|
Java example source code file (interp_masm_sparc.cpp)
The interp_masm_sparc.cpp Java example source code/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "interp_masm_sparc.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterRuntime.hpp" #include "oops/arrayOop.hpp" #include "oops/markOop.hpp" #include "oops/methodData.hpp" #include "oops/method.hpp" #include "oops/methodCounters.hpp" #include "prims/jvmtiExport.hpp" #include "prims/jvmtiRedefineClassesTrace.hpp" #include "prims/jvmtiThreadState.hpp" #include "runtime/basicLock.hpp" #include "runtime/biasedLocking.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/thread.inline.hpp" #ifndef CC_INTERP #ifndef FAST_DISPATCH #define FAST_DISPATCH 1 #endif #undef FAST_DISPATCH // Implementation of InterpreterMacroAssembler // This file specializes the assember with interpreter-specific macros const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS); const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS); #else // CC_INTERP #ifndef STATE #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name)) #endif // STATE #endif // CC_INTERP void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) { // Note: this algorithm is also used by C1's OSR entry sequence. // Any changes should also be applied to CodeEmitter::emit_osr_entry(). assert_different_registers(args_size, locals_size); // max_locals*2 for TAGS. Assumes that args_size has already been adjusted. subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words // Use br/mov combination because it works on both V8 and V9 and is // faster. Label skip_move; br(Assembler::negative, true, Assembler::pt, skip_move); delayed()->mov(G0, delta); bind(skip_move); round_to(delta, WordsPerLong); // make multiple of 2 (SP must be 2-word aligned) sll(delta, LogBytesPerWord, delta); // extra space for locals in bytes } #ifndef CC_INTERP // Dispatch code executed in the prolog of a bytecode which does not do it's // own dispatch. The dispatch address is computed and placed in IdispatchAddress void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) { assert_not_delayed(); #ifdef FAST_DISPATCH // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since // they both use I2. assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive"); ldub(Lbcp, bcp_incr, Lbyte_code); // load next bytecode add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code); // add offset to correct dispatch table sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr #else ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode // dispatch table to use AddressLiteral tbl(Interpreter::dispatch_table(state)); sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize set(tbl, G3_scratch); // compute addr of table ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress); // get entry addr #endif } // Dispatch code executed in the epilog of a bytecode which does not do it's // own dispatch. The dispatch address in IdispatchAddress is used for the // dispatch. void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) { assert_not_delayed(); verify_FPU(1, state); interp_verify_oop(Otos_i, state, __FILE__, __LINE__); jmp( IdispatchAddress, 0 ); if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr); else delayed()->nop(); } void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) { // %%%% consider branching to a single shared dispatch stub (for each bcp_incr) assert_not_delayed(); ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr); } void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) { // %%%% consider branching to a single shared dispatch stub (for each bcp_incr) assert_not_delayed(); ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false); } void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { // load current bytecode assert_not_delayed(); ldub( Lbcp, 0, Lbyte_code); // load next bytecode dispatch_base(state, table); } void InterpreterMacroAssembler::call_VM_leaf_base( Register java_thread, address entry_point, int number_of_arguments ) { if (!java_thread->is_valid()) java_thread = L7_thread_cache; // super call MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments); } void InterpreterMacroAssembler::call_VM_base( Register oop_result, Register java_thread, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exception ) { if (!java_thread->is_valid()) java_thread = L7_thread_cache; // See class ThreadInVMfromInterpreter, which assumes that the interpreter // takes responsibility for setting its own thread-state on call-out. // However, ThreadInVMfromInterpreter resets the state to "in_Java". //save_bcp(); // save bcp MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception); //restore_bcp(); // restore bcp //restore_locals(); // restore locals pointer } void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) { if (JvmtiExport::can_pop_frame()) { Label L; // Check the "pending popframe condition" flag in the current thread ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg); // Initiate popframe handling only if it is not already being processed. If the flag // has the popframe_processing bit set, it means that this code is called *during* popframe // handling - we don't want to reenter. btst(JavaThread::popframe_pending_bit, scratch_reg); br(zero, false, pt, L); delayed()->nop(); btst(JavaThread::popframe_processing_bit, scratch_reg); br(notZero, false, pt, L); delayed()->nop(); // Call Interpreter::remove_activation_preserving_args_entry() to get the // address of the same-named entrypoint in the generated interpreter code. call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); // Jump to Interpreter::_remove_activation_preserving_args_entry jmpl(O0, G0, G0); delayed()->nop(); bind(L); } } void InterpreterMacroAssembler::load_earlyret_value(TosState state) { Register thr_state = G4_scratch; ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state); const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset()); const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset()); const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset()); switch (state) { case ltos: ld_long(val_addr, Otos_l); break; case atos: ld_ptr(oop_addr, Otos_l); st_ptr(G0, oop_addr); break; case btos: // fall through case ctos: // fall through case stos: // fall through case itos: ld(val_addr, Otos_l1); break; case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break; case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } // Clean up tos value in the jvmti thread state or3(G0, ilgl, G3_scratch); stw(G3_scratch, tos_addr); st_long(G0, val_addr); interp_verify_oop(Otos_i, state, __FILE__, __LINE__); } void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) { if (JvmtiExport::can_force_early_return()) { Label L; Register thr_state = G3_scratch; ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state); br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit; // Initiate earlyret handling only if it is not already being processed. // If the flag has the earlyret_processing bit set, it means that this code // is called *during* earlyret handling - we don't want to reenter. ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch); cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L); // Call Interpreter::remove_activation_early_entry() to get the address of the // same-named entrypoint in the generated interpreter code ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1); call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1); // Jump to Interpreter::_remove_activation_early_entry jmpl(O0, G0, G0); delayed()->nop(); bind(L); } } void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) { mov(arg_1, O0); mov(arg_2, O1); MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2); } #endif /* CC_INTERP */ #ifndef CC_INTERP void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) { assert_not_delayed(); dispatch_Lbyte_code(state, table); } void InterpreterMacroAssembler::dispatch_normal(TosState state) { dispatch_base(state, Interpreter::normal_table(state)); } void InterpreterMacroAssembler::dispatch_only(TosState state) { dispatch_base(state, Interpreter::dispatch_table(state)); } // common code to dispatch and dispatch_only // dispatch value in Lbyte_code and increment Lbcp void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) { verify_FPU(1, state); // %%%%% maybe implement +VerifyActivationFrameSize here //verify_thread(); //too slow; we will just verify on method entry & exit if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__); #ifdef FAST_DISPATCH if (table == Interpreter::dispatch_table(state)) { // use IdispatchTables add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code); // add offset to correct dispatch table sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize