|
Java example source code file (assembler_sparc.hpp)
The assembler_sparc.hpp Java example source code/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP #define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP #include "asm/register.hpp" // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction // level; i.e., what you write // is what you get. The Assembler is generating code into a CodeBuffer. class Assembler : public AbstractAssembler { friend class AbstractAssembler; friend class AddressLiteral; // code patchers need various routines like inv_wdisp() friend class NativeInstruction; friend class NativeGeneralJump; friend class Relocation; friend class Label; public: // op carries format info; see page 62 & 267 enum ops { call_op = 1, // fmt 1 branch_op = 0, // also sethi (fmt2) arith_op = 2, // fmt 3, arith & misc ldst_op = 3 // fmt 3, load/store }; enum op2s { bpr_op2 = 3, fb_op2 = 6, fbp_op2 = 5, br_op2 = 2, bp_op2 = 1, sethi_op2 = 4 }; enum op3s { // selected op3s add_op3 = 0x00, and_op3 = 0x01, or_op3 = 0x02, xor_op3 = 0x03, sub_op3 = 0x04, andn_op3 = 0x05, orn_op3 = 0x06, xnor_op3 = 0x07, addc_op3 = 0x08, mulx_op3 = 0x09, umul_op3 = 0x0a, smul_op3 = 0x0b, subc_op3 = 0x0c, udivx_op3 = 0x0d, udiv_op3 = 0x0e, sdiv_op3 = 0x0f, addcc_op3 = 0x10, andcc_op3 = 0x11, orcc_op3 = 0x12, xorcc_op3 = 0x13, subcc_op3 = 0x14, andncc_op3 = 0x15, orncc_op3 = 0x16, xnorcc_op3 = 0x17, addccc_op3 = 0x18, umulcc_op3 = 0x1a, smulcc_op3 = 0x1b, subccc_op3 = 0x1c, udivcc_op3 = 0x1e, sdivcc_op3 = 0x1f, taddcc_op3 = 0x20, tsubcc_op3 = 0x21, taddcctv_op3 = 0x22, tsubcctv_op3 = 0x23, mulscc_op3 = 0x24, sll_op3 = 0x25, sllx_op3 = 0x25, srl_op3 = 0x26, srlx_op3 = 0x26, sra_op3 = 0x27, srax_op3 = 0x27, rdreg_op3 = 0x28, membar_op3 = 0x28, flushw_op3 = 0x2b, movcc_op3 = 0x2c, sdivx_op3 = 0x2d, popc_op3 = 0x2e, movr_op3 = 0x2f, sir_op3 = 0x30, wrreg_op3 = 0x30, saved_op3 = 0x31, fpop1_op3 = 0x34, fpop2_op3 = 0x35, impdep1_op3 = 0x36, impdep2_op3 = 0x37, jmpl_op3 = 0x38, rett_op3 = 0x39, trap_op3 = 0x3a, flush_op3 = 0x3b, save_op3 = 0x3c, restore_op3 = 0x3d, done_op3 = 0x3e, retry_op3 = 0x3e, lduw_op3 = 0x00, ldub_op3 = 0x01, lduh_op3 = 0x02, ldd_op3 = 0x03, stw_op3 = 0x04, stb_op3 = 0x05, sth_op3 = 0x06, std_op3 = 0x07, ldsw_op3 = 0x08, ldsb_op3 = 0x09, ldsh_op3 = 0x0a, ldx_op3 = 0x0b, stx_op3 = 0x0e, swap_op3 = 0x0f, stwa_op3 = 0x14, stxa_op3 = 0x1e, ldf_op3 = 0x20, ldfsr_op3 = 0x21, ldqf_op3 = 0x22, lddf_op3 = 0x23, stf_op3 = 0x24, stfsr_op3 = 0x25, stqf_op3 = 0x26, stdf_op3 = 0x27, prefetch_op3 = 0x2d, casa_op3 = 0x3c, casxa_op3 = 0x3e, mftoi_op3 = 0x36, alt_bit_op3 = 0x10, cc_bit_op3 = 0x10 }; enum opfs { // selected opfs fmovs_opf = 0x01, fmovd_opf = 0x02, fnegs_opf = 0x05, fnegd_opf = 0x06, fadds_opf = 0x41, faddd_opf = 0x42, fsubs_opf = 0x45, fsubd_opf = 0x46, fmuls_opf = 0x49, fmuld_opf = 0x4a, fdivs_opf = 0x4d, fdivd_opf = 0x4e, fcmps_opf = 0x51, fcmpd_opf = 0x52, fstox_opf = 0x81, fdtox_opf = 0x82, fxtos_opf = 0x84, fxtod_opf = 0x88, fitos_opf = 0xc4, fdtos_opf = 0xc6, fitod_opf = 0xc8, fstod_opf = 0xc9, fstoi_opf = 0xd1, fdtoi_opf = 0xd2, mdtox_opf = 0x110, mstouw_opf = 0x111, mstosw_opf = 0x113, mxtod_opf = 0x118, mwtos_opf = 0x119 }; enum RCondition { rc_z = 1, rc_lez = 2, rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7, rc_last = rc_gez }; enum Condition { // for FBfcc & FBPfcc instruction f_never = 0, f_notEqual = 1, f_notZero = 1, f_lessOrGreater = 2, f_unorderedOrLess = 3, f_less = 4, f_unorderedOrGreater = 5, f_greater = 6, f_unordered = 7, f_always = 8, f_equal = 9, f_zero = 9, f_unorderedOrEqual = 10, f_greaterOrEqual = 11, f_unorderedOrGreaterOrEqual = 12, f_lessOrEqual = 13, f_unorderedOrLessOrEqual = 14, f_ordered = 15, // V8 coproc, pp 123 v8 manual cp_always = 8, cp_never = 0, cp_3 = 7, cp_2 = 6, cp_2or3 = 5, cp_1 = 4, cp_1or3 = 3, cp_1or2 = 2, cp_1or2or3 = 1, cp_0 = 9, cp_0or3 = 10, cp_0or2 = 11, cp_0or2or3 = 12, cp_0or1 = 13, cp_0or1or3 = 14, cp_0or1or2 = 15, // for integers never = 0, equal = 1, zero = 1, lessEqual = 2, less = 3, lessEqualUnsigned = 4, lessUnsigned = 5, carrySet = 5, negative = 6, overflowSet = 7, always = 8, notEqual = 9, notZero = 9, greater = 10, greaterEqual = 11, greaterUnsigned = 12, greaterEqualUnsigned = 13, carryClear = 13, positive = 14, overflowClear = 15 }; enum CC { icc = 0, xcc = 2, // ptr_cc is the correct condition code for a pointer or intptr_t: ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc), fcc0 = 0, fcc1 = 1, fcc2 = 2, fcc3 = 3 }; enum PrefetchFcn { severalReads = 0, oneRead = 1, severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4 }; public: // Helper functions for groups of instructions enum Predict { pt = 1, pn = 0 }; // pt = predict taken enum Membar_mask_bits { // page 184, v9 StoreStore = 1 << 3, LoadStore = 1 << 2, StoreLoad = 1 << 1, LoadLoad = 1 << 0, Sync = 1 << 6, MemIssue = 1 << 5, Lookaside = 1 << 4 }; static bool is_in_wdisp_range(address a, address b, int