|
Java example source code file (cppInterpreter_x86.cpp)
The cppInterpreter_x86.cpp Java example source code/* * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.hpp" #include "interpreter/bytecodeHistogram.hpp" #include "interpreter/cppInterpreter.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterGenerator.hpp" #include "interpreter/interpreterRuntime.hpp" #include "oops/arrayOop.hpp" #include "oops/methodData.hpp" #include "oops/method.hpp" #include "oops/oop.inline.hpp" #include "prims/jvmtiExport.hpp" #include "prims/jvmtiThreadState.hpp" #include "runtime/arguments.hpp" #include "runtime/deoptimization.hpp" #include "runtime/frame.inline.hpp" #include "runtime/interfaceSupport.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/synchronizer.hpp" #include "runtime/timer.hpp" #include "runtime/vframeArray.hpp" #include "utilities/debug.hpp" #include "utilities/macros.hpp" #ifdef SHARK #include "shark/shark_globals.hpp" #endif #ifdef CC_INTERP // Routine exists to make tracebacks look decent in debugger // while we are recursed in the frame manager/c++ interpreter. // We could use an address in the frame manager but having // frames look natural in the debugger is a plus. extern "C" void RecursiveInterpreterActivation(interpreterState istate ) { // ShouldNotReachHere(); } #define __ _masm-> #define STATE(field_name) (Address(state, byte_offset_of(BytecodeInterpreter, field_name))) Label fast_accessor_slow_entry_path; // fast accessor methods need to be able to jmp to unsynchronized // c++ interpreter entry point this holds that entry point label. // default registers for state and sender_sp // state and sender_sp are the same on 32bit because we have no choice. // state could be rsi on 64bit but it is an arg reg and not callee save // so r13 is better choice. const Register state = NOT_LP64(rsi) LP64_ONLY(r13); const Register sender_sp_on_entry = NOT_LP64(rsi) LP64_ONLY(r13); // NEEDED for JVMTI? // address AbstractInterpreter::_remove_activation_preserving_args_entry; static address unctrap_frame_manager_entry = NULL; static address deopt_frame_manager_return_atos = NULL; static address deopt_frame_manager_return_btos = NULL; static address deopt_frame_manager_return_itos = NULL; static address deopt_frame_manager_return_ltos = NULL; static address deopt_frame_manager_return_ftos = NULL; static address deopt_frame_manager_return_dtos = NULL; static address deopt_frame_manager_return_vtos = NULL; int AbstractInterpreter::BasicType_as_index(BasicType type) { int i = 0; switch (type) { case T_BOOLEAN: i = 0; break; case T_CHAR : i = 1; break; case T_BYTE : i = 2; break; case T_SHORT : i = 3; break; case T_INT : i = 4; break; case T_VOID : i = 5; break; case T_FLOAT : i = 8; break; case T_LONG : i = 9; break; case T_DOUBLE : i = 6; break; case T_OBJECT : // fall through case T_ARRAY : i = 7; break; default : ShouldNotReachHere(); } assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds"); return i; } // Is this pc anywhere within code owned by the interpreter? // This only works for pc that might possibly be exposed to frame // walkers. It clearly misses all of the actual c++ interpreter // implementation bool CppInterpreter::contains(address pc) { return (_code->contains(pc) || pc == CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation)); } address CppInterpreterGenerator::generate_result_handler_for(BasicType type) { address entry = __ pc(); switch (type) { case T_BOOLEAN: __ c2bool(rax); break; case T_CHAR : __ andl(rax, 0xFFFF); break; case T_BYTE : __ sign_extend_byte (rax); break; case T_SHORT : __ sign_extend_short(rax); break; case T_VOID : // fall thru case T_LONG : // fall thru case T_INT : /* nothing to do */ break; case T_DOUBLE : case T_FLOAT : { const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp(); __ pop(t); // remove return address first // Must return a result for interpreter or compiler. In SSE // mode, results are returned in xmm0 and the FPU stack must // be empty. if (type == T_FLOAT && UseSSE >= 1) { #ifndef _LP64 // Load ST0 __ fld_d(Address(rsp, 0)); // Store as float and empty fpu stack __ fstp_s(Address(rsp, 0)); #endif // !_LP64 // and reload __ movflt(xmm0, Address(rsp, 0)); } else if (type == T_DOUBLE && UseSSE >= 2 ) { __ movdbl(xmm0, Address(rsp, 0)); } else { // restore ST0 __ fld_d(Address(rsp, 0)); } // and pop the temp __ addptr(rsp, 2 * wordSize); __ push(t); // restore return address } break; case T_OBJECT : // retrieve result from frame __ movptr(rax, STATE(_oop_temp)); // and verify it __ verify_oop(rax); break; default : ShouldNotReachHere(); } __ ret(0); // return from result handler return entry; } // tosca based result to c++ interpreter stack based result. // Result goes to top of native stack. #undef EXTEND // SHOULD NOT BE NEEDED address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) { // A result is in the tosca (abi result) from either a native method call or compiled // code. Place this result on the java expression stack so C++ interpreter can use it. address entry = __ pc(); const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp(); __ pop(t); // remove return address first switch (type) { case T_VOID: break; case T_BOOLEAN: #ifdef EXTEND __ c2bool(rax); #endif __ push(rax); break; case T_CHAR : #ifdef EXTEND __ andl(rax, 0xFFFF); #endif __ push(rax); break; case T_BYTE : #ifdef EXTEND __ sign_extend_byte (rax); #endif __ push(rax); break; case T_SHORT : #ifdef EXTEND __ sign_extend_short(rax); #endif __ push(rax); break; case T_LONG : __ push(rdx); // pushes useless junk on 64bit __ push(rax); break; case T_INT : __ push(rax); break; case T_FLOAT : // Result is in ST(0)/xmm0 __ subptr(rsp, wordSize); if ( UseSSE < 1) { __ fstp_s(Address(rsp, 0)); } else { __ movflt(Address(rsp, 0), xmm0); } break; case T_DOUBLE : __ subptr(rsp, 2*wordSize); if ( UseSSE < 2 ) { __ fstp_d(Address(rsp, 0)); } else { __ movdbl(Address(rsp, 0), xmm0); } break; case T_OBJECT : __ verify_oop(rax); // verify it __ push(rax); break; default : ShouldNotReachHere(); } __ jmp(t); // return from result handler return entry; } address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) { // A result is in the java expression stack of the interpreted method that has just // returned. Place this result on the java expression stack of the caller. // // The current interpreter activation in rsi/r13 is for the method just returning its // result. So we know that the result of this method is on the top of the current // execution stack (which is pre-pushed) and will be return to the top of the caller // stack. The top of the callers stack is the bottom of the locals of the current // activation. // Because of the way activation are managed by the frame manager the value of rsp is // below both the stack top of the current activation and naturally the stack top // of the calling activation. This enable this routine to leave the return address // to the frame manager on the stack and do a vanilla return. // // On entry: rsi/r13 - interpreter state of activation returning a (potential) result // On Return: rsi/r13 - unchanged // rax - new stack top for caller activation (i.e. activation in _prev_link) // // Can destroy rdx, rcx. // address entry = __ pc(); const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp(); switch (type) { case T_VOID: __ movptr(rax, STATE(_locals)); // pop parameters get new stack value __ addptr(rax, wordSize); // account for prepush before we return break; case T_FLOAT : case T_BOOLEAN: case T_CHAR : case T_BYTE : case T_SHORT : case T_INT : // 1 word result __ movptr(rdx, STATE(_stack)); __ movptr(rax, STATE(_locals)); // address for result __ movl(rdx, Address(rdx, wordSize)); // get result __ movptr(Address(rax, 0), rdx); // and store it break; case T_LONG : case T_DOUBLE : // return top two words on current expression stack to caller's expression stack // The caller's expression stack is adjacent to the current frame manager's intepretState // except we allocated one extra word for this intepretState so we won't overwrite it // when we return a two word result. __ movptr(rax, STATE(_locals)); // address for result __ movptr(rcx, STATE(_stack)); __ subptr(rax, wordSize); // need addition word besides locals[0] __ movptr(rdx, Address(rcx, 2*wordSize)); // get