ld_ptr(IdispatchTables, Lbyte_code, G3_scratch); // get entry addr } else { #endif // dispatch table to use AddressLiteral tbl(table); sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize set(tbl, G3_scratch); // compute addr of table ld_ptr(G3_scratch, Lbyte_code, G3_scratch); // get entry addr #ifdef FAST_DISPATCH } #endif jmp( G3_scratch, 0 ); if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr); else delayed()->nop(); } // Helpers for expression stack // Longs and doubles are Category 2 computational types in the // JVM specification (section 3.11.1) and take 2 expression stack or // local slots. // Aligning them on 32 bit with tagged stacks is hard because the code generated // for the dup* bytecodes depends on what types are already on the stack. // If the types are split into the two stack/local slots, that is much easier // (and we can use 0 for non-reference tags). // Known good alignment in _LP64 but unknown otherwise void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) { assert_not_delayed(); #ifdef _LP64 ldf(FloatRegisterImpl::D, r1, offset, d); #else ldf(FloatRegisterImpl::S, r1, offset, d); ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor()); #endif } // Known good alignment in _LP64 but unknown otherwise void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) { assert_not_delayed(); #ifdef _LP64 stf(FloatRegisterImpl::D, d, r1, offset); // store something more useful here debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);) #else stf(FloatRegisterImpl::S, d, r1, offset); stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize); #endif } // Known good alignment in _LP64 but unknown otherwise void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) { assert_not_delayed(); #ifdef _LP64 ldx(r1, offset, rd); #else ld(r1, offset, rd); ld(r1, offset + Interpreter::stackElementSize, rd->successor()); #endif } // Known good alignment in _LP64 but unknown otherwise void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) { assert_not_delayed(); #ifdef _LP64 stx(l, r1, offset); // store something more useful here debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);) #else st(l, r1, offset); st(l->successor(), r1, offset + Interpreter::stackElementSize); #endif } void InterpreterMacroAssembler::pop_i(Register r) { assert_not_delayed(); ld(Lesp, Interpreter::expr_offset_in_bytes(0), r); inc(Lesp, Interpreter::stackElementSize); debug_only(verify_esp(Lesp)); } void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) { assert_not_delayed(); ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r); inc(Lesp, Interpreter::stackElementSize); debug_only(verify_esp(Lesp)); } void InterpreterMacroAssembler::pop_l(Register r) { assert_not_delayed(); load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r); inc(Lesp, 2*Interpreter::stackElementSize); debug_only(verify_esp(Lesp)); } void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) { assert_not_delayed(); ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f); inc(Lesp, Interpreter::stackElementSize); debug_only(verify_esp(Lesp)); } void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) { assert_not_delayed(); load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f); inc(Lesp, 2*Interpreter::stackElementSize); debug_only(verify_esp(Lesp)); } void InterpreterMacroAssembler::push_i(Register r) { assert_not_delayed(); debug_only(verify_esp(Lesp)); st(r, Lesp, 0); dec(Lesp, Interpreter::stackElementSize); } void InterpreterMacroAssembler::push_ptr(Register r) { assert_not_delayed(); st_ptr(r, Lesp, 0); dec(Lesp, Interpreter::stackElementSize); } // remember: our convention for longs in SPARC is: // O0 (Otos_l1) has high-order part in first word, // O1 (Otos_l2) has low-order part in second word void InterpreterMacroAssembler::push_l(Register r) { assert_not_delayed(); debug_only(verify_esp(Lesp)); // Longs are stored in memory-correct order, even if unaligned. int offset = -Interpreter::stackElementSize; store_unaligned_long(r, Lesp, offset); dec(Lesp, 2 * Interpreter::stackElementSize); } void InterpreterMacroAssembler::push_f(FloatRegister f) { assert_not_delayed(); debug_only(verify_esp(Lesp)); stf(FloatRegisterImpl::S, f, Lesp, 0); dec(Lesp, Interpreter::stackElementSize); } void InterpreterMacroAssembler::push_d(FloatRegister d) { assert_not_delayed(); debug_only(verify_esp(Lesp)); // Longs are stored in memory-correct order, even if unaligned. int offset = -Interpreter::stackElementSize; store_unaligned_double(d, Lesp, offset); dec(Lesp, 2 * Interpreter::stackElementSize); } void InterpreterMacroAssembler::push(TosState state) { interp_verify_oop(Otos_i, state, __FILE__, __LINE__); switch (state) { case atos: push_ptr(); break; case btos: push_i(); break; case ctos: case stos: push_i(); break; case itos: push_i(); break; case ltos: push_l(); break; case ftos: push_f(); break; case dtos: push_d(); break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } } void InterpreterMacroAssembler::pop(TosState state) { switch (state) { case atos: pop_ptr(); break; case btos: pop_i(); break; case ctos: case stos: pop_i(); break; case itos: pop_i(); break; case ltos: pop_l(); break; case ftos: pop_f(); break; case dtos: pop_d(); break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } interp_verify_oop(Otos_i, state, __FILE__, __LINE__); } // Helpers for swap and dup void InterpreterMacroAssembler::load_ptr(int n, Register val) { ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val); } void InterpreterMacroAssembler::store_ptr(int n, Register val) { st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n)); } void InterpreterMacroAssembler::load_receiver(Register param_count, Register recv) { sll(param_count, Interpreter::logStackElementSize, param_count); ld_ptr(Lesp, param_count, recv); // gets receiver oop } void InterpreterMacroAssembler::empty_expression_stack() { // Reset Lesp. sub( Lmonitors, wordSize, Lesp ); // Reset SP by subtracting more space from Lesp. Label done; assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!"); // A native does not need to do this, since its callee does not change SP. ld(Lmethod, Method::access_flags_offset(), Gframe_size); // Load access flags. btst(JVM_ACC_NATIVE, Gframe_size); br(Assembler::notZero, false, Assembler::pt, done); delayed()->nop(); // Compute max expression stack+register save area ld_ptr(Lmethod, in_bytes(Method::const_offset()), Gframe_size); lduh(Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size); // Load max stack. add(Gframe_size, frame::memory_parameter_word_sp_offset+Method::extra_stack_entries(), Gframe_size ); // // now set up a stack frame with the size computed above // //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below sll( Gframe_size, LogBytesPerWord, Gframe_size ); sub( Lesp, Gframe_size, Gframe_size ); and3( Gframe_size, -(2 * wordSize), Gframe_size ); // align SP (downwards) to an 8/16-byte boundary debug_only(verify_sp(Gframe_size, G4_scratch)); #ifdef _LP64 sub(Gframe_size, STACK_BIAS, Gframe_size ); #endif mov(Gframe_size, SP); bind(done); } #ifdef ASSERT void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) { Label Bad, OK; // Saved SP must be aligned. #ifdef _LP64 btst(2*BytesPerWord-1, Rsp); #else btst(LongAlignmentMask, Rsp); #endif br(Assembler::notZero, false, Assembler::pn, Bad); delayed()->nop(); // Saved SP, plus register window size, must not be above FP. add(Rsp, frame::register_save_words * wordSize, Rtemp); #ifdef _LP64 sub(Rtemp, STACK_BIAS, Rtemp); // Bias Rtemp before cmp to FP #endif cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad); // Saved SP must not be ridiculously below current SP. size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K); set(maxstack, Rtemp); sub(SP, Rtemp, Rtemp); #ifdef _LP64 add(Rtemp, STACK_BIAS, Rtemp); // Unbias Rtemp before cmp to Rsp #endif cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad); ba_short(OK); bind(Bad); stop("on return to interpreted call, restored SP is corrupted"); bind(OK); } void InterpreterMacroAssembler::verify_esp(Register Resp) { // about to read or write Resp[0] // make sure it is not in the monitors or the register save area Label OK1, OK2; cmp(Resp, Lmonitors); brx(Assembler::lessUnsigned, true, Assembler::pt, OK1); delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp); stop("too many pops: Lesp points into monitor area"); bind(OK1); #ifdef _LP64 sub(Resp, STACK_BIAS, Resp); #endif cmp(Resp, SP); brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2); delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp); stop("too many pushes: Lesp points into register window"); bind(OK2); } #endif // ASSERT // Load compiled (i2c) or interpreter entry when calling from interpreted and // do the call. Centralized so that all interpreter calls