alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (nativeInst_sparc.hpp)

This example Java source code file (nativeInst_sparc.hpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

assembler\:\:arith_op, assembler\:\:ldst_op, assembler\:\:op, assert, bytesperinstword, nativecall, nativefarcall, nativefarcall\*, nativegeneraljump, nativeinstruction, nativemovconstregpatching, register, sparc_specific_constants

The nativeInst_sparc.hpp Java example source code

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef CPU_SPARC_VM_NATIVEINST_SPARC_HPP
#define CPU_SPARC_VM_NATIVEINST_SPARC_HPP

#include "asm/macroAssembler.hpp"
#include "memory/allocation.hpp"
#include "runtime/icache.hpp"
#include "runtime/os.hpp"
#include "utilities/top.hpp"

// We have interface for the following instructions:
// - NativeInstruction
// - - NativeCall
// - - NativeFarCall
// - - NativeMovConstReg
// - - NativeMovConstRegPatching
// - - NativeMovRegMem
// - - NativeMovRegMemPatching
// - - NativeJump
// - - NativeGeneralJump
// - - NativeIllegalInstruction
// The base class for different kinds of native instruction abstractions.
// Provides the primitive operations to manipulate code relative to this.
class NativeInstruction VALUE_OBJ_CLASS_SPEC {
  friend class Relocation;

 public:
  enum Sparc_specific_constants {
    nop_instruction_size        =    4
  };

  bool is_dtrace_trap();
  bool is_nop()                        { return long_at(0) == nop_instruction(); }
  bool is_call()                       { return is_op(long_at(0), Assembler::call_op); }
  bool is_sethi()                      { return (is_op2(long_at(0), Assembler::sethi_op2)
                                          && inv_rd(long_at(0)) != G0); }

  bool sets_cc() {
    // conservative (returns true for some instructions that do not set the
    // the condition code, such as, "save".
    // Does not return true for the deprecated tagged instructions, such as, TADDcc
    int x = long_at(0);
    return (is_op(x, Assembler::arith_op) &&
            (inv_op3(x) & Assembler::cc_bit_op3) == Assembler::cc_bit_op3);
  }
  bool is_illegal();
  bool is_zombie() {
    int x = long_at(0);
    return is_op3(x,
                  Assembler::ldsw_op3,
                  Assembler::ldst_op)
        && Assembler::inv_rs1(x) == G0
        && Assembler::inv_rd(x) == O7;
  }
  bool is_ic_miss_trap();       // Inline-cache uses a trap to detect a miss
  bool is_return() {
    // is it the output of MacroAssembler::ret or MacroAssembler::retl?
    int x = long_at(0);
    const int pc_return_offset = 8; // see frame_sparc.hpp
    return is_op3(x, Assembler::jmpl_op3, Assembler::arith_op)
        && (inv_rs1(x) == I7 || inv_rs1(x) == O7)
        && inv_immed(x) && inv_simm(x, 13) == pc_return_offset
        && inv_rd(x) == G0;
  }
  bool is_int_jump() {
    // is it the output of MacroAssembler::b?
    int x = long_at(0);
    return is_op2(x, Assembler::bp_op2) || is_op2(x, Assembler::br_op2);
  }
  bool is_float_jump() {
    // is it the output of MacroAssembler::fb?
    int x = long_at(0);
    return is_op2(x, Assembler::fbp_op2) || is_op2(x, Assembler::fb_op2);
  }
  bool is_jump() {
    return is_int_jump() || is_float_jump();
  }
  bool is_cond_jump() {
    int x = long_at(0);
    return (is_int_jump() && Assembler::inv_cond(x) != Assembler::always) ||
           (is_float_jump() && Assembler::inv_cond(x) != Assembler::f_always);
  }

  bool is_stack_bang() {
    int x = long_at(0);
    return is_op3(x, Assembler::stw_op3, Assembler::ldst_op) &&
      (inv_rd(x) == G0) && (inv_rs1(x) == SP) && (inv_rs2(x) == G3_scratch);
  }

  bool is_prefetch() {
    int x = long_at(0);
    return is_op3(x, Assembler::prefetch_op3, Assembler::ldst_op);
  }

  bool is_membar() {
    int x = long_at(0);
    return is_op3(x, Assembler::membar_op3, Assembler::arith_op) &&
      (inv_rd(x) == G0) && (inv_rs1(x) == O7);
  }