result word (junk in 64bit) __ movptr(Address(rax, wordSize), rdx); // and store it __ movptr(rdx, Address(rcx, wordSize)); // get result word __ movptr(Address(rax, 0), rdx); // and store it break; case T_OBJECT : __ movptr(rdx, STATE(_stack)); __ movptr(rax, STATE(_locals)); // address for result __ movptr(rdx, Address(rdx, wordSize)); // get result __ verify_oop(rdx); // verify it __ movptr(Address(rax, 0), rdx); // and store it break; default : ShouldNotReachHere(); } __ ret(0); return entry; } address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) { // A result is in the java expression stack of the interpreted method that has just // returned. Place this result in the native abi that the caller expects. // // Similar to generate_stack_to_stack_converter above. Called at a similar time from the // frame manager execept in this situation the caller is native code (c1/c2/call_stub) // and so rather than return result onto caller's java expression stack we return the // result in the expected location based on the native abi. // On entry: rsi/r13 - interpreter state of activation returning a (potential) result // On Return: rsi/r13 - unchanged // Other registers changed [rax/rdx/ST(0) as needed for the result returned] address entry = __ pc(); switch (type) { case T_VOID: break; case T_BOOLEAN: case T_CHAR : case T_BYTE : case T_SHORT : case T_INT : __ movptr(rdx, STATE(_stack)); // get top of stack __ movl(rax, Address(rdx, wordSize)); // get result word 1 break; case T_LONG : __ movptr(rdx, STATE(_stack)); // get top of stack __ movptr(rax, Address(rdx, wordSize)); // get result low word NOT_LP64(__ movl(rdx, Address(rdx, 2*wordSize));) // get result high word break; case T_FLOAT : __ movptr(rdx, STATE(_stack)); // get top of stack if ( UseSSE >= 1) { __ movflt(xmm0, Address(rdx, wordSize)); } else { __ fld_s(Address(rdx, wordSize)); // pushd float result } break; case T_DOUBLE : __ movptr(rdx, STATE(_stack)); // get top of stack if ( UseSSE > 1) { __ movdbl(xmm0, Address(rdx, wordSize)); } else { __ fld_d(Address(rdx, wordSize)); // push double result } break; case T_OBJECT : __ movptr(rdx, STATE(_stack)); // get top of stack __ movptr(rax, Address(rdx, wordSize)); // get result word 1 __ verify_oop(rax); // verify it break; default : ShouldNotReachHere(); } __ ret(0); return entry; } address CppInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) { // make it look good in the debugger return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation); } address CppInterpreter::deopt_entry(TosState state, int length) { address ret = NULL; if (length != 0) { switch (state) { case atos: ret = deopt_frame_manager_return_atos; break; case btos: ret = deopt_frame_manager_return_btos; break; case ctos: case stos: case itos: ret = deopt_frame_manager_return_itos; break; case ltos: ret = deopt_frame_manager_return_ltos; break; case ftos: ret = deopt_frame_manager_return_ftos; break; case dtos: ret = deopt_frame_manager_return_dtos; break; case vtos: ret = deopt_frame_manager_return_vtos; break; } } else { ret = unctrap_frame_manager_entry; // re-execute the bytecode ( e.g. uncommon trap) } assert(ret != NULL, "Not initialized"); return ret; } // C++ Interpreter void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state, const Register locals, const Register sender_sp, bool native) { // On entry the "locals" argument points to locals[0] (or where it would be in case no locals in // a static method). "state" contains any previous frame manager state which we must save a link // to in the newly generated state object. On return "state" is a pointer to the newly allocated // state object. We must allocate and initialize a new interpretState object and the method // expression stack. Because the returned result (if any) of the method will be placed on the caller's // expression stack and this will overlap with locals[0] (and locals[1] if double/long) we must // be sure to leave space on the caller's stack so that this result will not overwrite values when // locals[0] and locals[1] do not exist (and in fact are return address and saved rbp). So when // we are non-native we in essence ensure that locals[0-1] exist. We play an extra trick in // non-product builds and initialize this last local with the previous interpreterState as // this makes things look real nice in the debugger. // State on entry // Assumes locals == &locals[0] // Assumes state == any previous frame manager state (assuming call path from c++ interpreter) // Assumes rax = return address // rcx == senders_sp // rbx == method // Modifies rcx, rdx, rax // Returns: // state == address of new interpreterState // rsp == bottom of method's expression stack. const Address const_offset (rbx, Method::const_offset()); // On entry sp is the sender's sp. This includes the space for the arguments // that the sender pushed. If the sender pushed no args (a static) and the // caller returns a long then we need two words on the sender's stack which // are not present (although when we return a restore full size stack the // space will be present). If we didn't allocate two words here then when // we "push" the result of the caller's stack we would overwrite the return // address and the saved rbp. Not good. So simply allocate 2 words now // just to be safe. This is the "static long no_params() method" issue. // See Lo.java for a testcase. // We don't need this for native calls because they return result in // register and the stack is expanded in the caller before we store // the results on the stack. if (!native) { #ifdef PRODUCT __ subptr(rsp, 2*wordSize); #else /* PRODUCT */ __ push((int32_t)NULL_WORD); __ push(state); // make it look like a real argument #endif /* PRODUCT */ } // Now that we are assure of space for stack result, setup typical linkage __ push(rax); __ enter(); __ mov(rax, state); // save current state __ lea(rsp, Address(rsp, -(int)sizeof(BytecodeInterpreter))); __ mov(state, rsp); // rsi/r13 == state/locals rax == prevstate // initialize the "shadow" frame so that use since C++ interpreter not directly // recursive. Simpler to recurse but we can't trim expression stack as we call // new methods. __ movptr(STATE(_locals), locals); // state->_locals = locals() __ movptr(STATE(_self_link), state); // point to self __ movptr(STATE(_prev_link), rax); // state->_link = state on entry (NULL or previous state) __ movptr(STATE(_sender_sp), sender_sp); // state->_sender_sp = sender_sp #ifdef _LP64 __ movptr(STATE(_thread), r15_thread); // state->_bcp = codes() #else __ get_thread(rax); // get vm's javathread* __ movptr(STATE(_thread), rax); // state->_bcp = codes() #endif // _LP64 __ movptr(rdx, Address(rbx, Method::const_offset())); // get constantMethodOop __ lea(rdx, Address(rdx, ConstMethod::codes_offset())); // get code base if (native) { __ movptr(STATE(_bcp), (int32_t)NULL_WORD); // state->_bcp = NULL } else { __ movptr(STATE(_bcp), rdx); // state->_bcp = codes() } __ xorptr(rdx, rdx); __ movptr(STATE(_oop_temp), rdx); // state->_oop_temp = NULL (only really needed for native) __ movptr(STATE(_mdx), rdx); // state->_mdx = NULL __ movptr(rdx, Address(rbx, Method::const_offset())); __ movptr(rdx, Address(rdx, ConstMethod::constants_offset())); __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes())); __ movptr(STATE(_constants), rdx); // state->_constants = constants() __ movptr(STATE(_method), rbx); // state->_method = method() __ movl(STATE(_msg), (int32_t) BytecodeInterpreter::method_entry); // state->_msg = initial method entry __ movptr(STATE(_result._to_call._callee), (int32_t) NULL_WORD); // state->_result._to_call._callee_callee = NULL __ movptr(STATE(_monitor_base), rsp); // set monitor block bottom (grows down) this would point to entry [0] // entries run from -1..x where &monitor[x] == { // Must not attempt to lock method until we enter interpreter as gc won't be able to find the // initial frame. However we allocate a free monitor so we don't have to shuffle the expression stack // immediately. // synchronize method const Address access_flags (rbx, Method::access_flags_offset()); const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; Label not_synced; __ movl(rax, access_flags); __ testl(rax, JVM_ACC_SYNCHRONIZED); __ jcc(Assembler::zero, not_synced); // Allocate