nbits) { intptr_t d = intptr_t(b) - intptr_t(a); return is_simm(d, nbits + 2); } address target_distance(Label& L) { // Assembler::target(L) should be called only when // a branch instruction is emitted since non-bound // labels record current pc() as a branch address. if (L.is_bound()) return target(L); // Return current address for non-bound labels. return pc(); } // test if label is in simm16 range in words (wdisp16). bool is_in_wdisp16_range(Label& L) { return is_in_wdisp_range(target_distance(L), pc(), 16); } // test if the distance between two addresses fits in simm30 range in words static bool is_in_wdisp30_range(address a, address b) { return is_in_wdisp_range(a, b, 30); } enum ASIs { // page 72, v9 ASI_PRIMARY = 0x80, ASI_PRIMARY_NOFAULT = 0x82, ASI_PRIMARY_LITTLE = 0x88, // Block initializing store ASI_ST_BLKINIT_PRIMARY = 0xE2, // Most-Recently-Used (MRU) BIS variant ASI_ST_BLKINIT_MRU_PRIMARY = 0xF2 // add more from book as needed }; protected: // helpers // x is supposed to fit in a field "nbits" wide // and be sign-extended. Check the range. static void assert_signed_range(intptr_t x, int nbits) { assert(nbits == 32 || (-(1 << nbits-1) <= x && x < ( 1 << nbits-1)), err_msg("value out of range: x=" INTPTR_FORMAT ", nbits=%d", x, nbits)); } static void assert_signed_word_disp_range(intptr_t x, int nbits) { assert( (x & 3) == 0, "not word aligned"); assert_signed_range(x, nbits + 2); } static void assert_unsigned_const(int x, int nbits) { assert( juint(x) < juint(1 << nbits), "unsigned constant out of range"); } // fields: note bits numbered from LSB = 0, // fields known by inclusive bit range static int fmask(juint hi_bit, juint lo_bit) { assert( hi_bit >= lo_bit && 0 <= lo_bit && hi_bit < 32, "bad bits"); return (1 << ( hi_bit-lo_bit + 1 )) - 1; } // inverse of u_field static int inv_u_field(int x, int hi_bit, int lo_bit) { juint r = juint(x) >> lo_bit; r &= fmask( hi_bit, lo_bit); return int(r); } // signed version: extract from field and sign-extend static int inv_s_field(int x, int hi_bit, int lo_bit) { int sign_shift = 31 - hi_bit; return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit); } // given a field that ranges from hi_bit to lo_bit (inclusive, // LSB = 0), and an unsigned value for the field, // shift it into the field #ifdef ASSERT static int u_field(int x, int hi_bit, int lo_bit) { assert( ( x & ~fmask(hi_bit, lo_bit)) == 0, "value out of range"); int r = x << lo_bit; assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking"); return r; } #else // make sure this is inlined as it will reduce code size significantly #define u_field(x, hi_bit, lo_bit) ((x) << (lo_bit)) #endif static int inv_op( int x ) { return inv_u_field(x, 31, 30); } static int inv_op2( int x ) { return inv_u_field(x, 24, 22); } static int inv_op3( int x ) { return inv_u_field(x, 24, 19); } static int inv_cond( int x ){ return inv_u_field(x, 28, 25); } static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; } static Register inv_rd( int x ) { return as_Register(inv_u_field(x, 29, 25)); } static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); } static Register inv_rs2( int x ) { return as_Register(inv_u_field(x, 4, 0)); } static int op( int x) { return u_field(x, 31, 30); } static int rd( Register r) { return u_field(r->encoding(), 29, 25); } static int fcn( int x) { return u_field(x, 29, 25); } static int op3( int x) { return u_field(x, 24, 19); } static int rs1( Register r) { return u_field(r->encoding(), 18, 14); } static int rs2( Register r) { return u_field(r->encoding(), 4, 0); } static int annul( bool a) { return u_field(a ? 1 : 0, 29, 29); } static int cond( int x) { return u_field(x, 28, 25); } static int cond_mov( int x) { return u_field(x, 17, 14); } static int rcond( RCondition x) { return u_field(x, 12, 10); } static int op2( int x) { return u_field(x, 24, 22); } static int predict( bool p) { return u_field(p ? 1 : 0, 19, 19); } static int branchcc( CC fcca) { return u_field(fcca, 21, 20); } static int cmpcc( CC fcca) { return u_field(fcca, 26, 25); } static int imm_asi( int x) { return u_field(x, 12, 5); } static int immed( bool i) { return u_field(i ? 1 : 0, 13, 13); } static int opf_low6( int w) { return u_field(w, 10, 5); } static int opf_low5( int w) { return u_field(w, 9, 5); } static int trapcc( CC cc) { return u_field(cc, 12, 11); } static int sx( int i) { return u_field(i, 12, 12); } // shift x=1 means 64-bit static int opf( int x) { return u_field(x, 13, 5); } static bool is_cbcond( int x ) { return (VM_Version::has_cbcond() && (inv_cond(x) > rc_last) && inv_op(x) == branch_op && inv_op2(x) == bpr_op2); } static bool is_cxb( int x ) { assert(is_cbcond(x), "wrong instruction"); return (x & (1<<21)) != 0; } static int cond_cbcond( int x) { return u_field((((x & 8)<<1) + 8 + (x & 7)), 29, 25); } static int inv_cond_cbcond(int x) { assert(is_cbcond(x), "wrong instruction"); return inv_u_field(x, 27, 25) | (inv_u_field(x, 29, 29)<<3); } static int opf_cc( CC c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); } static int mov_cc( CC c, bool useFloat ) { return u_field(useFloat ? 