  bool is_safepoint_poll() {
    int x = long_at(0);
#ifdef _LP64
    return is_op3(x, Assembler::ldx_op3,  Assembler::ldst_op) &&
#else
    return is_op3(x, Assembler::lduw_op3, Assembler::ldst_op) &&
#endif
      (inv_rd(x) == G0) && (inv_immed(x) ? Assembler::inv_simm13(x) == 0 : inv_rs2(x) == G0);
  }

  bool is_zero_test(Register ®);
  bool is_load_store_with_small_offset(Register reg);

 public:
#ifdef ASSERT
  static int rdpc_instruction()        { return Assembler::op(Assembler::arith_op ) | Assembler::op3(Assembler::rdreg_op3) | Assembler::u_field(5, 18, 14) | Assembler::rd(O7); }
#else
  // Temporary fix: in optimized mode, u_field is a macro for efficiency reasons (see Assembler::u_field) - needs to be fixed
  static int rdpc_instruction()        { return Assembler::op(Assembler::arith_op ) | Assembler::op3(Assembler::rdreg_op3) |            u_field(5, 18, 14) | Assembler::rd(O7); }
#endif
  static int nop_instruction()         { return Assembler::op(Assembler::branch_op) | Assembler::op2(Assembler::sethi_op2); }
  static int illegal_instruction();    // the output of __ breakpoint_trap()
  static int call_instruction(address destination, address pc) { return Assembler::op(Assembler::call_op) | Assembler::wdisp((intptr_t)destination, (intptr_t)pc, 30); }

  static int branch_instruction(Assembler::op2s op2val, Assembler::Condition c, bool a) {
    return Assembler::op(Assembler::branch_op) | Assembler::op2(op2val) | Assembler::annul(a) | Assembler::cond(c);
  }

  static int op3_instruction(Assembler::ops opval, Register rd, Assembler::op3s op3val, Register rs1, int simm13a) {
    return Assembler::op(opval) | Assembler::rd(rd) | Assembler::op3(op3val) | Assembler::rs1(rs1) | Assembler::immed(true) | Assembler::simm(simm13a, 13);
  }

  static int sethi_instruction(Register rd, int imm22a) {
    return Assembler::op(Assembler::branch_op) | Assembler::rd(rd) | Assembler::op2(Assembler::sethi_op2) | Assembler::hi22(imm22a);
  }

 protected:
  address  addr_at(int offset) const    { return address(this) + offset; }
  int      long_at(int offset) const    { return *(int*)addr_at(offset); }
  void set_long_at(int offset, int i);      /* deals with I-cache */
  void set_jlong_at(int offset, jlong i);   /* deals with I-cache */
  void set_addr_at(int offset, address x);  /* deals with I-cache */

  address instruction_address() const       { return addr_at(0); }
  address next_instruction_address() const  { return addr_at(BytesPerInstWord); }

  static bool is_op( int x, Assembler::ops opval)  {
    return Assembler::inv_op(x) == opval;
  }
  static bool is_op2(int x, Assembler::op2s op2val) {
    return Assembler::inv_op(x) == Assembler::branch_op && Assembler::inv_op2(x) == op2val;
  }
  static bool is_op3(int x, Assembler::op3s op3val, Assembler::ops opval) {
    return Assembler::inv_op(x) == opval && Assembler::inv_op3(x) == op3val;
  }

  // utilities to help subclasses decode:
  static Register inv_rd(  int x ) { return Assembler::inv_rd( x); }
  static Register inv_rs1( int x ) { return Assembler::inv_rs1(x); }
  static Register inv_rs2( int x ) { return Assembler::inv_rs2(x); }

  static bool inv_immed( int x ) { return Assembler::inv_immed(x); }
  static bool inv_annul( int x ) { return (Assembler::annul(true) & x) != 0; }
  static int  inv_cond(  int x ) { return Assembler::inv_cond(x); }

  static int inv_op(  int x ) { return Assembler::inv_op( x); }
  static int inv_op2( int x ) { return Assembler::inv_op2(x); }
  static int inv_op3( int x ) { return Assembler::inv_op3(x); }

  static int inv_simm(    int x, int nbits ) { return Assembler::inv_simm(x, nbits); }
  static intptr_t inv_wdisp(   int x, int nbits ) { return Assembler::inv_wdisp(  x, 0, nbits); }
  static intptr_t inv_wdisp16( int x )            { return Assembler::inv_wdisp16(x, 0); }
  static int branch_destination_offset(int x) { return MacroAssembler::branch_destination(x, 0); }
  static int patch_branch_destination_offset(int dest_offset, int x) {
    return MacroAssembler::patched_branch(dest_offset, x, 0);
  }