will do the same actions. // If jvmti single stepping is on for a thread we must not call compiled code. void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) { // Assume we want to go compiled if available ld_ptr(G5_method, in_bytes(Method::from_interpreted_offset()), target); if (JvmtiExport::can_post_interpreter_events()) { // JVMTI events, such as single-stepping, are implemented partly by avoiding running // compiled code in threads for which the event is enabled. Check here for // interp_only_mode if these events CAN be enabled. verify_thread(); Label skip_compiled_code; const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset()); ld(interp_only, scratch); cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn); delayed()->ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), target); bind(skip_compiled_code); } // the i2c_adapters need Method* in G5_method (right? %%%) // do the call #ifdef ASSERT { Label ok; br_notnull_short(target, Assembler::pt, ok); stop("null entry point"); bind(ok); } #endif // ASSERT // Adjust Rret first so Llast_SP can be same as Rret add(Rret, -frame::pc_return_offset, O7); add(Lesp, BytesPerWord, Gargs); // setup parameter pointer // Record SP so we can remove any stack space allocated by adapter transition jmp(target, 0); delayed()->mov(SP, Llast_SP); } void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) { assert_not_delayed(); Label not_taken; if (ptr_compare) brx(cc, false, Assembler::pn, not_taken); else br (cc, false, Assembler::pn, not_taken); delayed()->nop(); TemplateTable::branch(false,false); bind(not_taken); profile_not_taken_branch(G3_scratch); } void InterpreterMacroAssembler::get_2_byte_integer_at_bcp( int bcp_offset, Register Rtmp, Register Rdst, signedOrNot is_signed, setCCOrNot should_set_CC ) { assert(Rtmp != Rdst, "need separate temp register"); assert_not_delayed(); switch (is_signed) { default: ShouldNotReachHere(); case Signed: ldsb( Lbcp, bcp_offset, Rdst ); break; // high byte case Unsigned: ldub( Lbcp, bcp_offset, Rdst ); break; // high byte } ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte sll( Rdst, BitsPerByte, Rdst); switch (should_set_CC ) { default: ShouldNotReachHere(); case set_CC: orcc( Rdst, Rtmp, Rdst ); break; case dont_set_CC: or3( Rdst, Rtmp, Rdst ); break; } } void InterpreterMacroAssembler::get_4_byte_integer_at_bcp( int bcp_offset, Register Rtmp, Register Rdst, setCCOrNot should_set_CC ) { assert(Rtmp != Rdst, "need separate temp register"); assert_not_delayed(); add( Lbcp, bcp_offset, Rtmp); andcc( Rtmp, 3, G0); Label aligned; switch (should_set_CC ) { default: ShouldNotReachHere(); case set_CC: break; case dont_set_CC: break; } br(Assembler::zero, true, Assembler::pn, aligned); #ifdef _LP64 delayed()->ldsw(Rtmp, 0, Rdst); #else delayed()->ld(Rtmp, 0, Rdst); #endif ldub(Lbcp, bcp_offset + 3, Rdst); ldub(Lbcp, bcp_offset + 2, Rtmp); sll(Rtmp, 8, Rtmp); or3(Rtmp, Rdst, Rdst); ldub(Lbcp, bcp_offset + 1, Rtmp); sll(Rtmp, 16, Rtmp); or3(Rtmp, Rdst, Rdst); #ifdef _LP64 ldsb(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp); #else // Unsigned load is faster than signed on some implementations ldub(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp); #endif or3(Rtmp, Rdst, Rdst ); bind(aligned); if (should_set_CC == set_CC) tst(Rdst); } void InterpreterMacroAssembler::get_cache_index_at_bcp(Register temp, Register index, int bcp_offset, size_t index_size) { assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); if (index_size == sizeof(u2)) { get_2_byte_integer_at_bcp(bcp_offset, temp, index, Unsigned); } else if (index_size == sizeof(u4)) { assert(EnableInvokeDynamic, "giant index used only for JSR 292"); get_4_byte_integer_at_bcp(bcp_offset, temp, index); assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); xor3(index, -1, index); // convert to plain index } else if (index_size == sizeof(u1)) { ldub(Lbcp, bcp_offset, index); } else { ShouldNotReachHere(); } } void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp, int bcp_offset, size_t index_size) { assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); assert_different_registers(cache, tmp); assert_not_delayed(); get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size); // convert from field index to ConstantPoolCacheEntry index and from // word index to byte offset sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp); add(LcpoolCache, tmp, cache); } void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, Register temp, Register bytecode, int byte_no, int bcp_offset, size_t index_size) { get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size); ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode); const int shift_count = (1 + byte_no) * BitsPerByte; assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) || (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift), "correct shift count"); srl(bytecode, shift_count, bytecode); assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask"); and3(bytecode, ConstantPoolCacheEntry::bytecode_1_mask, bytecode); } void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset, size_t index_size) { assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); assert_different_registers(cache, tmp); assert_not_delayed(); if (index_size == sizeof(u2)) { get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned); } else { ShouldNotReachHere(); // other sizes not supported here } // convert from field index to ConstantPoolCacheEntry index // and from word index to byte offset sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp); // skip past the header add(tmp, in_bytes(ConstantPoolCache::base_offset()), tmp); // construct pointer to cache entry add(LcpoolCache, tmp, cache); } // Load object from cpool->resolved_references(index) void InterpreterMacroAssembler::load_resolved_reference_at_index( Register result, Register index) { assert_different_registers(result, index); assert_not_delayed(); // convert from field index to resolved_references() index and from // word index to byte offset. Since this is a java object, it can be compressed Register tmp = index; // reuse sll(index, LogBytesPerHeapOop, tmp); get_constant_pool(result); // load pointer for resolved_references[] objArray ld_ptr(result, ConstantPool::resolved_references_offset_in_bytes(), result); // JNIHandles::resolve(result) ld_ptr(result, 0, result); // Add in the index add(result, tmp, result); load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result); } // Generate a subtype check: branch to ok_is_subtype if sub_klass is // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2. void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1, Register Rtmp2, Register Rtmp3, Label &ok_is_subtype ) { Label not_subtype; // Profile the not-null value's klass. profile_typecheck(Rsub_klass, Rtmp1); check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, &ok_is_subtype, ¬_subtype, NULL); check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg, &ok_is_subtype, NULL); bind(not_subtype); profile_typecheck_failed(Rtmp1); } // Separate these two to allow for delay slot in middle // These are used to do a test and full jump to exception-throwing code. // %%%%% Could possibly reoptimize this by testing to see if could use // a single conditional branch (i.e. if span is small enough. // If you go that route, than get rid of the split and give up // on the delay-slot hack. void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition, Label& ok ) { assert_not_delayed(); br(ok_condition, true, pt, ok); // DELAY SLOT } void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition, Label& ok ) { assert_not_delayed(); bp( ok_condition, true, Assembler::xcc, pt, ok); // DELAY SLOT } void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition, Label& ok ) { assert_not_delayed(); brx(ok_condition, true, pt, ok); // DELAY SLOT } void InterpreterMacroAssembler::throw_if_not_2( address throw_entry_point, Register Rscratch, Label& ok ) { assert(throw_entry_point != NULL, "entry point must be generated by now"); AddressLiteral dest(throw_entry_point); jump_to(dest, Rscratch); delayed()->nop(); bind(ok); } // And if you cannot use the delay slot, here is a shorthand: void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition, address throw_entry_point, Register Rscratch ) { Label ok; if (ok_condition != never) { throw_if_not_1_icc( ok_condition, ok); delayed()->nop(); } throw_if_not_2( throw_entry_point, Rscratch, ok); } void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition, address throw_entry_point, Register Rscratch ) { Label ok; if (ok_condition != never) { throw_if_not_1_xcc( ok_condition, ok); delayed()->nop(); } throw_if_not_2( throw_entry_point, Rscratch, ok); } void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition, address