0 : 1, 18, 18) | u_field(c, 12, 11); } static int fd( FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); }; static int fs1(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); }; static int fs2(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 4, 0); }; // some float instructions use this encoding on the op3 field static int alt_op3(int op, FloatRegisterImpl::Width w) { int r; switch(w) { case FloatRegisterImpl::S: r = op + 0; break; case FloatRegisterImpl::D: r = op + 3; break; case FloatRegisterImpl::Q: r = op + 2; break; default: ShouldNotReachHere(); break; } return op3(r); } // compute inverse of simm static int inv_simm(int x, int nbits) { return (int)(x << (32 - nbits)) >> (32 - nbits); } static int inv_simm13( int x ) { return inv_simm(x, 13); } // signed immediate, in low bits, nbits long static int simm(int x, int nbits) { assert_signed_range(x, nbits); return x & (( 1 << nbits ) - 1); } // compute inverse of wdisp16 static intptr_t inv_wdisp16(int x, intptr_t pos) { int lo = x & (( 1 << 14 ) - 1); int hi = (x >> 20) & 3; if (hi >= 2) hi |= ~1; return (((hi << 14) | lo) << 2) + pos; } // word offset, 14 bits at LSend, 2 bits at B21, B20 static int wdisp16(intptr_t x, intptr_t off) { intptr_t xx = x - off; assert_signed_word_disp_range(xx, 16); int r = (xx >> 2) & ((1 << 14) - 1) | ( ( (xx>>(2+14)) & 3 ) << 20 ); assert( inv_wdisp16(r, off) == x, "inverse is not inverse"); return r; } // compute inverse of wdisp10 static intptr_t inv_wdisp10(int x, intptr_t pos) { assert(is_cbcond(x), "wrong instruction"); int lo = inv_u_field(x, 12, 5); int hi = (x >> 19) & 3; if (hi >= 2) hi |= ~1; return (((hi << 8) | lo) << 2) + pos; } // word offset for cbcond, 8 bits at [B12,B5], 2 bits at [B20,B19] static int wdisp10(intptr_t x, intptr_t off) { assert(VM_Version::has_cbcond(), "This CPU does not have CBCOND instruction"); intptr_t xx = x - off; assert_signed_word_disp_range(xx, 10); int r = ( ( (xx >> 2 ) & ((1 << 8) - 1) ) << 5 ) | ( ( (xx >> (2+8)) & 3 ) << 19 ); // Have to fake cbcond instruction to pass assert in inv_wdisp10() assert(inv_wdisp10((r | op(branch_op) | cond_cbcond(rc_last+1) | op2(bpr_op2)), off) == x, "inverse is not inverse"); return r; } // word displacement in low-order nbits bits static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) { int pre_sign_extend = x & (( 1 << nbits ) - 1); int r = pre_sign_extend >= ( 1 << (nbits-1) ) ? pre_sign_extend | ~(( 1 << nbits ) - 1) : pre_sign_extend; return (r << 2) + pos; } static int wdisp( intptr_t x, intptr_t off, int nbits ) { intptr_t xx = x - off; assert_signed_word_disp_range(xx, nbits); int r = (xx >> 2) & (( 1 << nbits ) - 1); assert( inv_wdisp( r, off, nbits ) == x, "inverse not inverse"); return r; } // Extract the top 32 bits in a 64 bit word static int32_t hi32( int64_t x ) { int32_t r = int32_t( (uint64_t)x >> 32 ); return r; } // given a sethi instruction, extract the constant, left-justified static int inv_hi22( int x ) { return x << 10; } // create an imm22 field, given a 32-bit left-justified constant static int hi22( int x ) { int r = int( juint(x) >> 10 ); assert( (r & ~((1 << 22) - 1)) == 0, "just checkin'"); return r; } // create a low10 __value__ (not a field) for a given a 32-bit constant static int low10( int x ) { return x & ((1 << 10) - 1); } // instruction only in VIS3 static void vis3_only() { assert( VM_Version::has_vis3(), "This instruction only works on SPARC with VIS3"); } // instruction only in v9 static void v9_only() { } // do nothing // instruction deprecated in v9 static void v9_dep() { } // do nothing for now // v8 has no CC field static void v8_no_cc(CC cc) { if (cc) v9_only(); } protected: // Simple delay-slot scheme: // In order to check the programmer, the assembler keeps track of deley slots. // It forbids CTIs in delay slots (conservative, but should be OK). // Also, when putting an instruction into a delay slot, you must say // asm->delayed()->add(...), in order to check that you don't omit // delay-slot instructions. // To implement this, we use a simple FSA #ifdef ASSERT #define CHECK_DELAY #endif #ifdef CHECK_DELAY enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state; #endif public: // Tells assembler next instruction must NOT be in delay slot. // Use at start of multinstruction macros. void assert_not_delayed() { // This is a separate overloading to avoid creation of string constants // in non-asserted code--with some compilers this pollutes the object code. #ifdef CHECK_DELAY assert_not_delayed("next instruction should not be a delay slot"); #endif } void assert_not_delayed(const char* msg) { #ifdef CHECK_DELAY assert(delay_state == no_delay, msg); #endif } protected: // Delay slot helpers // cti is called when emitting control-transfer