  // utility for checking if x is either of 2 small constants
  static bool is_either(int x, int k1, int k2) {
    // return x == k1 || x == k2;
    return (1 << x) & (1 << k1 | 1 << k2);
  }

  // utility for checking overflow of signed instruction fields
  static bool fits_in_simm(int x, int nbits) {
    // cf. Assembler::assert_signed_range()
    // return -(1 << nbits-1) <= x  &&  x < ( 1 << nbits-1),
    return (unsigned)(x + (1 << nbits-1)) < (unsigned)(1 << nbits);
  }

  // set a signed immediate field
  static int set_simm(int insn, int imm, int nbits) {
    return (insn &~ Assembler::simm(-1, nbits)) | Assembler::simm(imm, nbits);
  }

  // set a wdisp field (disp should be the difference of two addresses)
  static int set_wdisp(int insn, intptr_t disp, int nbits) {
    return (insn &~ Assembler::wdisp((intptr_t)-4, (intptr_t)0, nbits)) | Assembler::wdisp(disp, 0, nbits);
  }

  static int set_wdisp16(int insn, intptr_t disp) {
    return (insn &~ Assembler::wdisp16((intptr_t)-4, 0)) | Assembler::wdisp16(disp, 0);
  }

  // get a simm13 field from an arithmetic or memory instruction
  static int get_simm13(int insn) {
    assert(is_either(Assembler::inv_op(insn),
                     Assembler::arith_op, Assembler::ldst_op) &&
            (insn & Assembler::immed(true)), "must have a simm13 field");
    return Assembler::inv_simm(insn, 13);
  }

  // set the simm13 field of an arithmetic or memory instruction
  static bool set_simm13(int insn, int imm) {
    get_simm13(insn);           // tickle the assertion check
    return set_simm(insn, imm, 13);
  }

  // combine the fields of a sethi stream (7 instructions ) and an add, jmp or ld/st
  static intptr_t data64( address pc, int arith_insn ) {
    assert(is_op2(*(unsigned int *)pc, Assembler::sethi_op2), "must be sethi");
    intptr_t hi = (intptr_t)gethi( (unsigned int *)pc );
    intptr_t lo = (intptr_t)get_simm13(arith_insn);
    assert((unsigned)lo < (1 << 10), "offset field of set_metadata must be 10 bits");
    return hi | lo;
  }

  // Regenerate the instruction sequence that performs the 64 bit
  // sethi.  This only does the sethi.  The disp field (bottom 10 bits)
  // must be handled separately.
  static void set_data64_sethi(address instaddr, intptr_t x);
  static void verify_data64_sethi(address instaddr, intptr_t x);

  // combine the fields of a sethi/simm13 pair (simm13 = or, add, jmpl, ld/st)
  static int data32(int sethi_insn, int arith_insn) {
    assert(is_op2(sethi_insn, Assembler::sethi_op2), "must be sethi");
    int hi = Assembler::inv_hi22(sethi_insn);
    int lo = get_simm13(arith_insn);
    assert((unsigned)lo < (1 << 10), "offset field of set_metadata must be 10 bits");
    return hi | lo;
  }

  static int set_data32_sethi(int sethi_insn, int imm) {
    // note that Assembler::hi22 clips the low 10 bits for us
    assert(is_op2(sethi_insn, Assembler::sethi_op2), "must be sethi");
    return (sethi_insn &~ Assembler::hi22(-1)) | Assembler::hi22(imm);
  }

  static int set_data32_simm13(int arith_insn, int imm) {
    get_simm13(arith_insn);             // tickle the assertion check
    int imm10 = Assembler::low10(imm);
    return (arith_insn &~ Assembler::simm(-1, 13)) | Assembler::simm(imm10, 13);
  }