throw_entry_point, Register Rscratch ) { Label ok; if (ok_condition != never) { throw_if_not_1_x( ok_condition, ok); delayed()->nop(); } throw_if_not_2( throw_entry_point, Rscratch, ok); } // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res // Note: res is still shy of address by array offset into object. void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) { assert_not_delayed(); verify_oop(array); #ifdef _LP64 // sign extend since tos (index) can be a 32bit value sra(index, G0, index); #endif // _LP64 // check array Label ptr_ok; tst(array); throw_if_not_1_x( notZero, ptr_ok ); delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok); Label index_ok; cmp(index, tmp); throw_if_not_1_icc( lessUnsigned, index_ok ); if (index_shift > 0) delayed()->sll(index, index_shift, index); else delayed()->add(array, index, res); // addr - const offset in index // convention: move aberrant index into G3_scratch for exception message mov(index, G3_scratch); throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok); // add offset if didn't do it in delay slot if (index_shift > 0) add(array, index, res); // addr - const offset in index } void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) { assert_not_delayed(); // pop array pop_ptr(array); // check array index_check_without_pop(array, index, index_shift, tmp, res); } void InterpreterMacroAssembler::get_const(Register Rdst) { ld_ptr(Lmethod, in_bytes(Method::const_offset()), Rdst); } void InterpreterMacroAssembler::get_constant_pool(Register Rdst) { get_const(Rdst); ld_ptr(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst); } void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) { get_constant_pool(Rdst); ld_ptr(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst); } void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) { get_constant_pool(Rcpool); ld_ptr(Rcpool, ConstantPool::tags_offset_in_bytes(), Rtags); } // unlock if synchronized method // // Unlock the receiver if this is a synchronized method. // Unlock any Java monitors from syncronized blocks. // // If there are locked Java monitors // If throw_monitor_exception // throws IllegalMonitorStateException // Else if install_monitor_exception // installs IllegalMonitorStateException // Else // no error processing void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state, bool throw_monitor_exception, bool install_monitor_exception) { Label unlocked, unlock, no_unlock; // get the value of _do_not_unlock_if_synchronized into G1_scratch const Address do_not_unlock_if_synchronized(G2_thread, JavaThread::do_not_unlock_if_synchronized_offset()); ldbool(do_not_unlock_if_synchronized, G1_scratch); stbool(G0, do_not_unlock_if_synchronized); // reset the flag // check if synchronized method const Address access_flags(Lmethod, Method::access_flags_offset()); interp_verify_oop(Otos_i, state, __FILE__, __LINE__); push(state); // save tos ld(access_flags, G3_scratch); // Load access flags. btst(JVM_ACC_SYNCHRONIZED, G3_scratch); br(zero, false, pt, unlocked); delayed()->nop(); // Don't unlock anything if the _do_not_unlock_if_synchronized flag // is set. cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock); delayed()->nop(); // BasicObjectLock will be first in list, since this is a synchronized method. However, need // to check that the object has not been unlocked by an explicit monitorexit bytecode. //Intel: if (throw_monitor_exception) ... else ... // Entry already unlocked, need to throw exception //... // pass top-most monitor elem add( top_most_monitor(), O1 ); ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch); br_notnull_short(G3_scratch, pt, unlock); if (throw_monitor_exception) { // Entry already unlocked need to throw an exception MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); should_not_reach_here(); } else { // Monitor already unlocked during a stack unroll. // If requested, install an illegal_monitor_state_exception. // Continue with stack unrolling. if (install_monitor_exception) { MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); } ba_short(unlocked); } bind(unlock); unlock_object(O1); bind(unlocked); // I0, I1: Might contain return value // Check that all monitors are unlocked { Label loop, exception, entry, restart; Register Rmptr = O0; Register Rtemp = O1; Register Rlimit = Lmonitors; const jint delta = frame::interpreter_frame_monitor_size() * wordSize; assert( (delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords"); #ifdef ASSERT add(top_most_monitor(), Rmptr, delta); { Label L; // ensure that Rmptr starts out above (or at) Rlimit cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L); stop("monitor stack has negative size"); bind(L); } #endif bind(restart); ba(entry); delayed()-> add(top_most_monitor(), Rmptr, delta); // points to current entry, starting with bottom-most entry // Entry is still locked, need to throw exception bind(exception); if (throw_monitor_exception) { MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); should_not_reach_here(); } else { // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception. // Unlock does not block, so don't have to worry about the frame unlock_object(Rmptr); if (install_monitor_exception) { MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); } ba_short(restart); } bind(loop); cmp(Rtemp, G0); // check if current entry is used brx(Assembler::notEqual, false, pn, exception); delayed()-> dec(Rmptr, delta); // otherwise advance to next entry #ifdef ASSERT { Label L; // ensure that Rmptr has not somehow stepped below Rlimit cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L); stop("ran off the end of the monitor stack"); bind(L); } #endif bind(entry); cmp(Rmptr, Rlimit); // check if bottom reached brx(Assembler::notEqual, true, pn, loop); // if not at bottom then check this entry delayed()-> ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp); } bind(no_unlock); pop(state); interp_verify_oop(Otos_i, state, __FILE__, __LINE__); } // remove activation // // Unlock the receiver if this is a synchronized method. // Unlock any Java monitors from syncronized blocks. // Remove the activation from the stack. // // If there are locked Java monitors // If throw_monitor_exception // throws IllegalMonitorStateException // Else if install_monitor_exception // installs IllegalMonitorStateException // Else // no error processing void InterpreterMacroAssembler::remove_activation(TosState state, bool throw_monitor_exception, bool install_monitor_exception) { unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception); // save result (push state before jvmti call and pop it afterwards) and notify jvmti notify_method_exit(false, state, NotifyJVMTI); interp_verify_oop(Otos_i, state, __FILE__, __LINE__); verify_thread(); // return tos assert(Otos_l1 == Otos_i, "adjust code below"); switch (state) { #ifdef _LP64 case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0 #else case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through // O1 -> I1 #endif case btos: // fall through case ctos: case stos: // fall through case atos: // fall through case itos: mov(Otos_l1, Otos_l1->after_save()); break; // O0 -> I0 case ftos: // fall through case dtos: // fall through case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } #if defined(COMPILER2) && !defined(_LP64) if (state == ltos) { // C2 expects long results in G1 we can't tell if we're returning to interpreted // or compiled so just be safe use G1 and O0/O1 // Shift bits into high (msb) of G1 sllx(Otos_l1->after_save(), 32, G1); // Zero extend low bits srl (Otos_l2->after_save(), 0, Otos_l2->after_save()); or3 (Otos_l2->after_save(), G1, G1); } #endif /* COMPILER2 */ } #endif /* CC_INTERP */ // Lock object // // Argument - lock_reg points to the BasicObjectLock to be used for locking, // it must be initialized with the object to lock void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) { if (UseHeavyMonitors) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg); } else { Register obj_reg = Object; Register mark_reg = G4_scratch; Register temp_reg = G1_scratch; Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes()); Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes()); Label done; Label slow_case; assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg); // load markOop from object into mark_reg ld_ptr(mark_addr, mark_reg); if (UseBiasedLocking) { biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case); } // get the address of basicLock on stack that will be stored in the object // we need a temporary register here as we do not want to clobber lock_reg // (cas clobbers the destination register) mov(lock_reg, temp_reg); // set mark reg to be (markOop of object | UNLOCK_VALUE) or3(mark_reg, markOopDesc::unlocked_value, mark_reg); // initialize