|
Java example source code file (c1_LinearScan_x86.hpp)
The c1_LinearScan_x86.hpp Java example source code/* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef CPU_X86_VM_C1_LINEARSCAN_X86_HPP #define CPU_X86_VM_C1_LINEARSCAN_X86_HPP inline bool LinearScan::is_processed_reg_num(int reg_num) { #ifndef _LP64 // rsp and rbp (numbers 6 ancd 7) are ignored assert(FrameMap::rsp_opr->cpu_regnr() == 6, "wrong assumption below"); assert(FrameMap::rbp_opr->cpu_regnr() == 7, "wrong assumption below"); assert(reg_num >= 0, "invalid reg_num"); #else // rsp and rbp, r10, r15 (numbers [12,15]) are ignored // r12 (number 11) is conditional on compressed oops. assert(FrameMap::r12_opr->cpu_regnr() == 11, "wrong assumption below"); assert(FrameMap::r10_opr->cpu_regnr() == 12, "wrong assumption below"); assert(FrameMap::r15_opr->cpu_regnr() == 13, "wrong assumption below"); assert(FrameMap::rsp_opr->cpu_regnrLo() == 14, "wrong assumption below"); assert(FrameMap::rbp_opr->cpu_regnrLo() == 15, "wrong assumption below"); assert(reg_num >= 0, "invalid reg_num"); #endif // _LP64 return reg_num <= FrameMap::last_cpu_reg() || reg_num >= pd_nof_cpu_regs_frame_map; } inline int LinearScan::num_physical_regs(BasicType type) { // Intel requires two cpu registers for long, // but requires only one fpu register for double if (LP64_ONLY(false &&) type == T_LONG) { return 2; } return 1; } inline bool LinearScan::requires_adjacent_regs(BasicType type) { return false; } inline bool LinearScan::is_caller_save(int assigned_reg) { assert(assigned_reg >= 0 && assigned_reg < nof_regs, "should call this only for registers"); return true; // no callee-saved registers on Intel } inline void LinearScan::pd_add_temps(LIR_Op* op) { switch (op->code()) { case lir_tan: case lir_sin: case lir_cos: { // The slow path for these functions may need to save and // restore all live registers but we don't want to save and // restore everything all the time, so mark the xmms as being // killed. If the slow path were explicit or we could propagate // live register masks down to the assembly we could do better // but we don't have any easy way to do that right now. We // could also consider not killing all xmm registers if we // assume that slow paths are uncommon but it's not clear that // would be a good idea. if (UseSSE > 0) { #ifndef PRODUCT if (TraceLinearScanLevel >= 2) { tty->print_cr("killing XMMs for trig"); } #endif int op_id = op->id(); for (int xmm = 0; xmm < FrameMap::nof_caller_save_xmm_regs; xmm++) { LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(xmm); add_temp(reg_num(opr), op_id, noUse, T_ILLEGAL); } } break; } } } // Implementation of LinearScanWalker inline bool LinearScanWalker::pd_init_regs_for_alloc(Interval* cur) { if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::byte_reg)) { assert(cur->type() != T_FLOAT && cur->type() != T_DOUBLE, "cpu regs only"); _first_reg = pd_first_byte_reg; _last_reg = FrameMap::last_byte_reg(); return true; } else if ((UseSSE >= 1 && cur->type() == T_FLOAT) || (UseSSE >= 2 && cur->type() == T_DOUBLE)) { _first_reg = pd_first_xmm_reg; _last_reg = pd_last_xmm_reg; return true; } return false; } class FpuStackAllocator VALUE_OBJ_CLASS_SPEC { private: Compilation* _compilation; LinearScan* _allocator; LIR_OpVisitState visitor; LIR_List* _lir; int _pos; FpuStackSim _sim; FpuStackSim _temp_sim; bool _debug_information_computed; LinearScan* allocator() { return _allocator; } Compilation* compilation() const { return _compilation; } // unified bailout support void bailout(const char* msg) const { compilation()->bailout(msg); } bool bailed_out() const { return compilation()->bailed_out(); } int pos() { return _pos; } void set_pos(int pos) { _pos = pos; } LIR_Op* cur_op() { return lir()->instructions_list()->at(pos()); } LIR_List* lir() { return _lir; } void set_lir(LIR_List* lir) { _lir = lir; } FpuStackSim* sim() { return &_sim; } FpuStackSim* temp_sim() { return &_temp_sim; } int fpu_num(LIR_Opr opr); int tos_offset(LIR_Opr opr); LIR_Opr to_fpu_stack_top(LIR_Opr opr, bool dont_check_offset = false); // Helper functions for handling operations void insert_op(LIR_Op* op); void insert_exchange(int offset); void insert_exchange(LIR_Opr opr); void insert_free(int offset); void insert_free_if_dead(LIR_Opr opr); void insert_free_if_dead(LIR_Opr opr, LIR_Opr ignore); void insert_copy(LIR_Opr from, LIR_Opr to); void do_rename(LIR_Opr from, LIR_Opr to); void do_push(LIR_Opr opr); void pop_if_last_use(LIR_Op* op, LIR_Opr opr); void pop_always(LIR_Op* op, LIR_Opr opr); void clear_fpu_stack(LIR_Opr preserve); void handle_op1(LIR_Op1* op1); void handle_op2(LIR_Op2* op2); void handle_opCall(LIR_OpCall* opCall); void compute_debug_information(LIR_Op* op); void allocate_exception_handler(XHandler* xhandler); void allocate_block(BlockBegin* block); #ifndef PRODUCT void check_invalid_lir_op(LIR_Op* op); #endif // Helper functions for merging of fpu stacks void merge_insert_add(LIR_List* instrs, FpuStackSim* cur_sim, int reg); void merge_insert_xchg(LIR_List* instrs, FpuStackSim* cur_sim, int slot); void merge_insert_pop(LIR_List* instrs, FpuStackSim* cur_sim); bool merge_rename(FpuStackSim* cur_sim, FpuStackSim* sux_sim, int start_slot, int change_slot); void merge_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, FpuStackSim* sux_sim); void merge_cleanup_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, BitMap& live_fpu_regs); bool merge_fpu_stack_with_successors(BlockBegin* block); public: LIR_Opr to_fpu_stack(LIR_Opr opr); // used by LinearScan for creation of debug information FpuStackAllocator(Compilation* compilation, LinearScan* allocator); void allocate(); }; #endif // CPU_X86_VM_C1_LINEARSCAN_X86_HPP Other Java examples (source code examples)Here is a short list of links related to this Java c1_LinearScan_x86.hpp source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.