  static int low10(int imm) {
    return Assembler::low10(imm);
  }

  // Perform the inverse of the LP64 Macroassembler::sethi
  // routine.  Extracts the 54 bits of address from the instruction
  // stream. This routine must agree with the sethi routine in
  // assembler_inline_sparc.hpp
  static address gethi( unsigned int *pc ) {
    int i = 0;
    uintptr_t adr;
    // We first start out with the real sethi instruction
    assert(is_op2(*pc, Assembler::sethi_op2), "in gethi - must be sethi");
    adr = (unsigned int)Assembler::inv_hi22( *(pc++) );
    i++;
    while ( i < 7 ) {
       // We're done if we hit a nop
       if ( (int)*pc == nop_instruction() ) break;
       assert ( Assembler::inv_op(*pc) == Assembler::arith_op, "in gethi - must be arith_op" );
       switch  ( Assembler::inv_op3(*pc) ) {
         case Assembler::xor_op3:
           adr ^= (intptr_t)get_simm13( *pc );
           return ( (address)adr );
           break;
         case Assembler::sll_op3:
           adr <<= ( *pc & 0x3f );
           break;
         case Assembler::or_op3:
           adr |= (intptr_t)get_simm13( *pc );
           break;
         default:
           assert ( 0, "in gethi - Should not reach here" );
           break;
       }
       pc++;
       i++;
    }
    return ( (address)adr );
  }

 public:
  void  verify();
  void  print();

  // unit test stuff
  static void test() {}                 // override for testing

  inline friend NativeInstruction* nativeInstruction_at(address address);
};

inline NativeInstruction* nativeInstruction_at(address address) {
    NativeInstruction* inst = (NativeInstruction*)address;
#ifdef ASSERT
      inst->verify();
#endif
    return inst;
}



//-----------------------------------------------------------------------------

// The NativeCall is an abstraction for accessing/manipulating native call imm32 instructions.
// (used to manipulate inline caches, primitive & dll calls, etc.)
inline NativeCall* nativeCall_at(address instr);
inline NativeCall* nativeCall_overwriting_at(address instr,
                                             address destination);
inline NativeCall* nativeCall_before(address return_address);
class NativeCall: public NativeInstruction {
 public:
  enum Sparc_specific_constants {
    instruction_size                   = 8,
    return_address_offset              = 8,
    call_displacement_width            = 30,
    displacement_offset                = 0,
    instruction_offset                 = 0
  };
  address instruction_address() const       { return addr_at(0); }
  address next_instruction_address() const  { return addr_at(instruction_size); }
  address return_address() const            { return addr_at(return_address_offset); }

  address destination() const               { return inv_wdisp(long_at(0), call_displacement_width) + instruction_address(); }
  address displacement_address() const      { return addr_at(displacement_offset); }
  void  set_destination(address dest)       { set_long_at(0, set_wdisp(long_at(0), dest - instruction_address(), call_displacement_width)); }
  void  set_destination_mt_safe(address dest);

  void  verify_alignment() {} // do nothing on sparc
  void  verify();
  void  print();

  // unit test stuff
  static void  test();

  // Creation
  friend inline NativeCall* nativeCall_at(address instr);
  friend NativeCall* nativeCall_overwriting_at(address instr, address destination = NULL) {
    // insert a "blank" call:
    NativeCall* call = (NativeCall*)instr;
    call->set_long_at(0 * BytesPerInstWord, call_instruction(destination, instr));
    call->set_long_at(1 * BytesPerInstWord, nop_instruction());
    assert(call->addr_at(2 * BytesPerInstWord) - instr == instruction_size, "instruction size");
    // check its structure now:
    assert(nativeCall_at(instr)->destination() == destination, "correct call destination");
    return call;
  }

  friend inline NativeCall* nativeCall_before(address return_address) {
    NativeCall* call = (NativeCall*)(return_address - return_address_offset);
    #ifdef ASSERT
      call->verify();
    #endif
    return call;
  }

  static bool is_call_at(address instr) {
    return nativeInstruction_at(instr)->is_call();
  }

  static bool is_call_before(address instr) {
    return nativeInstruction_at(instr - return_address_offset)->is_call();
  }

  static bool is_call_to(address instr, address target) {
    return nativeInstruction_at(instr)->is_call() &&
      nativeCall_at(instr)->destination() == target;
  }

  // MT-safe patching of a call instruction.
  static void insert(address code_pos, address entry) {
    (void)nativeCall_overwriting_at(code_pos, entry);
  }

  static void replace_mt_safe(address instr_addr, address code_buffer);
};
inline NativeCall* nativeCall_at(address instr) {
  NativeCall* call = (NativeCall*)instr;
#ifdef ASSERT
  call->verify();
#endif
  return call;
}

// The NativeFarCall is an abstraction for accessing/manipulating native call-anywhere
// instructions in the sparcv9 vm.  Used to call native methods which may be loaded
// anywhere in the address space, possibly out of reach of a call instruction.