the box (Must happen before we update the object mark!) st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes()); // compare and exchange object_addr, markOop | 1, stack address of basicLock assert(mark_addr.disp() == 0, "cas must take a zero displacement"); cas_ptr(mark_addr.base(), mark_reg, temp_reg); // if the compare and exchange succeeded we are done (we saw an unlocked object) cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done); // We did not see an unlocked object so try the fast recursive case // Check if owner is self by comparing the value in the markOop of object // with the stack pointer sub(temp_reg, SP, temp_reg); #ifdef _LP64 sub(temp_reg, STACK_BIAS, temp_reg); #endif assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); // Composite "andcc" test: // (a) %sp -vs- markword proximity check, and, // (b) verify mark word LSBs == 0 (Stack-locked). // // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size()) // Note that the page size used for %sp proximity testing is arbitrary and is // unrelated to the actual MMU page size. We use a 'logical' page size of // 4096 bytes. F..FFF003 is designed to fit conveniently in the SIMM13 immediate // field of the andcc instruction. andcc (temp_reg, 0xFFFFF003, G0) ; // if condition is true we are done and hence we can store 0 in the displaced // header indicating it is a recursive lock and be done brx(Assembler::zero, true, Assembler::pt, done); delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes()); // none of the above fast optimizations worked so we have to get into the // slow case of monitor enter bind(slow_case); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg); bind(done); } } // Unlocks an object. Used in monitorexit bytecode and remove_activation. // // Argument - lock_reg points to the BasicObjectLock for lock // Throw IllegalMonitorException if object is not locked by current thread void InterpreterMacroAssembler::unlock_object(Register lock_reg) { if (UseHeavyMonitors) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); } else { Register obj_reg = G3_scratch; Register mark_reg = G4_scratch; Register displaced_header_reg = G1_scratch; Address lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes()); Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes()); Label done; if (UseBiasedLocking) { // load the object out of the BasicObjectLock ld_ptr(lockobj_addr, obj_reg); biased_locking_exit(mark_addr, mark_reg, done, true); st_ptr(G0, lockobj_addr); // free entry } // Test first if we are in the fast recursive case Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes()); ld_ptr(lock_addr, displaced_header_reg); br_null(displaced_header_reg, true, Assembler::pn, done); delayed()->st_ptr(G0, lockobj_addr); // free entry // See if it is still a light weight lock, if so we just unlock // the object and we are done if (!UseBiasedLocking) { // load the object out of the BasicObjectLock ld_ptr(lockobj_addr, obj_reg); } // we have the displaced header in displaced_header_reg // we expect to see the stack address of the basicLock in case the // lock is still a light weight lock (lock_reg) assert(mark_addr.disp() == 0, "cas must take a zero displacement"); cas_ptr(mark_addr.base(), lock_reg, displaced_header_reg); cmp(lock_reg, displaced_header_reg); brx(Assembler::equal, true, Assembler::pn, done); delayed()->st_ptr(G0, lockobj_addr); // free entry // The lock has been converted into a heavy lock and hence // we need to get into the slow case call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); bind(done); } } #ifndef CC_INTERP // Get the method data pointer from the Method* and set the // specified register to its value. void InterpreterMacroAssembler::set_method_data_pointer() { assert(ProfileInterpreter, "must be profiling interpreter"); Label get_continue; ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr); test_method_data_pointer(get_continue); add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr); bind(get_continue); } // Set the method data pointer for the current bcp. void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { assert(ProfileInterpreter, "must be profiling interpreter"); Label zero_continue; // Test MDO to avoid the call if it is NULL. ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr); test_method_data_pointer(zero_continue); call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp); add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr); add(ImethodDataPtr, O0, ImethodDataPtr); bind(zero_continue); } // Test ImethodDataPtr. If it is null, continue at the specified label void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) { assert(ProfileInterpreter, "must be profiling interpreter"); br_null_short(ImethodDataPtr, Assembler::pn, zero_continue); } void InterpreterMacroAssembler::verify_method_data_pointer() { assert(ProfileInterpreter, "must be profiling interpreter"); #ifdef ASSERT Label verify_continue; test_method_data_pointer(verify_continue); // If the mdp is valid, it will point to a DataLayout header which is // consistent with the bcp. The converse is highly probable also. lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch); ld_ptr(Lmethod, Method::const_offset(), O5); add(G3_scratch, in_bytes(ConstMethod::codes_offset()), G3_scratch); add(G3_scratch, O5, G3_scratch); cmp(Lbcp, G3_scratch); brx(Assembler::equal, false, Assembler::pt, verify_continue); Register temp_reg = O5; delayed()->mov(ImethodDataPtr, temp_reg); // %%% should use call_VM_leaf here? //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr); save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1); Address d_save(FP, -sizeof(jdouble) + STACK_BIAS); stf(FloatRegisterImpl::D, Ftos_d, d_save); mov(temp_reg->after_save(), O2); save_thread(L7_thread_cache); call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none); delayed()->nop(); restore_thread(L7_thread_cache); ldf(FloatRegisterImpl::D, d_save, Ftos_d); restore(); bind(verify_continue); #endif // ASSERT } void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count, Register Rtmp, Label &profile_continue) { assert(ProfileInterpreter, "must be profiling interpreter"); // Control will flow to "profile_continue" if the counter is less than the // limit or if we call profile_method() Label done; // if no method data exists, and the counter is high enough, make one br_notnull_short(ImethodDataPtr, Assembler::pn, done); // Test to see if we should create a method data oop AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit); sethi(profile_limit, Rtmp); ld(Rtmp, profile_limit.low10(), Rtmp); cmp(invocation_count, Rtmp); // Use long branches because call_VM() code and following code generated by // test_backedge_count_for_osr() is large in debug VM. br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue); delayed()->nop(); // Build it now. call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); set_method_data_pointer_for_bcp(); ba(profile_continue); delayed()->nop(); bind(done); } // Store a value at some constant offset from the method data pointer. void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) { assert(ProfileInterpreter, "must be profiling interpreter"); st_ptr(value, ImethodDataPtr, constant); } void InterpreterMacroAssembler::increment_mdp_data_at(Address counter, Register bumped_count, bool decrement) { assert(ProfileInterpreter, "must be profiling interpreter"); // Load the counter. ld_ptr(counter, bumped_count); if (decrement) { // Decrement the register. Set condition codes. subcc(bumped_count, DataLayout::counter_increment, bumped_count); // If the decrement causes the counter to overflow, stay negative Label L; brx(Assembler::negative, true, Assembler::pn, L); // Store the decremented counter, if it is still negative. delayed()->st_ptr(bumped_count, counter); bind(L); } else { // Increment the register. Set carry flag. addcc(bumped_count, DataLayout::counter_increment, bumped_count); // If the increment causes the counter to overflow, pull back by 1. assert(DataLayout::counter_increment == 1, "subc works"); subc(bumped_count, G0, bumped_count); // Store the incremented counter. st_ptr(bumped_count, counter); } } // Increment the value at some constant offset from the method data pointer. void InterpreterMacroAssembler::increment_mdp_data_at(int constant, Register bumped_count, bool decrement) { // Locate the counter at a fixed offset from the mdp: Address counter(ImethodDataPtr, constant); increment_mdp_data_at(counter, bumped_count, decrement); } // Increment the value at some non-fixed (reg + constant) offset from // the method data pointer. void InterpreterMacroAssembler::increment_mdp_data_at(Register reg, int constant, Register bumped_count, Register scratch2, bool decrement) { // Add