initial monitor and pre initialize it // get synchronization object Label done; const int mirror_offset = in_bytes(Klass::java_mirror_offset()); __ movl(rax, access_flags); __ testl(rax, JVM_ACC_STATIC); __ movptr(rax, Address(locals, 0)); // get receiver (assume this is frequent case) __ jcc(Assembler::zero, done); __ movptr(rax, Address(rbx, Method::const_offset())); __ movptr(rax, Address(rax, ConstMethod::constants_offset())); __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes())); __ movptr(rax, Address(rax, mirror_offset)); __ bind(done); // add space for monitor & lock __ subptr(rsp, entry_size); // add space for a monitor entry __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object __ bind(not_synced); } __ movptr(STATE(_stack_base), rsp); // set expression stack base ( == &monitors[-count]) if (native) { __ movptr(STATE(_stack), rsp); // set current expression stack tos __ movptr(STATE(_stack_limit), rsp); } else { __ subptr(rsp, wordSize); // pre-push stack __ movptr(STATE(_stack), rsp); // set current expression stack tos // compute full expression stack limit __ movptr(rdx, Address(rbx, Method::const_offset())); __ load_unsigned_short(rdx, Address(rdx, ConstMethod::max_stack_offset())); // get size of expression stack in words __ negptr(rdx); // so we can subtract in next step // Allocate expression stack __ lea(rsp, Address(rsp, rdx, Address::times_ptr, -Method::extra_stack_words())); __ movptr(STATE(_stack_limit), rsp); } #ifdef _LP64 // Make sure stack is properly aligned and sized for the abi __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI) #endif // _LP64 } // Helpers for commoning out cases in the various type of method entries. // // increment invocation count & check for overflow // // Note: checking for negative value instead of overflow // so we have a 'sticky' overflow test // // rbx,: method // rcx: invocation counter // void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) { Label done; const Address invocation_counter(rax, MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); const Address backedge_counter (rax, MethodCounter::backedge_counter_offset() + InvocationCounter::counter_offset()); __ get_method_counters(rbx, rax, done); if (ProfileInterpreter) { __ incrementl(Address(rax, MethodCounters::interpreter_invocation_counter_offset())); } // Update standard invocation counters __ movl(rcx, invocation_counter); __ increment(rcx, InvocationCounter::count_increment); __ movl(invocation_counter, rcx); // save invocation count __ movl(rax, backedge_counter); // load backedge counter __ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits __ addl(rcx, rax); // add both counters // profile_method is non-null only for interpreted method so // profile_method != NULL == !native_call // BytecodeInterpreter only calls for native so code is elided. __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit)); __ jcc(Assembler::aboveEqual, *overflow); __ bind(done); } void InterpreterGenerator::generate_counter_overflow(Label* do_continue) { // C++ interpreter on entry // rsi/r13 - new interpreter state pointer // rbp - interpreter frame pointer // rbx - method // On return (i.e. jump to entry_point) [ back to invocation of interpreter ] // rbx, - method // rcx - rcvr (assuming there is one) // top of stack return address of interpreter caller // rsp - sender_sp // C++ interpreter only // rsi/r13 - previous interpreter state pointer // InterpreterRuntime::frequency_counter_overflow takes one argument // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp). // The call returns the address of the verified entry point for the method or NULL // if the compilation did not complete (either went background or bailed out). __ movptr(rax, (int32_t)false); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax); // for c++ interpreter can rsi really be munged? __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter))); // restore state __ movptr(rbx, Address(state, byte_offset_of(BytecodeInterpreter, _method))); // restore method __ movptr(rdi, Address(state, byte_offset_of(BytecodeInterpreter, _locals))); // get locals pointer __ jmp(*do_continue, relocInfo::none); } void InterpreterGenerator::generate_stack_overflow_check(void) { // see if we've got enough room on the stack for locals plus overhead. // the expression stack grows down incrementally, so the normal guard // page mechanism will work for that. // // Registers live on entry: // // Asm interpreter // rdx: number of additional locals this frame needs (what we must check) // rbx,: Method* // C++ Interpreter // rsi/r13: previous interpreter frame state object // rdi: &locals[0] // rcx: # of locals // rdx: number of additional locals this frame needs (what we must check) // rbx: Method* // destroyed on exit // rax, // NOTE: since the additional locals are also always pushed (wasn't obvious in // generate_method_entry) so the guard should work for them too. // // monitor entry size: see picture of stack set (generate_method_entry) and frame_i486.hpp const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; // total overhead size: entry_size + (saved rbp, thru expr stack bottom). // be sure to change this if you add/subtract anything to/from the overhead area const int overhead_size = (int)sizeof(BytecodeInterpreter); const int page_size = os::vm_page_size(); Label after_frame_check; // compute rsp as if this were going to be the last frame on // the stack before the red zone Label after_frame_check_pop; // save rsi == caller's bytecode ptr (c++ previous interp. state) // QQQ problem here?? rsi overload???? __ push(state); const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rsi); NOT_LP64(__ get_thread(thread)); const Address stack_base(thread, Thread::stack_base_offset()); const Address stack_size(thread, Thread::stack_size_offset()); // locals + overhead, in bytes // Always give one monitor to allow us to start interp if sync method. // Any additional monitors need a check when moving the expression stack const int one_monitor = frame::interpreter_frame_monitor_size() * wordSize; __ movptr(rax, Address(rbx, Method::const_offset())); __ load_unsigned_short(rax, Address(rax, ConstMethod::max_stack_offset())); // get size of expression stack in words __ lea(rax, Address(noreg, rax, Interpreter::stackElementScale(), one_monitor+Method::extra_stack_words())); __ lea(rax, Address(rax, rdx, Interpreter::stackElementScale(), overhead_size)); #ifdef ASSERT Label stack_base_okay, stack_size_okay; // verify that thread stack base is non-zero __ cmpptr(stack_base, (int32_t)0); __ jcc(Assembler::notEqual, stack_base_okay); __ stop("stack base is zero"); __ bind(stack_base_okay); // verify that thread stack size is non-zero __ cmpptr(stack_size, (int32_t)0); __ jcc(Assembler::notEqual, stack_size_okay); __ stop("stack size is zero"); __ bind(stack_size_okay); #endif // Add stack base to locals and subtract stack size __ addptr(rax, stack_base); __ subptr(rax, stack_size); // We should have a magic number here for the size of the c++ interpreter frame. // We can't actually tell this ahead of time. The debug version size is around 3k // product is 1k and fastdebug is 4k const int slop = 6 * K; // Use the maximum number of pages we might bang. const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages : (StackRedPages+StackYellowPages); // Only need this if we are stack banging which is temporary while // we're debugging. __ addptr(rax, slop + 2*max_pages * page_size); // check against the current stack bottom __ cmpptr(rsp, rax); __ jcc(Assembler::above, after_frame_check_pop); __ pop(state); // get c++ prev state. // throw exception return address becomes throwing pc __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError)); // all done with frame size check __ bind(after_frame_check_pop); __ pop(state); __ bind(after_frame_check); } // Find preallocated monitor and lock method (C++ interpreter) // rbx - Method* // void InterpreterGenerator::lock_method(void) { // assumes state == rsi/r13 == pointer to current interpreterState // minimally destroys rax, rdx|c_rarg1, rdi // // synchronize method const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; const Address access_flags (rbx, Method::access_flags_offset()); const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1); // find