#ifndef _LP64

// On 32-bit systems, a far call is the same as a near one.
class NativeFarCall;
inline NativeFarCall* nativeFarCall_at(address instr);
class NativeFarCall : public NativeCall {
public:
  friend inline NativeFarCall* nativeFarCall_at(address instr) { return (NativeFarCall*)nativeCall_at(instr); }
  friend NativeFarCall* nativeFarCall_overwriting_at(address instr, address destination = NULL)
                                                        { return (NativeFarCall*)nativeCall_overwriting_at(instr, destination); }
  friend NativeFarCall* nativeFarCall_before(address return_address)
                                                        { return (NativeFarCall*)nativeCall_before(return_address); }
};

#else

// The format of this extended-range call is:
//      jumpl_to addr, lreg
//      == sethi %hi54(addr), O7 ;  jumpl O7, %lo10(addr), O7 ;  <delay>
// That is, it is essentially the same as a NativeJump.
class NativeFarCall;
inline NativeFarCall* nativeFarCall_overwriting_at(address instr, address destination);
inline NativeFarCall* nativeFarCall_at(address instr);
class NativeFarCall: public NativeInstruction {
 public:
  enum Sparc_specific_constants {
    // instruction_size includes the delay slot instruction.
    instruction_size                   = 9 * BytesPerInstWord,
    return_address_offset              = 9 * BytesPerInstWord,
    jmpl_offset                        = 7 * BytesPerInstWord,
    displacement_offset                = 0,
    instruction_offset                 = 0
  };
  address instruction_address() const       { return addr_at(0); }
  address next_instruction_address() const  { return addr_at(instruction_size); }
  address return_address() const            { return addr_at(return_address_offset); }

  address destination() const {
    return (address) data64(addr_at(0), long_at(jmpl_offset));
  }
  address displacement_address() const      { return addr_at(displacement_offset); }
  void set_destination(address dest);

  bool destination_is_compiled_verified_entry_point();

  void  verify();
  void  print();

  // unit test stuff
  static void  test();

  // Creation
  friend inline NativeFarCall* nativeFarCall_at(address instr) {
    NativeFarCall* call = (NativeFarCall*)instr;
    #ifdef ASSERT
      call->verify();
    #endif
    return call;
  }

  friend inline NativeFarCall* nativeFarCall_overwriting_at(address instr, address destination = NULL) {
    Unimplemented();
    NativeFarCall* call = (NativeFarCall*)instr;
    return call;
  }

  friend NativeFarCall* nativeFarCall_before(address return_address) {
    NativeFarCall* call = (NativeFarCall*)(return_address - return_address_offset);
    #ifdef ASSERT
      call->verify();
    #endif
    return call;
  }

  static bool is_call_at(address instr);

  // MT-safe patching of a call instruction.
  static void insert(address code_pos, address entry) {
    (void)nativeFarCall_overwriting_at(code_pos, entry);
  }
  static void replace_mt_safe(address instr_addr, address code_buffer);
};

#endif // _LP64

// An interface for accessing/manipulating native set_metadata imm, reg instructions.
// (used to manipulate inlined data references, etc.)
//      set_metadata imm, reg
//      == sethi %hi22(imm), reg ;  add reg, %lo10(imm), reg
class NativeMovConstReg;
inline NativeMovConstReg* nativeMovConstReg_at(address address);
class NativeMovConstReg: public NativeInstruction {
 public:
  enum Sparc_specific_constants {
    sethi_offset           = 0,
#ifdef _LP64
    add_offset             = 7 * BytesPerInstWord,
    instruction_size       = 8 * BytesPerInstWord
#else
    add_offset             = 4,
    instruction_size       = 8
#endif
  };

  address instruction_address() const       { return addr_at(0); }
  address next_instruction_address() const  { return addr_at(instruction_size); }

  // (The [set_]data accessor respects oop_type relocs also.)
  intptr_t data() const;
  void set_data(intptr_t x);

  // report the destination register
  Register destination() { return inv_rd(long_at(sethi_offset)); }

  void  verify();
  void  print();

  // unit test stuff
  static void test();

  // Creation
  friend inline NativeMovConstReg* nativeMovConstReg_at(address address) {
    NativeMovConstReg* test = (NativeMovConstReg*)address;
    #ifdef ASSERT
      test->verify();
    #endif
    return test;
  }


  friend NativeMovConstReg* nativeMovConstReg_before(address address) {
    NativeMovConstReg* test = (NativeMovConstReg*)(address - instruction_size);
    #ifdef ASSERT
      test->verify();
    #endif
    return test;
  }