the constant to reg to get the offset. add(ImethodDataPtr, reg, scratch2); Address counter(scratch2, constant); increment_mdp_data_at(counter, bumped_count, decrement); } // Set a flag value at the current method data pointer position. // Updates a single byte of the header, to avoid races with other header bits. void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant, Register scratch) { assert(ProfileInterpreter, "must be profiling interpreter"); // Load the data header ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch); // Set the flag or3(scratch, flag_constant, scratch); // Store the modified header. stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset())); } // Test the location at some offset from the method data pointer. // If it is not equal to value, branch to the not_equal_continue Label. // Set condition codes to match the nullness of the loaded value. void InterpreterMacroAssembler::test_mdp_data_at(int offset, Register value, Label& not_equal_continue, Register scratch) { assert(ProfileInterpreter, "must be profiling interpreter"); ld_ptr(ImethodDataPtr, offset, scratch); cmp(value, scratch); brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue); delayed()->tst(scratch); } // Update the method data pointer by the displacement located at some fixed // offset from the method data pointer. void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp, Register scratch) { assert(ProfileInterpreter, "must be profiling interpreter"); ld_ptr(ImethodDataPtr, offset_of_disp, scratch); add(ImethodDataPtr, scratch, ImethodDataPtr); } // Update the method data pointer by the displacement located at the // offset (reg + offset_of_disp). void InterpreterMacroAssembler::update_mdp_by_offset(Register reg, int offset_of_disp, Register scratch) { assert(ProfileInterpreter, "must be profiling interpreter"); add(reg, offset_of_disp, scratch); ld_ptr(ImethodDataPtr, scratch, scratch); add(ImethodDataPtr, scratch, ImethodDataPtr); } // Update the method data pointer by a simple constant displacement. void InterpreterMacroAssembler::update_mdp_by_constant(int constant) { assert(ProfileInterpreter, "must be profiling interpreter"); add(ImethodDataPtr, constant, ImethodDataPtr); } // Update the method data pointer for a _ret bytecode whose target // was not among our cached targets. void InterpreterMacroAssembler::update_mdp_for_ret(TosState state, Register return_bci) { assert(ProfileInterpreter, "must be profiling interpreter"); push(state); st_ptr(return_bci, l_tmp); // protect return_bci, in case it is volatile call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci); ld_ptr(l_tmp, return_bci); pop(state); } // Count a taken branch in the bytecodes. void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); // We are taking a branch. Increment the taken count. increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch); bind (profile_continue); } } // Count a not-taken branch in the bytecodes. void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); // We are taking a branch. Increment the not taken count. increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch); // The method data pointer needs to be updated to correspond to the // next bytecode. update_mdp_by_constant(in_bytes(BranchData::branch_data_size())); bind (profile_continue); } } // Count a non-virtual call in the bytecodes. void InterpreterMacroAssembler::profile_call(Register scratch) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); // We are making a call. Increment the count. increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_constant(in_bytes(CounterData::counter_data_size())); bind (profile_continue); } } // Count a final call in the bytecodes. void InterpreterMacroAssembler::profile_final_call(Register scratch) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); // We are making a call. Increment the count. increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size())); bind (profile_continue); } } // Count a virtual call in the bytecodes. void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register scratch, bool receiver_can_be_null) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); Label skip_receiver_profile; if (receiver_can_be_null) { Label not_null; br_notnull_short(receiver, Assembler::pt, not_null); // We are making a call. Increment the count for null receiver. increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch); ba_short(skip_receiver_profile); bind(not_null); } // Record the receiver type. record_klass_in_profile(receiver, scratch, true); bind(skip_receiver_profile); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size())); bind (profile_continue); } } void InterpreterMacroAssembler::record_klass_in_profile_helper( Register receiver, Register scratch, int start_row, Label& done, bool is_virtual_call) { if (TypeProfileWidth == 0) { if (is_virtual_call) { increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch); } return; } int last_row = VirtualCallData::row_limit() - 1; assert(start_row <= last_row, "must be work left to do"); // Test this row for both the receiver and for null. // Take any of three different outcomes: // 1. found receiver => increment count and goto done // 2. found null => keep looking for case 1, maybe allocate this cell // 3. found something else => keep looking for cases 1 and 2 // Case 3 is handled by a recursive call. for (int row = start_row; row <= last_row; row++) { Label next_test; bool test_for_null_also = (row == start_row); // See if the receiver is receiver[n]. int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row)); test_mdp_data_at(recvr_offset, receiver, next_test, scratch); // delayed()->tst(scratch); // The receiver is receiver[n]. Increment count[n]. int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); increment_mdp_data_at(count_offset, scratch); ba_short(done); bind(next_test); if (test_for_null_also) { Label found_null; // Failed the equality check on receiver[n]... Test for null. if (start_row == last_row) { // The only thing left to do is handle the null case. if (is_virtual_call) { brx(Assembler::zero, false, Assembler::pn, found_null); delayed()->nop(); // Receiver did not match any saved receiver and there is no empty row for it. // Increment total counter to indicate polymorphic case. increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch); ba_short(done); bind(found_null); } else { brx(Assembler::notZero, false, Assembler::pt, done); delayed()->nop(); } break; } // Since null is rare, make it be the branch-taken case. brx(Assembler::zero, false, Assembler::pn, found_null); delayed()->nop(); // Put all the "Case 3" tests here. record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call); // Found a null. Keep searching for a matching receiver, // but remember that this is an empty (unused) slot. bind(found_null); } } // In the fall-through case, we found no matching receiver, but we // observed the receiver[start_row] is NULL. // Fill in the receiver field and increment the count. int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); set_mdp_data_at(recvr_offset, receiver); int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); mov(DataLayout::counter_increment, scratch); set_mdp_data_at(count_offset, scratch); if (start_row > 0) { ba_short(done); } } void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, Register scratch, bool is_virtual_call) { assert(ProfileInterpreter, "must be profiling"); Label done; record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call); bind (done); } // Count a ret in the bytecodes. void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci, Register scratch) { if (ProfileInterpreter) { Label profile_continue; uint row; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); // Update the total ret count. increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch); for (row = 0; row < RetData::row_limit(); row++) { Label next_test; // See if return_bci is equal to bci[n]: test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch); // return_bci is equal to bci[n]. Increment the count. increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch); ba_short(profile_continue); bind(next_test); } update_mdp_for_ret(state, return_bci); bind (profile_continue); } } // Profile an unexpected null in the bytecodes. void InterpreterMacroAssembler::profile_null_seen(Register scratch) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch); // The method data pointer needs to be updated. int mdp_delta = in_bytes(BitData::bit_data_size()); if (TypeProfileCasts) { mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); } update_mdp_by_constant(mdp_delta); bind (profile_continue); } } void InterpreterMacroAssembler::profile_typecheck(Register klass, Register