initial monitor i.e. monitors[-1] __ movptr(monitor, STATE(_monitor_base)); // get monitor bottom limit __ subptr(monitor, entry_size); // point to initial monitor #ifdef ASSERT { Label L; __ movl(rax, access_flags); __ testl(rax, JVM_ACC_SYNCHRONIZED); __ jcc(Assembler::notZero, L); __ stop("method doesn't need synchronization"); __ bind(L); } #endif // ASSERT // get synchronization object { Label done; const int mirror_offset = in_bytes(Klass::java_mirror_offset()); __ movl(rax, access_flags); __ movptr(rdi, STATE(_locals)); // prepare to get receiver (assume common case) __ testl(rax, JVM_ACC_STATIC); __ movptr(rax, Address(rdi, 0)); // get receiver (assume this is frequent case) __ jcc(Assembler::zero, done); __ movptr(rax, Address(rbx, Method::const_offset())); __ movptr(rax, Address(rax, ConstMethod::constants_offset())); __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes())); __ movptr(rax, Address(rax, mirror_offset)); __ bind(done); } #ifdef ASSERT { Label L; __ cmpptr(rax, Address(monitor, BasicObjectLock::obj_offset_in_bytes())); // correct object? __ jcc(Assembler::equal, L); __ stop("wrong synchronization lobject"); __ bind(L); } #endif // ASSERT // can destroy rax, rdx|c_rarg1, rcx, and (via call_VM) rdi! __ lock_object(monitor); } // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry address InterpreterGenerator::generate_accessor_entry(void) { // rbx: Method* // rsi/r13: senderSP must preserved for slow path, set SP to it on fast path Label xreturn_path; // do fastpath for resolved accessor methods if (UseFastAccessorMethods) { address entry_point = __ pc(); Label slow_path; // If we need a safepoint check, generate full interpreter entry. ExternalAddress state(SafepointSynchronize::address_of_state()); __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()), SafepointSynchronize::_not_synchronized); __ jcc(Assembler::notEqual, slow_path); // ASM/C++ Interpreter // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1 // Note: We can only use this code if the getfield has been resolved // and if we don't have a null-pointer exception => check for // these conditions first and use slow path if necessary. // rbx,: method // rcx: receiver __ movptr(rax, Address(rsp, wordSize)); // check if local 0 != NULL and read field __ testptr(rax, rax); __ jcc(Assembler::zero, slow_path); // read first instruction word and extract bytecode @ 1 and index @ 2 __ movptr(rdx, Address(rbx, Method::const_offset())); __ movptr(rdi, Address(rdx, ConstMethod::constants_offset())); __ movl(rdx, Address(rdx, ConstMethod::codes_offset())); // Shift codes right to get the index on the right. // The bytecode fetched looks like <index><0xb4><0x2a> __ shrl(rdx, 2*BitsPerByte); __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size()))); __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes())); // rax,: local 0 // rbx,: method // rcx: receiver - do not destroy since it is needed for slow path! // rcx: scratch // rdx: constant pool cache index // rdi: constant pool cache // rsi/r13: sender sp // check if getfield has been resolved and read constant pool cache entry // check the validity of the cache entry by testing whether _indices field // contains Bytecode::_getfield in b1 byte. assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below"); __ movl(rcx, Address(rdi, rdx, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset())); __ shrl(rcx, 2*BitsPerByte); __ andl(rcx, 0xFF); __ cmpl(rcx, Bytecodes::_getfield); __ jcc(Assembler::notEqual, slow_path); // Note: constant pool entry is not valid before bytecode is resolved __ movptr(rcx, Address(rdi, rdx, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset())); __ movl(rdx, Address(rdi, rdx, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset())); Label notByte, notShort, notChar; const Address field_address (rax, rcx, Address::times_1); // Need to differentiate between igetfield, agetfield, bgetfield etc. // because they are different sizes. // Use the type from the constant pool cache __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift); // Make sure we don't need to mask rdx after the above shift ConstantPoolCacheEntry::verify_tos_state_shift(); #ifdef _LP64 Label notObj; __ cmpl(rdx, atos); __ jcc(Assembler::notEqual, notObj); // atos __ movptr(rax, field_address); __ jmp(xreturn_path); __ bind(notObj); #endif // _LP64 __ cmpl(rdx, btos); __ jcc(Assembler::notEqual, notByte); __ load_signed_byte(rax, field_address); __ jmp(xreturn_path); __ bind(notByte); __ cmpl(rdx, stos); __ jcc(Assembler::notEqual, notShort); __ load_signed_short(rax, field_address); __ jmp(xreturn_path); __ bind(notShort); __ cmpl(rdx, ctos); __ jcc(Assembler::notEqual, notChar); __ load_unsigned_short(rax, field_address); __ jmp(xreturn_path); __ bind(notChar); #ifdef ASSERT Label okay; #ifndef _LP64 __ cmpl(rdx, atos); __ jcc(Assembler::equal, okay); #endif // _LP64 __ cmpl(rdx, itos); __ jcc(Assembler::equal, okay); __ stop("what type is this?"); __ bind(okay); #endif // ASSERT // All the rest are a 32 bit wordsize __ movl(rax, field_address); __ bind(xreturn_path); // _ireturn/_areturn __ pop(rdi); // get return address __ mov(rsp, sender_sp_on_entry); // set sp to sender sp __ jmp(rdi); // generate a vanilla interpreter entry as the slow path __ bind(slow_path); // We will enter c++ interpreter looking like it was // called by the call_stub this will cause it to return // a tosca result to the invoker which might have been // the c++ interpreter itself. __ jmp(fast_accessor_slow_entry_path); return entry_point; } else { return NULL; } } address InterpreterGenerator::generate_Reference_get_entry(void) { #if INCLUDE_ALL_GCS if (UseG1GC) { // We need to generate have a routine that generates code to: // * load the value in the referent field // * passes that value to the pre-barrier. // // In the case of G1 this will record the value of the // referent in an SATB buffer if marking is active. // This will cause concurrent marking to mark the referent // field as live. Unimplemented(); } #endif // INCLUDE_ALL_GCS // If G1 is not enabled then attempt to go through the accessor entry point // Reference.get is an accessor return generate_accessor_entry(); } // // C++ Interpreter stub for calling a native method. // This sets up a somewhat different looking stack for calling the native method // than the typical interpreter frame setup but still has the pointer to // an interpreter state. // address InterpreterGenerator::generate_native_entry(bool synchronized) { // determine code generation flags bool inc_counter = UseCompiler || CountCompiledCalls; // rbx: Method* // rcx: receiver (unused) // rsi/r13: previous interpreter state (if called from C++ interpreter) must preserve // in any case. If called via c1/c2/call_stub rsi/r13 is junk (to use) but harmless // to save/restore. address entry_point = __ pc(); const Address constMethod (rbx, Method::const_offset()); const Address access_flags (rbx, Method::access_flags_offset()); const Address size_of_parameters(rcx, ConstMethod::size_of_parameters_offset()); // rsi/r13 == state/locals rdi == prevstate const Register locals = rdi; // get parameter size (always needed) __ movptr(rcx, constMethod); __ load_unsigned_short(rcx, size_of_parameters); // rbx: Method* // rcx: size of parameters __ pop(rax); // get return address // for natives the size of locals is zero // compute beginning of parameters /locals __ lea(locals, Address(rsp, rcx, Address::times_ptr, -wordSize)); // initialize fixed part of activation frame // Assumes rax = return address // allocate and initialize new interpreterState and method expression stack // IN(locals) -> locals // IN(state) -> previous frame manager state (NULL from stub/c1/c2) // destroys rax, rcx, rdx // OUT (state) -> new interpreterState // OUT(rsp) -> bottom of methods expression stack // save sender_sp __ mov(rcx, sender_sp_on_entry); // start with NULL previous state __ movptr(state, (int32_t)NULL_WORD); generate_compute_interpreter_state(state, locals, rcx, true); #ifdef ASSERT { Label L; __ movptr(rax, STATE(_stack_base)); #ifdef _LP64 // duplicate the alignment rsp got after setting stack_base __ subptr(rax, frame::arg_reg_save_area_bytes); // windows __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI) #endif // _LP64 __ cmpptr(rax, rsp); __ jcc(Assembler::equal, L); __ stop("broken stack frame setup in interpreter"); __ bind(L); } #endif const Register unlock_thread = LP64_ONLY(r15_thread) NOT_LP64(rax); NOT_LP64(__ movptr(unlock_thread, STATE(_thread));) // get thread // Since at this point in the method invocation the exception handler // would try to exit the monitor of synchronized methods which hasn't // been entered yet, we set the thread local variable // _do_not_unlock_if_synchronized to true. The remove_activation will // check this flag. const Address do_not_unlock_if_synchronized(unlock_thread, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); __ movbool(do_not_unlock_if_synchronized, true); // make sure method is native & not abstract #ifdef ASSERT __ movl(rax, access_flags); { Label L; __ testl(rax, JVM_ACC_NATIVE); __ jcc(Assembler::notZero, L); __ stop("tried to execute non-native method as native"); __ bind(L); } { Label L; __ testl(rax, JVM_ACC_ABSTRACT); __ jcc(Assembler::zero, L); __ stop("tried to execute abstract method in interpreter"); __ bind(L); } #endif // increment invocation count & check for overflow Label invocation_counter_overflow; if (inc_counter) { generate_counter_incr(&invocation_counter_overflow, NULL, NULL); } Label continue_after_compile; __ bind(continue_after_compile); bang_stack_shadow_pages(true); // reset the _do_not_unlock_if_synchronized flag NOT_LP64(__ movl(rax, STATE(_thread));) // get thread __ movbool(do_not_unlock_if_synchronized, false); // check for synchronized native methods // // Note: This must happen *after* invocation counter check, since // when overflow happens, the method should not be locked. if (synchronized) { // potentially kills rax, rcx, rdx, rdi lock_method(); } else { // no synchronization necessary #ifdef ASSERT { Label L; __ movl(rax, access_flags); __ testl(rax, JVM_ACC_SYNCHRONIZED); __ jcc(Assembler::zero, L); __ stop("method needs synchronization"); __ bind(L); } #endif } // start execution // jvmti support __ notify_method_entry(); // work registers const Register method = rbx; const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rdi); const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp(); // rcx|rscratch1 const Address constMethod (method, Method::const_offset()); const Address size_of_parameters(t, ConstMethod::size_of_parameters_offset()); // allocate space for parameters __ movptr(method, STATE(_method)); __ verify_method_ptr(method); __ movptr(t, constMethod); __ load_unsigned_short(t, size_of_parameters); __ shll(t, 2); #ifdef _LP64 __ subptr(rsp, t); __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI) #else __ addptr(t, 2*wordSize); // allocate two more slots for JNIEnv and possible mirror __ subptr(rsp, t); __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics #endif // _LP64 // get signature handler Label pending_exception_present; { Label L; __ movptr(t, Address(method, Method::signature_handler_offset())); __ testptr(t, t); __ jcc(Assembler::notZero, L); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method, false); __ movptr(method, STATE(_method)); __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); __ jcc(Assembler::notEqual, pending_exception_present); __ verify_method_ptr(method); __ movptr(t, Address(method, Method::signature_handler_offset())); __ bind(L); } #ifdef ASSERT { Label L; __ push(t); __ get_thread(t); // get vm's javathread* __ cmpptr(t, STATE(_thread)); __ jcc(Assembler::equal, L); __ int3(); __ bind(L); __ pop(t); } #endif // const Register from_ptr = InterpreterRuntime::SignatureHandlerGenerator::from(); // call signature handler assert(InterpreterRuntime::SignatureHandlerGenerator::to () == rsp, "adjust this code"); // The generated handlers do not touch RBX (the method oop). // However, large signatures cannot be cached and are generated // each time here. The slow-path generator will blow RBX // sometime, so we must reload it after the call. __ movptr(from_ptr, STATE(_locals)); // get the from pointer __ call(t); __ movptr(method, STATE(_method)); __ verify_method_ptr(method); // result handler is in rax // set result handler __ movptr(STATE(_result_handler), rax); // get native function entry point { Label L; __ movptr(rax, Address(method, Method::native_function_offset())); __ testptr(rax, rax); __ jcc(Assembler::notZero, L); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method); __ movptr(method, STATE(_method)); __ verify_method_ptr(method); __ movptr(rax, Address(method, Method::native_function_offset())); __ bind(L); } // pass mirror handle if static call { Label L; const int mirror_offset = in_bytes(Klass::java_mirror_offset()); __ movl(t, Address(method, Method::access_flags_offset())); __ testl(t, JVM_ACC_STATIC); __ jcc(Assembler::zero, L); // get mirror __ movptr(t, Address(method, Method:: const_offset())); __ movptr(t, Address(t, ConstMethod::constants_offset())); __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes())); __ movptr(t, Address(t, mirror_offset)); // copy mirror into activation object __ movptr(STATE(_oop_temp), t); // pass handle to mirror #ifdef _LP64 __ lea(c_rarg1, STATE(_oop_temp)); #else __ lea(t, STATE(_oop_temp)); __ movptr(Address(rsp, wordSize), t); #endif // _LP64 __ bind(L); } #ifdef ASSERT { Label L; __ push(t); __ get_thread(t); // get vm's javathread* __ cmpptr(t, STATE(_thread)); __ jcc(Assembler::equal, L); __ int3(); __ bind(L); __ pop(t); } #endif // // pass JNIEnv #ifdef _LP64 __ lea(c_rarg0, Address(thread, JavaThread::jni_environment_offset())); #else __ movptr(thread, STATE(_thread)); // get thread __ lea(t, Address(thread, JavaThread::jni_environment_offset())); __ movptr(Address(rsp, 0), t); #endif // _LP64 #ifdef ASSERT { Label L; __ push(t); __ get_thread(t); // get vm's javathread* __ cmpptr(t, STATE(_thread)); __ jcc(Assembler::equal, L); __ int3(); __ bind(L); __ pop(t); } #endif // #ifdef ASSERT { Label L; __ movl(t, Address(thread, JavaThread::thread_state_offset())); __ cmpl(t, _thread_in_Java); __ jcc(Assembler::equal, L); __ stop("Wrong thread state in native stub"); __ bind(L); } #endif // Change state to native (we save the return address in the thread, since it might not // be pushed on the stack when we do a a stack traversal). It is enough that the pc() // points into the right code segment. It does not have to be the correct return pc. __ set_last_Java_frame(thread, noreg, rbp, __ pc()); __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native); __ call(rax); // result potentially in rdx:rax or ST0 __ movptr(method, STATE(_method)); NOT_LP64(__ movptr(thread, STATE(_thread));) // get thread // The potential result is in ST(0) & rdx:rax // With C++ interpreter we leave any possible result in ST(0) until we are in result handler and then // we do the appropriate stuff for returning the result. rdx:rax must always be saved because just about // anything we do here will destroy it, st(0) is only saved if we re-enter the vm where it would // be destroyed. // It is safe to do these pushes because state is _thread_in_native and return address will be found // via _last_native_pc and not via _last_jave_sp // Must save the value of ST(0)/xmm0 since it could be destroyed before we get to result handler { Label Lpush, Lskip; ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT)); ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE)); __ cmpptr(STATE(_result_handler), float_handler.addr()); __ jcc(Assembler::equal, Lpush); __ cmpptr(STATE(_result_handler), double_handler.addr()); __ jcc(Assembler::notEqual, Lskip); __ bind(Lpush); __ subptr(rsp, 2*wordSize); if ( UseSSE < 2 ) { __ fstp_d(Address(rsp, 0)); } else { __ movdbl(Address(rsp, 0), xmm0); } __ bind(Lskip); } // save rax:rdx for potential use by result handler. __ push(rax); #ifndef _LP64 __ push(rdx); #endif // _LP64 // Verify or restore cpu control state after JNI call __ restore_cpu_control_state_after_jni(); // change thread state __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans); if(os::is_MP()) { // Write serialization page so VM thread can do a pseudo remote membar. // We use the current thread pointer to calculate a thread specific // offset to write to within the page. This minimizes bus traffic // due to cache line collision. __ serialize_memory(thread, rcx); } // check for safepoint operation in progress and/or pending suspend requests { Label Continue; __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()), SafepointSynchronize::_not_synchronized); // threads running native code and they are expected to self-suspend // when leaving the _thread_in_native state. We need to check for // pending suspend requests here. Label L; __ jcc(Assembler::notEqual, L); __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0); __ jcc(Assembler::equal, Continue); __ bind(L); // Don't use call_VM as it will see a possible pending exception and forward it // and never return here preventing us from clearing _last_native_pc down below. // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are // preserved and correspond to the bcp/locals pointers. // ((MacroAssembler*)_masm)->call_VM_leaf(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans), thread); __ increment(rsp, wordSize); __ movptr(method, STATE(_method)); __ verify_method_ptr(method); __ movptr(thread, STATE(_thread)); // get thread __ bind(Continue); } // change thread state __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java); __ reset_last_Java_frame(thread, true, true); // reset handle block __ movptr(t, Address(thread, JavaThread::active_handles_offset())); __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD); // If result was an oop then unbox and save it in the frame { Label L; Label no_oop, store_result; ExternalAddress oop_handler(AbstractInterpreter::result_handler(T_OBJECT)); __ cmpptr(STATE(_result_handler), oop_handler.addr()); __ jcc(Assembler::notEqual, no_oop); #ifndef _LP64 __ pop(rdx); #endif // _LP64 __ pop(rax); __ testptr(rax, rax); __ jcc(Assembler::zero, store_result); // unbox __ movptr(rax, Address(rax, 0)); __ bind(store_result); __ movptr(STATE(_oop_temp), rax); // keep stack depth as expected by pushing oop which will eventually be discarded __ push(rax); #ifndef _LP64 __ push(rdx); #endif // _LP64 __ bind(no_oop); } { Label no_reguard; __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled); __ jcc(Assembler::notEqual, no_reguard); __ pusha(); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages))); __ popa(); __ bind(no_reguard); } // QQQ Seems like for native methods we simply return and the caller will see the pending // exception and do the right thing. Certainly the interpreter will, don't know about // compiled methods. // Seems that the answer to above is no this is wrong. The old code would see the exception // and forward it before doing the unlocking and notifying jvmdi that method has exited. // This seems wrong need to investigate the spec. // handle exceptions (exception handling will handle unlocking!) { Label L; __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); __ jcc(Assembler::zero, L); __ bind(pending_exception_present); // There are potential results on the stack (rax/rdx, ST(0)) we ignore these and simply // return and let caller deal with exception. This skips the unlocking here which // seems wrong but seems to be what asm interpreter did. Can't find this in the spec. // Note: must preverve method in rbx // // remove activation __ movptr(t, STATE(_sender_sp)); __ leave(); // remove frame anchor __ pop(rdi); // get return address __ movptr(state, STATE(_prev_link)); // get previous state for return __ mov(rsp, t); // set sp to sender sp __ push(rdi); // push throwing pc // The skips unlocking!! This seems to be what asm interpreter does but seems // very wrong. Not clear if this violates the spec. __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); __ bind(L); } // do unlocking if necessary { Label L; __ movl(t, Address(method, Method::access_flags_offset())); __ testl(t, JVM_ACC_SYNCHRONIZED); __ jcc(Assembler::zero, L); // the code below should be shared with interpreter macro assembler implementation { Label unlock; const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1); // BasicObjectLock will be first in list, since this is a synchronized method. However, need // to check that the object has not been unlocked by an explicit monitorexit bytecode. __ movptr(monitor, STATE(_monitor_base)); __ subptr(monitor, frame::interpreter_frame_monitor_size() * wordSize); // address of initial monitor __ movptr(t, Address(monitor, BasicObjectLock::obj_offset_in_bytes())); __ testptr(t, t); __ jcc(Assembler::notZero, unlock); // Entry already unlocked, need to throw exception __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); __ should_not_reach_here(); __ bind(unlock); __ unlock_object(monitor); // unlock can blow rbx so restore it for path that needs it below __ movptr(method, STATE(_method)); } __ bind(L); } // jvmti support // Note: This must happen _after_ handling/throwing any exceptions since // the exception handler code notifies the runtime of method exits // too. If this happens before, method entry/exit notifications are // not properly paired (was bug - gri 11/22/99). __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI); // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result #ifndef _LP64 __ pop(rdx); #endif // _LP64 __ pop(rax); __ movptr(t, STATE(_result_handler)); // get result handler __ call(t); // call result handler to convert to tosca form // remove activation __ movptr(t, STATE(_sender_sp)); __ leave(); // remove frame anchor __ pop(rdi); // get return address __ movptr(state, STATE(_prev_link)); // get previous state for return (if c++ interpreter was caller) __ mov(rsp, t); // set sp to sender sp __ jmp(rdi); // invocation counter overflow if (inc_counter) { // Handle overflow of counter and compile method __ bind(invocation_counter_overflow); generate_counter_overflow(&continue_after_compile); } return entry_point; } // Generate entries that will put a result type index into rcx void CppInterpreterGenerator::generate_deopt_handling() { Label return_from_deopt_common; // Generate entries that will put a result type index into rcx // deopt needs to jump to here to enter the interpreter (return a result) deopt_frame_manager_return_atos = __ pc(); // rax is live here __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_OBJECT)); // Result stub address array index __ jmp(return_from_deopt_common); // deopt needs to jump to here to enter the interpreter (return a result) deopt_frame_manager_return_btos = __ pc(); // rax is live here __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_BOOLEAN)); // Result stub address array index __ jmp(return_from_deopt_common); // deopt needs to jump to here to enter the interpreter (return a result) deopt_frame_manager_return_itos = __ pc(); // rax is live here __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_INT)); // Result stub address array index __ jmp(return_from_deopt_common); // deopt needs to jump to here to enter the interpreter (return a result) deopt_frame_manager_return_ltos = __ pc(); // rax,rdx are live here __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_LONG)); // Result stub address array index __ jmp(return_from_deopt_common); // deopt needs to jump to here to enter the interpreter (return a result) deopt_frame_manager_return_ftos = __ pc(); // st(0) is live here __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT)); // Result stub address array index __ jmp(return_from_deopt_common); // deopt needs to jump to here to enter the interpreter (return a result) deopt_frame_manager_return_dtos = __ pc(); // st(0) is live here __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE)); // Result stub address array index __ jmp(return_from_deopt_common); // deopt needs to jump to here to enter the interpreter (return a result) deopt_frame_manager_return_vtos = __ pc(); __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_VOID)); // Deopt return common // an index is present in rcx that lets us move any possible result being // return to the interpreter's stack // // Because we have a full sized interpreter frame on the youngest // activation the stack is pushed too deep to share the tosca to // stack converters directly. We shrink the stack to the desired // amount and then push result and then re-extend the stack. // We could have the code in size_activation layout a short // frame for the top