};


// An interface for accessing/manipulating native set_metadata imm, reg instructions.
// (used to manipulate inlined data references, etc.)
//      set_metadata imm, reg
//      == sethi %hi22(imm), reg; nop; add reg, %lo10(imm), reg
//
// Note that it is identical to NativeMovConstReg with the exception of a nop between the
// sethi and the add.  The nop is required to be in the delay slot of the call instruction
// which overwrites the sethi during patching.
class NativeMovConstRegPatching;
inline NativeMovConstRegPatching* nativeMovConstRegPatching_at(address address);class NativeMovConstRegPatching: public NativeInstruction {
 public:
  enum Sparc_specific_constants {
    sethi_offset           = 0,
#ifdef _LP64
    nop_offset             = 7 * BytesPerInstWord,
#else
    nop_offset             = sethi_offset + BytesPerInstWord,
#endif
    add_offset             = nop_offset   + BytesPerInstWord,
    instruction_size       = add_offset   + BytesPerInstWord
  };

  address instruction_address() const       { return addr_at(0); }
  address next_instruction_address() const  { return addr_at(instruction_size); }

  // (The [set_]data accessor respects oop_type relocs also.)
  int data() const;
  void  set_data(int x);

  // report the destination register
  Register destination() { return inv_rd(long_at(sethi_offset)); }

  void  verify();
  void  print();

  // unit test stuff
  static void test();

  // Creation
  friend inline NativeMovConstRegPatching* nativeMovConstRegPatching_at(address address) {
    NativeMovConstRegPatching* test = (NativeMovConstRegPatching*)address;
    #ifdef ASSERT
      test->verify();
    #endif
    return test;
  }


  friend NativeMovConstRegPatching* nativeMovConstRegPatching_before(address address) {
    NativeMovConstRegPatching* test = (NativeMovConstRegPatching*)(address - instruction_size);
    #ifdef ASSERT
      test->verify();
    #endif
    return test;
  }

};


// An interface for accessing/manipulating native memory ops
//      ld* [reg + offset], reg
//      st* reg, [reg + offset]
//      sethi %hi(imm), reg; add reg, %lo(imm), reg; ld* [reg1 + reg], reg2
//      sethi %hi(imm), reg; add reg, %lo(imm), reg; st* reg2, [reg1 + reg]
// Ops covered: {lds,ldu,st}{w,b,h}, {ld,st}{d,x}
//
class NativeMovRegMem;
inline NativeMovRegMem* nativeMovRegMem_at (address address);
class NativeMovRegMem: public NativeInstruction {
 public:
  enum Sparc_specific_constants {
    op3_mask_ld = 1 << Assembler::lduw_op3 |
                  1 << Assembler::ldub_op3 |
                  1 << Assembler::lduh_op3 |
                  1 << Assembler::ldd_op3 |
                  1 << Assembler::ldsw_op3 |
                  1 << Assembler::ldsb_op3 |
                  1 << Assembler::ldsh_op3 |
                  1 << Assembler::ldx_op3,
    op3_mask_st = 1 << Assembler::stw_op3 |
                  1 << Assembler::stb_op3 |
                  1 << Assembler::sth_op3 |
                  1 << Assembler::std_op3 |
                  1 << Assembler::stx_op3,
    op3_ldst_int_limit = Assembler::ldf_op3,
    op3_mask_ldf = 1 << (Assembler::ldf_op3  - op3_ldst_int_limit) |
                   1 << (Assembler::lddf_op3 - op3_ldst_int_limit),
    op3_mask_stf = 1 << (Assembler::stf_op3  - op3_ldst_int_limit) |
                   1 << (Assembler::stdf_op3 - op3_ldst_int_limit),

    offset_width    = 13,
    sethi_offset    = 0,
#ifdef _LP64
    add_offset      = 7 * BytesPerInstWord,
#else
    add_offset      = 4,
#endif
    ldst_offset     = add_offset + BytesPerInstWord
  };
  bool is_immediate() const {
    // check if instruction is ld* [reg + offset], reg or st* reg, [reg + offset]
    int i0 = long_at(0);
    return (is_op(i0, Assembler::ldst_op));
  }