scratch) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); int mdp_delta = in_bytes(BitData::bit_data_size()); if (TypeProfileCasts) { mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); // Record the object type. record_klass_in_profile(klass, scratch, false); } // The method data pointer needs to be updated. update_mdp_by_constant(mdp_delta); bind (profile_continue); } } void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) { if (ProfileInterpreter && TypeProfileCasts) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); int count_offset = in_bytes(CounterData::count_offset()); // Back up the address, since we have already bumped the mdp. count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); // *Decrement* the counter. We expect to see zero or small negatives. increment_mdp_data_at(count_offset, scratch, true); bind (profile_continue); } } // Count the default case of a switch construct. void InterpreterMacroAssembler::profile_switch_default(Register scratch) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); // Update the default case count increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()), scratch); // The method data pointer needs to be updated. update_mdp_by_offset( in_bytes(MultiBranchData::default_displacement_offset()), scratch); bind (profile_continue); } } // Count the index'th case of a switch construct. void InterpreterMacroAssembler::profile_switch_case(Register index, Register scratch, Register scratch2, Register scratch3) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes() set(in_bytes(MultiBranchData::per_case_size()), scratch); smul(index, scratch, scratch); add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch); // Update the case count increment_mdp_data_at(scratch, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3); // The method data pointer needs to be updated. update_mdp_by_offset(scratch, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2); bind (profile_continue); } } // add a InterpMonitorElem to stack (see frame_sparc.hpp) void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty, Register Rtemp, Register Rtemp2 ) { Register Rlimit = Lmonitors; const jint delta = frame::interpreter_frame_monitor_size() * wordSize; assert( (delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords"); sub( SP, delta, SP); sub( Lesp, delta, Lesp); sub( Lmonitors, delta, Lmonitors); if (!stack_is_empty) { // must copy stack contents down Label start_copying, next; // untested("monitor stack expansion"); compute_stack_base(Rtemp); ba(start_copying); delayed()->cmp(Rtemp, Rlimit); // done? duplicated below // note: must copy from low memory upwards // On entry to loop, // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS) // Loop mutates Rtemp bind( next); st_ptr(Rtemp2, Rtemp, 0); inc(Rtemp, wordSize); cmp(Rtemp, Rlimit); // are we done? (duplicated above) bind( start_copying ); brx( notEqual, true, pn, next ); delayed()->ld_ptr( Rtemp, delta, Rtemp2 ); // done copying stack } } // Locals void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) { assert_not_delayed(); sll(index, Interpreter::logStackElementSize, index); sub(Llocals, index, index); ld_ptr(index, 0, dst); // Note: index must hold the effective address--the iinc template uses it } // Just like access_local_ptr but the tag is a returnAddress void InterpreterMacroAssembler::access_local_returnAddress(Register index, Register dst ) { assert_not_delayed(); sll(index, Interpreter::logStackElementSize, index); sub(Llocals, index, index); ld_ptr(index, 0, dst); } void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) { assert_not_delayed(); sll(index, Interpreter::logStackElementSize, index); sub(Llocals, index, index); ld(index, 0, dst); // Note: index must hold the effective address--the iinc template uses it } void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) { assert_not_delayed(); sll(index, Interpreter::logStackElementSize, index); sub(Llocals, index, index); // First half stored at index n+1 (which grows down from Llocals[n]) load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst); } void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) { assert_not_delayed(); sll(index, Interpreter::logStackElementSize, index); sub(Llocals, index, index); ldf(FloatRegisterImpl::S, index, 0, dst); } void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) { assert_not_delayed(); sll(index, Interpreter::logStackElementSize, index); sub(Llocals, index, index); load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst); } #ifdef ASSERT void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) { Label L; assert(Rindex != Rscratch, "Registers cannot be same"); assert(Rindex != Rscratch1, "Registers cannot be same"); assert(Rlimit != Rscratch, "Registers cannot be same"); assert(Rlimit != Rscratch1, "Registers cannot be same"); assert(Rscratch1 != Rscratch, "Registers cannot be same"); // untested("reg area corruption"); add(Rindex, offset, Rscratch); add(Rlimit, 64 + STACK_BIAS, Rscratch1); cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L); stop("regsave area is being clobbered"); bind(L); } #endif // ASSERT void InterpreterMacroAssembler::store_local_int( Register index, Register src ) { assert_not_delayed(); sll(index, Interpreter::logStackElementSize, index); sub(Llocals, index, index); debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);) st(src, index, 0); } void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) { assert_not_delayed(); sll(index, Interpreter::logStackElementSize, index); sub(Llocals, index, index); #ifdef ASSERT check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch); #endif st_ptr(src, index, 0); } void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) { st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n)); } void InterpreterMacroAssembler::store_local_long( Register index, Register src ) { assert_not_delayed(); sll(index, Interpreter::logStackElementSize, index); sub(Llocals, index, index); #ifdef ASSERT check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch); #endif store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1 } void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) { assert_not_delayed(); sll(index, Interpreter::logStackElementSize, index); sub(Llocals, index, index); #ifdef ASSERT check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch); #endif stf(FloatRegisterImpl::S, src, index, 0); } void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) { assert_not_delayed(); sll(index, Interpreter::logStackElementSize, index); sub(Llocals, index, index); #ifdef ASSERT check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch); #endif store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1)); } int InterpreterMacroAssembler::top_most_monitor_byte_offset() { const jint delta = frame::interpreter_frame_monitor_size() * wordSize; int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong); return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS; } Address InterpreterMacroAssembler::top_most_monitor() { return Address(FP, top_most_monitor_byte_offset()); } void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) { add( Lesp, wordSize, Rdest ); } #endif /* CC_INTERP */ void InterpreterMacroAssembler::get_method_counters(Register method, Register Rcounters, Label& skip) { Label has_counters; Address method_counters(method, in_bytes(Method::method_counters_offset())); ld_ptr(method_counters, Rcounters); br_notnull_short(Rcounters, Assembler::pt, has_counters); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), method); ld_ptr(method_counters, Rcounters); br_null(Rcounters, false, Assembler::pn, skip); // No MethodCounters, OutOfMemory delayed()->nop(); bind(has_counters); } void InterpreterMacroAssembler::increment_invocation_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) { assert(UseCompiler, "incrementing must be useful"); assert_different_registers(Rcounters, Rtmp, Rtmp2); Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset()); int delta = InvocationCounter::count_increment; // Load each counter in a register ld( inv_counter, Rtmp ); ld( be_counter, Rtmp2 ); assert( is_simm13( delta ), " delta too large."); // Add the delta to the invocation counter and store the result add( Rtmp, delta, Rtmp ); // Mask the backedge counter and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 ); // Store value st( Rtmp, inv_counter); // Add invocation counter + backedge counter add( Rtmp, Rtmp2, Rtmp); // Note that this macro must leave the backedge_count + invocation_count in Rtmp! } void InterpreterMacroAssembler::increment_backedge_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) { assert(UseCompiler, "incrementing must be