                oldX[i] = newX[i];
            }
            for (i = 0; i < _n; i++) {
                newX[i] = _B[i];
                for (j = 0; j < i; j++) {
                    newX[i] = newX[i] - (_A[i][j] * oldX[j]);
                }
                for (j = i + 1; j < _n; j++) {
                    newX[i] = newX[i] - (_A[i][j] * oldX[j]);
                }
                newX[i] = newX[i] / _A[i][i];
            }
            iterations++;
        }
        if (this.precision(oldX, newX) < this._minPrecision) {
            if (log.isDebugEnabled()) {
                log.debug("Minimal precision (");
                log.debug(this._minPrecision + ") reached after ");
                log.debug(iterations + " iterations");
            }
        } else if (iterations > this._maxIterations) {
            if (log.isDebugEnabled()) {
                log.debug("Maximal number of iterations (");
                log.debug(this._maxIterations + ") reached");
                log.debug("Warning : precision is only ");
                log.debug("" + this.precision(oldX, newX));
                log.debug(", divergence is possible");
            }
        }
        for (i = 0; i < _n; i++) {
            _rS[i + 1] = newX[i];
        }
    }

    /**
     * Test if the Jacobi resolution of the equation system converges. It's OK
     * if A has a strong diagonal.
     */
    protected boolean converge() {
        boolean converge = true;
        int i = 0, j = 0;
        float lineSum = 0F;

        for (i = 0; i < _n; i++) {
            if (converge) {
                lineSum = 0;
                for (j = 0; j < _n; j++) {
                    lineSum = lineSum + Math.abs(_A[i][j]);
                }
                lineSum = lineSum - Math.abs(_A[i][i]);
                if (lineSum > Math.abs(_A[i][i])) {
                    converge = false;
                }
            }
        }
        return converge;
    }

    /**
     * Computes the current precision reached.
     */
    protected float precision(float[] oldX, float[] newX) {
        float N = 0F, D = 0F, erreur = 0F;
        int i = 0;

        for (i = 0; i < _n; i++) {
            N = N + Math.abs(newX[i] - oldX[i]);
            D = D + Math.abs(newX[i]);
        }
        if (D != 0F) {
            erreur = N / D;
        } else {
            erreur = Float.MAX_VALUE;
        }
        return erreur;
    }

    /**
     * Computes a (vertical) Y-axis value of the global curve.
     *
     * @param t
     *            abscissa
     * @return computed ordinate
     */
    public float value(float t) {
        int i = 0, splineNumber = 0;
        float abscissa = 0F, result = 0F;

        // verify t belongs to the curve (range [0, _m-1])
        if ((t < 0) || (t > (_m - 1))) {
            if (log.isDebugEnabled()) {
                log.debug("Warning : abscissa " + t + " out of bounds [0, " + (_m - 1) + "]");
            }
            // silent error, consider the curve is constant outside its range
            if (t < 0) {
                t = 0;
            } else {
                t = _m - 1;
            }
        }
        // seek the good interval for t and get the piece of curve on it
        splineNumber = (int) Math.floor(t);
        if (t == (_m - 1)) {
            // the upper limit of the curve range belongs by definition
            // to the last interval
            splineNumber--;
        }
        // computes the value of the curve at the pecified abscissa
        // and relative to the beginning of the right piece of Spline curve
        abscissa = t - splineNumber;
        // the polynomial calculation is done by the (fast) Euler method
        for (i = 0; i < 4; i++) {
            result = result * abscissa;
            result = result + _coefficients[splineNumber][3 - i];
        }
        return result;
    }

    /**
     * Manual check of the curve at the interpolated points.
     */
    public void debugCheck() {
        int i = 0;

        for (i = 0; i < _m; i++) {
            log.info("Point " + i + " : ");
            log.info(_r[i] + " =? " + value(i));
        }
    }

    /**
     * Computes drawable plots from the curve for a given draw space. The values
     * returned are drawable vertically and from the <B>bottom of a Panel.
     *
     * @param width
     *            width within the plots have to be computed
     * @param height
     *            height within the plots are expected to be drawed
     * @return drawable plots within the limits defined, in an array of int (as
     *         many int as the value of the <CODE>width parameter)
     */
    public int[] getPlots(int width, int height) {
        int[] plot = new int[width];
        // computes auto-scaling and absolute plots
        float[] y = new float[width];
        float max = java.lang.Integer.MIN_VALUE;
        float min = java.lang.Integer.MAX_VALUE;

        for (int i = 0; i < width; i++) {
            y[i] = value(((float) i) * (_m - 1) / width);
            if (y[i] < min) {
                min = y[i];
            }

            if (y[i] > max) {
                max = y[i];
            }
        }
        if (min < 0) {
            min = 0; // shouldn't draw negative values
        }
        // computes relative auto-scaled plots to fit in the specified area
        for (int i = 0; i < width; i++) {
            plot[i] = Math.round(((y[i] - min) * (height - 1)) / (max - min));
        }
        return plot;
    }

    public void setPrecision(float precision) {
        this._minPrecision = precision;
    }

    public float getPrecision() {
        return this._minPrecision;
    }

    public void setToDefaultPrecision() {
        this._minPrecision = DEFAULT_PRECISION;
    }

    public float getDefaultPrecision() {
        return DEFAULT_PRECISION;
    }

    public void setMaxIterations(int iterations) {
        this._maxIterations = iterations;
    }

    public int getMaxIterations() {
        return this._maxIterations;
    }

    public void setToDefaultMaxIterations() {
        this._maxIterations = DEFAULT_MAX_ITERATIONS;
    }

    public int getDefaultMaxIterations() {
        return DEFAULT_MAX_ITERATIONS;
    }

}

Other JMeter examples (source code examples)

Here is a short list of links related to this JMeter Spline3.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.