instruction, // BEFORE doing the emitting. // Only effective when assertion-checking is enabled. void cti() { #ifdef CHECK_DELAY assert_not_delayed("cti should not be in delay slot"); #endif } // called when emitting cti with a delay slot, AFTER emitting void has_delay_slot() { #ifdef CHECK_DELAY assert_not_delayed("just checking"); delay_state = at_delay_slot; #endif } // cbcond instruction should not be generated one after an other bool cbcond_before() { if (offset() == 0) return false; // it is first instruction int x = *(int*)(intptr_t(pc()) - 4); // previous instruction return is_cbcond(x); } void no_cbcond_before() { assert(offset() == 0 || !cbcond_before(), "cbcond should not follow an other cbcond"); } public: bool use_cbcond(Label& L) { if (!UseCBCond || cbcond_before()) return false; intptr_t x = intptr_t(target_distance(L)) - intptr_t(pc()); assert( (x & 3) == 0, "not word aligned"); return is_simm12(x); } // Tells assembler you know that next instruction is delayed Assembler* delayed() { #ifdef CHECK_DELAY assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot"); delay_state = filling_delay_slot; #endif return this; } void flush() { #ifdef CHECK_DELAY assert ( delay_state == no_delay, "ending code with a delay slot"); #endif AbstractAssembler::flush(); } inline void emit_int32(int); // shadows AbstractAssembler::emit_int32 inline void emit_data(int x) { emit_int32(x); } inline void emit_data(int, RelocationHolder const&); inline void emit_data(int, relocInfo::relocType rtype); // helper for above fcns inline void check_delay(); public: // instructions, refer to page numbers in the SPARC Architecture Manual, V9 // pp 135 (addc was addx in v8) inline void add(Register s1, Register s2, Register d ); inline void add(Register s1, int simm13a, Register d ); void addcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } void addcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void addc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | rs2(s2) ); } void addc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void addccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } void addccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } // pp 136 inline void bpr(RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none); inline void bpr(RCondition c, bool a, Predict p, Register s1, Label& L); // compare and branch inline void cbcond(Condition c, CC cc, Register s1, Register s2, Label& L); inline void cbcond(Condition c, CC cc, Register s1, int simm5, Label& L); protected: // use MacroAssembler::br instead // pp 138 inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none ); inline void fb( Condition c, bool a, Label& L ); // pp 141 inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none ); inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L ); // pp 144 inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none ); inline void br( Condition c, bool a, Label& L ); // pp 146 inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none ); inline void bp( Condition c, bool a, CC cc, Predict p, Label& L ); // pp 149 inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type ); inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type ); public: // pp 150 // These instructions compare the contents of s2 with the contents of // memory at address in s1. If the values are equal, the contents of memory // at address s1 is swapped with the data in d. If the values are not equal, // the the contents of memory at s1 is loaded into d, without the swap. void casa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); } void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); } // pp 152 void udiv( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | rs2(s2)); } void udiv( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void sdiv( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | rs2(s2)); } void sdiv( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void udivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); } void udivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void sdivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); } void sdivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } // pp 155 void done() { v9_only(); cti(); emit_int32( op(arith_op) | fcn(0) | op3(done_op3) ); } void retry() { v9_only(); cti(); emit_int32( op(arith_op) | fcn(1) | op3(retry_op3) ); } // pp 156 void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); } void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); } // pp 157 void fcmp( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); } void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); } // pp 159 void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); } void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); } // pp 160 void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); } // pp 161 