  address instruction_address() const           { return addr_at(0); }
  address next_instruction_address() const      {
#ifdef _LP64
    return addr_at(is_immediate() ? 4 : (7 * BytesPerInstWord));
#else
    return addr_at(is_immediate() ? 4 : 12);
#endif
  }
  intptr_t   offset() const                             {
     return is_immediate()? inv_simm(long_at(0), offset_width) :
                            nativeMovConstReg_at(addr_at(0))->data();
  }
  void  set_offset(intptr_t x) {
    if (is_immediate()) {
      guarantee(fits_in_simm(x, offset_width), "data block offset overflow");
      set_long_at(0, set_simm(long_at(0), x, offset_width));
    } else
      nativeMovConstReg_at(addr_at(0))->set_data(x);
  }

  void  add_offset_in_bytes(intptr_t radd_offset)     {
      set_offset (offset() + radd_offset);
  }

  void  copy_instruction_to(address new_instruction_address);

  void verify();
  void print ();

  // unit test stuff
  static void test();

 private:
  friend inline NativeMovRegMem* nativeMovRegMem_at (address address) {
    NativeMovRegMem* test = (NativeMovRegMem*)address;
    #ifdef ASSERT
      test->verify();
    #endif
    return test;
  }
};


// An interface for accessing/manipulating native memory ops
//      ld* [reg + offset], reg
//      st* reg, [reg + offset]
//      sethi %hi(imm), reg; nop; add reg, %lo(imm), reg; ld* [reg1 + reg], reg2
//      sethi %hi(imm), reg; nop; add reg, %lo(imm), reg; st* reg2, [reg1 + reg]
// Ops covered: {lds,ldu,st}{w,b,h}, {ld,st}{d,x}
//
// Note that it is identical to NativeMovRegMem with the exception of a nop between the
// sethi and the add.  The nop is required to be in the delay slot of the call instruction
// which overwrites the sethi during patching.
class NativeMovRegMemPatching;
inline NativeMovRegMemPatching* nativeMovRegMemPatching_at (address address);
class NativeMovRegMemPatching: public NativeInstruction {
 public:
  enum Sparc_specific_constants {
    op3_mask_ld = 1 << Assembler::lduw_op3 |
                  1 << Assembler::ldub_op3 |
                  1 << Assembler::lduh_op3 |
                  1 << Assembler::ldd_op3 |
                  1 << Assembler::ldsw_op3 |
                  1 << Assembler::ldsb_op3 |
                  1 << Assembler::ldsh_op3 |
                  1 << Assembler::ldx_op3,
    op3_mask_st = 1 << Assembler::stw_op3 |
                  1 << Assembler::stb_op3 |
                  1 << Assembler::sth_op3 |
                  1 << Assembler::std_op3 |
                  1 << Assembler::stx_op3,
    op3_ldst_int_limit = Assembler::ldf_op3,
    op3_mask_ldf = 1 << (Assembler::ldf_op3  - op3_ldst_int_limit) |
                   1 << (Assembler::lddf_op3 - op3_ldst_int_limit),
    op3_mask_stf = 1 << (Assembler::stf_op3  - op3_ldst_int_limit) |
                   1 << (Assembler::stdf_op3 - op3_ldst_int_limit),

    offset_width    = 13,
    sethi_offset    = 0,
#ifdef _LP64
    nop_offset      = 7 * BytesPerInstWord,
#else
    nop_offset      = 4,
#endif
    add_offset      = nop_offset + BytesPerInstWord,
    ldst_offset     = add_offset + BytesPerInstWord
  };
  bool is_immediate() const {
    // check if instruction is ld* [reg + offset], reg or st* reg, [reg + offset]
    int i0 = long_at(0);
    return (is_op(i0, Assembler::ldst_op));
  }

  address instruction_address() const           { return addr_at(0); }
  address next_instruction_address() const      {
    return addr_at(is_immediate()? 4 : 16);
  }
  int   offset() const                          {
     return is_immediate()? inv_simm(long_at(0), offset_width) :
                            nativeMovConstRegPatching_at(addr_at(0))->data();
  }
  void  set_offset(int x) {
    if (is_immediate()) {
      guarantee(fits_in_simm(x, offset_width), "data block offset overflow");
      set_long_at(0, set_simm(long_at(0), x, offset_width));
    }
    else
      nativeMovConstRegPatching_at(addr_at(0))->set_data(x);
  }

  void  add_offset_in_bytes(intptr_t radd_offset)     {
      set_offset (offset() + radd_offset);
  }

  void  copy_instruction_to(address new_instruction_address);

  void verify();
  void print ();