useful"); assert_different_registers(Rcounters, Rtmp, Rtmp2); Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset()); Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); int delta = InvocationCounter::count_increment; // Load each counter in a register ld( be_counter, Rtmp ); ld( inv_counter, Rtmp2 ); // Add the delta to the backedge counter add( Rtmp, delta, Rtmp ); // Mask the invocation counter, add to backedge counter and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 ); // and store the result to memory st( Rtmp, be_counter ); // Add backedge + invocation counter add( Rtmp, Rtmp2, Rtmp ); // Note that this macro must leave backedge_count + invocation_count in Rtmp! } #ifndef CC_INTERP void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count, Register branch_bcp, Register Rtmp ) { Label did_not_overflow; Label overflow_with_error; assert_different_registers(backedge_count, Rtmp, branch_bcp); assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr"); AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit); load_contents(limit, Rtmp); cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow); // When ProfileInterpreter is on, the backedge_count comes from the // MethodData*, which value does not get reset on the call to // frequency_counter_overflow(). To avoid excessive calls to the overflow // routine while the method is being compiled, add a second test to make sure // the overflow function is called only once every overflow_frequency. if (ProfileInterpreter) { const int overflow_frequency = 1024; andcc(backedge_count, overflow_frequency-1, Rtmp); brx(Assembler::notZero, false, Assembler::pt, did_not_overflow); delayed()->nop(); } // overflow in loop, pass branch bytecode set(6,Rtmp); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp); // Was an OSR adapter generated? // O0 = osr nmethod br_null_short(O0, Assembler::pn, overflow_with_error); // Has the nmethod been invalidated already? ld(O0, nmethod::entry_bci_offset(), O2); cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, overflow_with_error); // migrate the interpreter frame off of the stack mov(G2_thread, L7); // save nmethod mov(O0, L6); set_last_Java_frame(SP, noreg); call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7); reset_last_Java_frame(); mov(L7, G2_thread); // move OSR nmethod to I1 mov(L6, I1); // OSR buffer to I0 mov(O0, I0); // remove the interpreter frame restore(I5_savedSP, 0, SP); // Jump to the osr code. ld_ptr(O1, nmethod::osr_entry_point_offset(), O2); jmp(O2, G0); delayed()->nop(); bind(overflow_with_error); bind(did_not_overflow); } void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) { if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); } } // local helper function for the verify_oop_or_return_address macro static bool verify_return_address(Method* m, int bci) { #ifndef PRODUCT address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci; // assume it is a valid return address if it is inside m and is preceded by a jsr if (!m->contains(pc)) return false; address jsr_pc; jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr); if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true; jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w); if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true; #endif // PRODUCT return false; } void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) { if (!VerifyOops) return; // the VM documentation for the astore[_wide] bytecode allows // the TOS to be not only an oop but also a return address Label test; Label skip; // See if it is an address (in the current method): mov(reg, Rtmp); const int log2_bytecode_size_limit = 16; srl(Rtmp, log2_bytecode_size_limit, Rtmp); br_notnull_short( Rtmp, pt, test ); // %%% should use call_VM_leaf here? save_frame_and_mov(0, Lmethod, O0, reg, O1); save_thread(L7_thread_cache); call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none); delayed()->nop(); restore_thread(L7_thread_cache); br_notnull( O0, false, pt, skip ); delayed()->restore(); // Perform a more elaborate out-of-line call // Not an address; verify it: bind(test); verify_oop(reg); bind(skip); } void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth); } #endif /* CC_INTERP */ // Inline assembly for: // // if (thread is in interp_only_mode) { // InterpreterRuntime::post_method_entry(); // } // if (DTraceMethodProbes) { // SharedRuntime::dtrace_method_entry(method, receiver); // } // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) { // SharedRuntime::rc_trace_method_entry(method, receiver); // } void InterpreterMacroAssembler::notify_method_entry() { // C++ interpreter only uses this for native methods. // Whenever JVMTI puts a thread in interp_only_mode, method // entry/exit events are sent for that thread to track stack // depth. If it is possible to enter interp_only_mode we add // the code to check if the event should be sent. if (JvmtiExport::can_post_interpreter_events()) { Label L; Register temp_reg = O5; const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset()); ld(interp_only, temp_reg); cmp_and_br_short(temp_reg, 0, equal, pt, L); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry)); bind(L); } { Register temp_reg = O5; SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero); call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), G2_thread, Lmethod); } // RedefineClasses() tracing support for obsolete method entry if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) { call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), G2_thread, Lmethod); } } // Inline assembly for: // // if (thread is in interp_only_mode) { // // save result // InterpreterRuntime::post_method_exit(); // // restore result // } // if (DTraceMethodProbes) { // SharedRuntime::dtrace_method_exit(thread, method); // } // // Native methods have their result stored in d_tmp and l_tmp // Java methods have their result stored in the expression stack void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state, NotifyMethodExitMode mode) { // C++ interpreter only uses this for native methods. // Whenever JVMTI puts a thread in interp_only_mode, method // entry/exit events are sent for that thread to track stack // depth. If it is possible to enter interp_only_mode we add // the code to check if the event should be sent. if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { Label L; Register temp_reg = O5; const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset()); ld(interp_only, temp_reg); cmp_and_br_short(temp_reg, 0, equal, pt, L); // Note: frame::interpreter_frame_result has a dependency on how the // method result is saved across the call to post_method_exit. For // native methods it assumes the result registers are saved to // l_scratch and d_scratch. If this changes then the interpreter_frame_result // implementation will need to be updated too. save_return_value(state, is_native_method); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); restore_return_value(state, is_native_method); bind(L); } { Register temp_reg = O5; // Dtrace notification SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero); save_return_value(state, is_native_method); call_VM_leaf( noreg, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), G2_thread, Lmethod); restore_return_value(state, is_native_method); } } void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) { #ifdef CC_INTERP // result potentially in O0/O1: save it across calls stf(FloatRegisterImpl::D, F0, STATE(_native_fresult)); #ifdef _LP64 stx(O0, STATE(_native_lresult)); #else std(O0, STATE(_native_lresult)); #endif #else // CC_INTERP if (is_native_call) { stf(FloatRegisterImpl::D, F0, d_tmp); #ifdef _LP64 stx(O0, l_tmp); #else std(O0, l_tmp); #endif } else { push(state); } #endif // CC_INTERP } void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) { #ifdef CC_INTERP ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0); #ifdef _LP64 ldx(STATE(_native_lresult), O0); #else ldd(STATE(_native_lresult), O0); #endif #else // CC_INTERP if (is_native_call) { ldf(FloatRegisterImpl::D, d_tmp, F0); #ifdef _LP64 ldx(l_tmp, O0); #else ldd(l_tmp, O0); #endif } else { pop(state); } #endif // CC_INTERP } // Jump if ((*counter_addr += increment) & mask) satisfies the condition. void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, int increment, int mask, Register scratch1, Register scratch2, Condition cond, Label *where) { ld(counter_addr, scratch1); add(scratch1, increment, scratch1); if (is_simm13(mask)) { andcc(scratch1, mask, G0); } else { set(mask, scratch2); andcc(scratch1, scratch2, G0); } br(cond, false, Assembler::pn, *where); delayed()->st(scratch1, counter_addr); } Other Java examples (source code examples)Here is a short list of links related to this Java interp_masm_sparc.cpp source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.