void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, FloatRegisterImpl::D)); } void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, FloatRegisterImpl::S)); } // pp 162 void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); } void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); } void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); } // pp 163 void fmul( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x48 + w) | fs2(s2, w)); } void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); } void fdiv( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x4c + w) | fs2(s2, w)); } // pp 164 void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); } // pp 165 inline void flush( Register s1, Register s2 ); inline void flush( Register s1, int simm13a); // pp 167 void flushw() { v9_only(); emit_int32( op(arith_op) | op3(flushw_op3) ); } // pp 168 void illtrap( int const22a) { if (const22a != 0) v9_only(); emit_int32( op(branch_op) | u_field(const22a, 21, 0) ); } // v8 unimp == illtrap(0) // pp 169 void impdep1( int id1, int const19a ) { v9_only(); emit_int32( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); } void impdep2( int id1, int const19a ) { v9_only(); emit_int32( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); } // pp 170 void jmpl( Register s1, Register s2, Register d ); void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() ); // 171 inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d); inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder()); inline void ldfsr( Register s1, Register s2 ); inline void ldfsr( Register s1, int simm13a); inline void ldxfsr( Register s1, Register s2 ); inline void ldxfsr( Register s1, int simm13a); // 173 void ldfa( FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } void ldfa( FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } // pp 175, lduw is ld on v8 inline void ldsb( Register s1, Register s2, Register d ); inline void ldsb( Register s1, int simm13a, Register d); inline void ldsh( Register s1, Register s2, Register d ); inline void ldsh( Register s1, int simm13a, Register d); inline void ldsw( Register s1, Register s2, Register d ); inline void ldsw( Register s1, int simm13a, Register d); inline void ldub( Register s1, Register s2, Register d ); inline void ldub( Register s1, int simm13a, Register d); inline void lduh( Register s1, Register s2, Register d ); inline void lduh( Register s1, int simm13a, Register d); inline void lduw( Register s1, Register s2, Register d ); inline void lduw( Register s1, int simm13a, Register d); inline void ldx( Register s1, Register s2, Register d ); inline void ldx( Register s1, int simm13a, Register d); inline void ldd( Register s1, Register s2, Register d ); inline void ldd( Register s1, int simm13a, Register d); // pp 177 void ldsba( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } void ldsba( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void ldsha( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } void ldsha( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void ldswa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } void ldswa( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void lduba( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } void lduba( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void lduha( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } void lduha( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void lduwa( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } void lduwa( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void ldxa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } void ldxa( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } // pp 181 void and3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | rs2(s2) ); } void and3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void andcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } void andcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void andn( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | rs2(s2) ); } void andn( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void andncc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } void andncc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void or3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | rs2(s2) ); } void or3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void orcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } void orcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void orn( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); } void orn( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void orncc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } void orncc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void xor3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | rs2(s2) ); } void xor3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void xorcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } void xorcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void xnor( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | rs2(s2) ); } void xnor( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void xnorcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } void xnorcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } // pp 183 void membar( Membar_mask_bits const7a ) { v9_only(); emit_int32( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); } // pp 185 void fmov( FloatRegisterImpl::Width w, Condition c, bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); } // pp 189 void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1, FloatRegister s2, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); } // pp 191 void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); } void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); } // pp 195 void movr( RCondition c, Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); } void movr( RCondition c, Register s1, int simm10a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); } // pp 196 void mulx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); } void mulx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); } void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); } void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } // pp 197 void umul( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | rs2(s2) ); } void umul( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void smul( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | rs2(s2) ); } void smul( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void umulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } void umulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void smulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } void smulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } // pp 201 void nop() { emit_int32( op(branch_op) | op2(sethi_op2) ); } // pp 202 void popc( Register s, Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); } void popc( int simm13a, Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); } // pp 203 void prefetch( Register s1, Register s2, PrefetchFcn f) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); } void prefetch( Register s1, int simm13a, PrefetchFcn f) { v9_only(); emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } void prefetcha( Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } void prefetcha( Register s1, int simm13a, PrefetchFcn f ) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } // pp 208 // not implementing read privileged register inline void rdy( Register d) { v9_dep(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); } inline void rdccr( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); } inline void rdasi( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); } inline void rdtick( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon! inline void rdpc( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); } inline void rdfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); } // pp 213 inline void rett( Register s1, Register s2); inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none); // pp 214 void save( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); } void save( Register s1, int simm13a, Register d ) { // make sure frame is at least large enough for the register save area assert(-simm13a >= 16 * wordSize, "frame too small"); emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void restore( Register s1 = G0, Register s2 = G0, Register d = G0 ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); } void restore( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } // pp 216 void saved() { v9_only(); emit_int32( op(arith_op) | fcn(0) | op3(saved_op3)); } void restored() { v9_only(); emit_int32( op(arith_op) | fcn(1) | op3(saved_op3)); } // pp 217 inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() ); // pp 218 void sll( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); } void sll( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); } void srl( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); } void srl( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); } void sra( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); } void sra( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); } void sllx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); } void sllx( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); } void srlx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); } void srlx( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); } void srax( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); } void srax( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); } // pp 220 void sir( int simm13a ) { emit_int32( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); } // pp 221 void stbar() { emit_int32( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); } // pp 