  // unit test stuff
  static void test();

 private:
  friend inline NativeMovRegMemPatching* nativeMovRegMemPatching_at (address address) {
    NativeMovRegMemPatching* test = (NativeMovRegMemPatching*)address;
    #ifdef ASSERT
      test->verify();
    #endif
    return test;
  }
};


// An interface for accessing/manipulating native jumps
//      jump_to addr
//      == sethi %hi22(addr), temp ;  jumpl reg, %lo10(addr), G0 ;  <delay>
//      jumpl_to addr, lreg
//      == sethi %hi22(addr), temp ;  jumpl reg, %lo10(addr), lreg ;  <delay>
class NativeJump;
inline NativeJump* nativeJump_at(address address);
class NativeJump: public NativeInstruction {
 private:
  void guarantee_displacement(int disp, int width) {
    guarantee(fits_in_simm(disp, width + 2), "branch displacement overflow");
  }

 public:
  enum Sparc_specific_constants {
    sethi_offset           = 0,
#ifdef _LP64
    jmpl_offset            = 7 * BytesPerInstWord,
    instruction_size       = 9 * BytesPerInstWord  // includes delay slot
#else
    jmpl_offset            = 1 * BytesPerInstWord,
    instruction_size       = 3 * BytesPerInstWord  // includes delay slot
#endif
  };

  address instruction_address() const       { return addr_at(0); }
  address next_instruction_address() const  { return addr_at(instruction_size); }

#ifdef _LP64
  address jump_destination() const {
    return (address) data64(instruction_address(), long_at(jmpl_offset));
  }
  void set_jump_destination(address dest) {
    set_data64_sethi( instruction_address(), (intptr_t)dest);
    set_long_at(jmpl_offset,  set_data32_simm13( long_at(jmpl_offset),  (intptr_t)dest));
  }
#else
  address jump_destination() const {
    return (address) data32(long_at(sethi_offset), long_at(jmpl_offset));
  }
  void set_jump_destination(address dest) {
    set_long_at(sethi_offset, set_data32_sethi(  long_at(sethi_offset), (intptr_t)dest));
    set_long_at(jmpl_offset,  set_data32_simm13( long_at(jmpl_offset),  (intptr_t)dest));
  }
#endif

  // Creation
  friend inline NativeJump* nativeJump_at(address address) {
    NativeJump* jump = (NativeJump*)address;
    #ifdef ASSERT
      jump->verify();
    #endif
    return jump;
  }

  void verify();
  void print();

  // Unit testing stuff
  static void test();

  // Insertion of native jump instruction
  static void insert(address code_pos, address entry);
  // MT-safe insertion of native jump at verified method entry
  static void check_verified_entry_alignment(address entry, address verified_entry) {
    // nothing to do for sparc.
  }
  static void patch_verified_entry(address entry, address verified_entry, address dest);
};



// Despite the name, handles only simple branches.
class NativeGeneralJump;
inline NativeGeneralJump* nativeGeneralJump_at(address address);
class NativeGeneralJump: public NativeInstruction {
 public:
  enum Sparc_specific_constants {
    instruction_size                   = 8
  };

  address instruction_address() const       { return addr_at(0); }
  address jump_destination()    const       { return addr_at(0) + branch_destination_offset(long_at(0)); }
  void set_jump_destination(address dest) {
    int patched_instr = patch_branch_destination_offset(dest - addr_at(0), long_at(0));
    set_long_at(0, patched_instr);
  }
  NativeInstruction *delay_slot_instr() { return nativeInstruction_at(addr_at(4));}
  void fill_delay_slot(int instr) { set_long_at(4, instr);}
  Assembler::Condition condition() {
    int x = long_at(0);
    return (Assembler::Condition) Assembler::inv_cond(x);
  }

  // Creation
  friend inline NativeGeneralJump* nativeGeneralJump_at(address address) {
    NativeGeneralJump* jump = (NativeGeneralJump*)(address);
#ifdef ASSERT
      jump->verify();
#endif
    return jump;
  }

  // Insertion of native general jump instruction
  static void insert_unconditional(address code_pos, address entry);
  static void replace_mt_safe(address instr_addr, address code_buffer);

  void verify();
};


class NativeIllegalInstruction: public NativeInstruction {
 public:
  enum Sparc_specific_constants {
    instruction_size            =    4
  };

  // Insert illegal opcode as specific address
  static void insert(address code_pos);
};

#endif // CPU_SPARC_VM_NATIVEINST_SPARC_HPP

Other Java examples (source code examples)

Here is a short list of links related to this Java nativeInst_sparc.hpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.