222 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2); inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a); inline void stfsr( Register s1, Register s2 ); inline void stfsr( Register s1, int simm13a); inline void stxfsr( Register s1, Register s2 ); inline void stxfsr( Register s1, int simm13a); // pp 224 void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } // p 226 inline void stb( Register d, Register s1, Register s2 ); inline void stb( Register d, Register s1, int simm13a); inline void sth( Register d, Register s1, Register s2 ); inline void sth( Register d, Register s1, int simm13a); inline void stw( Register d, Register s1, Register s2 ); inline void stw( Register d, Register s1, int simm13a); inline void stx( Register d, Register s1, Register s2 ); inline void stx( Register d, Register s1, int simm13a); inline void std( Register d, Register s1, Register s2 ); inline void std( Register d, Register s1, int simm13a); // pp 177 void stba( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } void stba( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void stha( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } void stha( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void stwa( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } void stwa( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void stxa( Register d, Register s1, Register s2, int ia ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } void stxa( Register d, Register s1, int simm13a ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void stda( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } void stda( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } // pp 230 void sub( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | rs2(s2) ); } void sub( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void subcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); } void subcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void subc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | rs2(s2) ); } void subc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } void subccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } void subccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } // pp 231 inline void swap( Register s1, Register s2, Register d ); inline void swap( Register s1, int simm13a, Register d); // pp 232 void swapa( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } void swapa( Register s1, int simm13a, Register d ) { v9_dep(); emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } // pp 234, note op in book is wrong, see pp 268 void taddcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | rs2(s2) ); } void taddcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } // pp 235 void tsubcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | rs2(s2) ); } void tsubcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } // pp 237 void trap( Condition c, CC cc, Register s1, Register s2 ) { emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); } void trap( Condition c, CC cc, Register s1, int trapa ) { emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); } // simple uncond. trap void trap( int trapa ) { trap( always, icc, G0, trapa ); } // pp 239 omit write priv register for now inline void wry( Register d) { v9_dep(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); } inline void wrccr(Register s) { v9_only(); emit_int32( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); } inline void wrccr(Register s, int simm13a) { v9_only(); emit_int32( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25) | immed(true) | simm(simm13a, 13)); } inline void wrasi(Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); } // wrasi(d, imm) stores (d xor imm) to asi inline void wrasi(Register d, int simm13a) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25) | immed(true) | simm(simm13a, 13)); } inline void wrfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); } // VIS3 instructions void movstosw( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstosw_opf) | fs2(s, FloatRegisterImpl::S)); } void movstouw( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstouw_opf) | fs2(s, FloatRegisterImpl::S)); } void movdtox( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mdtox_opf) | fs2(s, FloatRegisterImpl::D)); } void movwtos( Register s, FloatRegister d ) { vis3_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); } void movxtod( Register s, FloatRegister d ) { vis3_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); } // Creation Assembler(CodeBuffer* code) : AbstractAssembler(code) { #ifdef CHECK_DELAY delay_state = no_delay; #endif } }; #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP Other Java examples (source code examples)Here is a short list of links related to this Java assembler_sparc.hpp source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.