activation but that would look different // than say sparc (which needs a full size activation because // the windows are in the way. Really it could be short? QQQ // __ bind(return_from_deopt_common); __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter))); // setup rsp so we can push the "result" as needed. __ movptr(rsp, STATE(_stack)); // trim stack (is prepushed) __ addptr(rsp, wordSize); // undo prepush ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack); // Address index(noreg, rcx, Address::times_ptr); __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr))); // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack))); __ call(rcx); // call result converter __ movl(STATE(_msg), (int)BytecodeInterpreter::deopt_resume); __ lea(rsp, Address(rsp, -wordSize)); // prepush stack (result if any already present) __ movptr(STATE(_stack), rsp); // inform interpreter of new stack depth (parameters removed, // result if any on stack already ) __ movptr(rsp, STATE(_stack_limit)); // restore expression stack to full depth } // Generate the code to handle a more_monitors message from the c++ interpreter void CppInterpreterGenerator::generate_more_monitors() { Label entry, loop; const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; // 1. compute new pointers // rsp: old expression stack top __ movptr(rdx, STATE(_stack_base)); // rdx: old expression stack bottom __ subptr(rsp, entry_size); // move expression stack top limit __ subptr(STATE(_stack), entry_size); // update interpreter stack top __ subptr(STATE(_stack_limit), entry_size); // inform interpreter __ subptr(rdx, entry_size); // move expression stack bottom __ movptr(STATE(_stack_base), rdx); // inform interpreter __ movptr(rcx, STATE(_stack)); // set start value for copy loop __ jmp(entry); // 2. move expression stack contents __ bind(loop); __ movptr(rbx, Address(rcx, entry_size)); // load expression stack word from old location __ movptr(Address(rcx, 0), rbx); // and store it at new location __ addptr(rcx, wordSize); // advance to next word __ bind(entry); __ cmpptr(rcx, rdx); // check if bottom reached __ jcc(Assembler::notEqual, loop); // if not at bottom then copy next word // now zero the slot so we can find it. __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD); __ movl(STATE(_msg), (int)BytecodeInterpreter::got_monitors); } // Initial entry to C++ interpreter from the call_stub. // This entry point is called the frame manager since it handles the generation // of interpreter activation frames via requests directly from the vm (via call_stub) // and via requests from the interpreter. The requests from the call_stub happen // directly thru the entry point. Requests from the interpreter happen via returning // from the interpreter and examining the message the interpreter has returned to // the frame manager. The frame manager can take the following requests: // NO_REQUEST - error, should never happen. // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and // allocate a new monitor. // CALL_METHOD - setup a new activation to call a new method. Very similar to what // happens during entry during the entry via the call stub. // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub. // // Arguments: // // rbx: Method* // rcx: receiver - unused (retrieved from stack as needed) // rsi/r13: previous frame manager state (NULL from the call_stub/c1/c2) // // // Stack layout at entry // // [ return address ] <--- rsp // [ parameter n ] // ... // [ parameter 1 ] // [ expression stack ] // // // We are free to blow any registers we like because the call_stub which brought us here // initially has preserved the callee save registers already. // // static address interpreter_frame_manager = NULL; address InterpreterGenerator::generate_normal_entry(bool synchronized) { // rbx: Method* // rsi/r13: sender sp // Because we redispatch "recursive" interpreter entries thru this same entry point // the "input" register usage is a little strange and not what you expect coming // from the call_stub. From the call stub rsi/rdi (current/previous) interpreter // state are NULL but on "recursive" dispatches they are what you'd expect. // rsi: current interpreter state (C++ interpreter) must preserve (null from call_stub/c1/c2) // A single frame manager is plenty as we don't specialize for synchronized. We could and // the code is pretty much ready. Would need to change the test below and for good measure // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized // routines. Not clear this is worth it yet. if (interpreter_frame_manager) return interpreter_frame_manager; address entry_point = __ pc(); // Fast accessor methods share this entry point. // This works because frame manager is in the same codelet if (UseFastAccessorMethods && !synchronized) __ bind(fast_accessor_slow_entry_path); Label dispatch_entry_2; __ movptr(rcx, sender_sp_on_entry); __ movptr(state, (int32_t)NULL_WORD); // no current activation __ jmp(dispatch_entry_2); const Register locals = rdi; Label re_dispatch; __ bind(re_dispatch); // save sender sp (doesn't include return address __ lea(rcx, Address(rsp, wordSize)); __ bind(dispatch_entry_2); // save sender sp __ push(rcx); const Address constMethod (rbx, Method::const_offset()); const Address access_flags (rbx, Method::access_flags_offset()); const Address size_of_parameters(rdx, ConstMethod::size_of_parameters_offset()); const Address size_of_locals (rdx, ConstMethod::size_of_locals_offset()); // const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); // const Address monitor_block_bot (rbp, frame::interpreter_frame_initial_sp_offset * wordSize); // const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock)); // get parameter size (always needed) __ movptr(rdx, constMethod); __ load_unsigned_short(rcx, size_of_parameters); // rbx: Method* // rcx: size of parameters __ load_unsigned_short(rdx, size_of_locals); // get size of locals in words __ subptr(rdx, rcx); // rdx = no. of additional locals // see if we've got enough room on the stack for locals plus overhead. generate_stack_overflow_check(); // C++ // c++ interpreter does not use stack banging or any implicit exceptions // leave for now to verify that check is proper. bang_stack_shadow_pages(false); // compute beginning of parameters (rdi) __ lea(locals, Address(rsp, rcx, Address::times_ptr, wordSize)); // save sender's sp // __ movl(rcx, rsp); // get sender's sp __ pop(rcx); // get return address __ pop(rax); // rdx - # of additional locals // allocate space for locals // explicitly initialize locals { Label exit, loop; __ testl(rdx, rdx); // (32bit ok) __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0 __ bind(loop); __ push((int32_t)NULL_WORD); // initialize local variables __ decrement(rdx); // until everything initialized __ jcc(Assembler::greater, loop); __ bind(exit); } // Assumes rax = return address // allocate and initialize new interpreterState and method expression stack // IN(locals) -> locals // IN(state) -> any current interpreter activation // destroys rax, rcx, rdx, rdi // OUT (state) -> new interpreterState // OUT(rsp) -> bottom of methods expression stack generate_compute_interpreter_state(state, locals, rcx, false); // Call interpreter Label call_interpreter; __ bind(call_interpreter); // c++ interpreter does not use stack banging or any implicit exceptions // leave for now to verify that check is proper. bang_stack_shadow_pages(false); // Call interpreter enter here if message is // set and we know stack size is valid Label call_interpreter_2; __ bind(call_interpreter_2); { const Register thread = NOT_LP64(rcx) LP64_ONLY(r15_thread); #ifdef _LP64 __ mov(c_rarg0, state); #else __ push(state); // push arg to interpreter __ movptr(thread, STATE(_thread)); #endif // _LP64 // We can setup the frame anchor with everything we want at this point // as we are thread_in_Java and no safepoints can occur until we go to // vm mode. We do have to clear flags on return from vm but that is it // __ movptr(Address(thread, JavaThread::last_Java_fp_offset()), rbp); __ movptr(Address(thread, JavaThread::last_Java_sp_offset()), rsp); // Call the interpreter RuntimeAddress normal(CAST_FROM_FN_PTR(address, BytecodeInterpreter::run)); RuntimeAddress checking(CAST_FROM_FN_PTR(address, BytecodeInterpreter::runWithChecks)); __ call(JvmtiExport::can_post_interpreter_events() ? checking : normal); NOT_LP64(__ pop(rax);) // discard parameter to run // // state is preserved since it is callee saved // // reset_last_Java_frame NOT_LP64(__ movl(thread, STATE(_thread));) __ reset_last_Java_frame(thread, true, true); } // examine msg from interpreter to determine next action __ movl(rdx, STATE(_msg)); // Get new message Label call_method; Label return_from_interpreted_method; Label throw_exception; Label bad_msg; Label do_OSR; __ cmpl(rdx, (int32_t)BytecodeInterpreter::call_method); __ jcc(Assembler::equal, call_method); __ cmpl(rdx, (int32_t)BytecodeInterpreter::return_from_method); __ jcc(Assembler::equal, return_from_interpreted_method); __ cmpl(rdx, (int32_t)BytecodeInterpreter::do_osr); __ jcc(Assembler::equal, do_OSR); __ cmpl(rdx, (int32_t)BytecodeInterpreter::throwing_exception); __ jcc(Assembler::equal, throw_exception); __ cmpl(rdx, (int32_t)BytecodeInterpreter::more_monitors); __ jcc(Assembler::notEqual, bad_msg); // Allocate more monitor space, shuffle expression stack.... generate_more_monitors(); __ jmp(call_interpreter); // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode) unctrap_frame_manager_entry = __ pc(); // // Load the registers we need. __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter))); __ movptr(rsp, STATE(_stack_limit)); // restore expression stack to full depth __ jmp(call_interpreter_2); //============================================================================= // Returning from a compiled method into a deopted method. The bytecode at the // bcp has completed. The result of the bytecode is in the native abi (the tosca // for the template based interpreter). Any stack space that was used by the // bytecode that has completed has been removed (e.g. parameters for an invoke) // so all that we have to do is place any pending result on the expression stack // and resume execution on the next bytecode. generate_deopt_handling(); __ jmp(call_interpreter); // Current frame has caught an exception we need to dispatch to the // handler. We can get here because a native interpreter frame caught // an exception in which case there is no handler and we must rethrow // If it is a vanilla interpreted frame the we simply drop into the // interpreter and let it do the lookup. Interpreter::_rethrow_exception_entry = __ pc(); // rax: exception // rdx: return address/pc that threw exception Label return_with_exception; Label unwind_and_forward; // restore state pointer. __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter))); __ movptr(rbx, STATE(_method)); // get method #ifdef _LP64 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax); #else __ movl(rcx, STATE(_thread)); // get thread // Store exception with interpreter will expect it __ movptr(Address(rcx, Thread::pending_exception_offset()), rax); #endif // _LP64 // is current frame vanilla or native? __ movl(rdx, access_flags); __ testl(rdx, JVM_ACC_NATIVE); __ jcc(Assembler::zero, return_with_exception); // vanilla interpreted frame, handle directly // We drop thru to unwind a native interpreted frame with a pending exception // We jump here for the initial interpreter frame with exception pending // We unwind the current acivation and forward it to our caller. __ bind(unwind_and_forward); // unwind rbp, return stack to unextended value and re-push return address __ movptr(rcx, STATE(_sender_sp)); __ leave(); __ pop(rdx); __ mov(rsp, rcx); __ push(rdx); __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); // Return point from a call which returns a result in the native abi // (c1/c2/jni-native). This result must be processed onto the java // expression stack. // // A pending exception may be present in which case there is no result present Label resume_interpreter; Label do_float; Label do_double; Label done_conv; // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases if (UseSSE < 2) { __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter))); __ movptr(rbx, STATE(_result._to_call._callee)); // get method just executed __ movl(rcx, Address(rbx, Method::result_index_offset())); __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT)); // Result stub address array index __ jcc(Assembler::equal, do_float); __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE)); // Result stub address array index __ jcc(Assembler::equal, do_double); #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) __ empty_FPU_stack(); #endif // COMPILER2 __ jmp(done_conv); __ bind(do_float); #ifdef COMPILER2 for (int i = 1; i < 8; i++) { __ ffree(i); } #endif // COMPILER2 __ jmp(done_conv); __ bind(do_double); #ifdef COMPILER2 for (int i = 1; i < 8; i++) { __ ffree(i); } #endif // COMPILER2 __ jmp(done_conv); } else { __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled"); __ jmp(done_conv); } // Return point to interpreter from compiled/native method InternalAddress return_from_native_method(__ pc()); __ bind(done_conv); // Result if any is in tosca. The java expression stack is in the state that the // calling convention left it (i.e. params may or may not be present) // Copy the result from tosca and place it on java expression stack. // Restore rsi/r13 as compiled code may not preserve it __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter))); // restore stack to what we had when we left (in case i2c extended it) __ movptr(rsp, STATE(_stack)); __ lea(rsp, Address(rsp, wordSize)); // If there is a pending exception then we don't really have a result to process #ifdef _LP64 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); #else __ movptr(rcx, STATE(_thread)); // get thread __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD); #endif // _LP64 __ jcc(Assembler::notZero, return_with_exception); // get method just executed __ movptr(rbx, STATE(_result._to_call._callee)); // callee left args on top of expression stack, remove them __ movptr(rcx, constMethod); __ load_unsigned_short(rcx, Address(rcx, ConstMethod::size_of_parameters_offset())); __ lea(rsp, Address(rsp, rcx, Address::times_ptr)); __ movl(rcx, Address(rbx, Method::result_index_offset())); ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack); // Address index(noreg, rax, Address::times_ptr); __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr))); // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack))); __ call(rcx); // call result converter __ jmp(resume_interpreter); // An exception is being caught on return to a vanilla interpreter frame. // Empty the stack and resume interpreter __ bind(return_with_exception); // Exception present, empty stack __ movptr(rsp, STATE(_stack_base)); __ jmp(resume_interpreter); // Return from interpreted method we return result appropriate to the caller (i.e. "recursive" // interpreter call, or native) and unwind this interpreter activation. // All monitors should be unlocked. __ bind(return_from_interpreted_method); Label return_to_initial_caller; __ movptr(rbx, STATE(_method)); // get method just executed __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD); // returning from "recursive" interpreter call? __ movl(rax, Address(rbx, Method::result_index_offset())); // get result type index __ jcc(Assembler::equal, return_to_initial_caller); // back to native code (call_stub/c1/c2) // Copy result to callers java stack ExternalAddress stack_to_stack((address)CppInterpreter::_stack_to_stack); // Address index(noreg, rax, Address::times_ptr); __ movptr(rax, ArrayAddress(stack_to_stack, Address(noreg, rax, Address::times_ptr))); // __ movl(rax, Address(noreg, rax, Address::times_ptr, int(AbstractInterpreter::_stack_to_stack))); __ call(rax); // call result converter Label unwind_recursive_activation; __ bind(unwind_recursive_activation); // returning to interpreter method from "recursive" interpreter call // result converter left rax pointing to top of the java stack for method we are returning // to. Now all we must do is unwind the state from the completed call __ movptr(state, STATE(_prev_link)); // unwind state __ leave(); // pop the frame __ mov(rsp, rax); // unwind stack to remove args // Resume the interpreter. The current frame contains the current interpreter // state object. // __ bind(resume_interpreter); // state == interpreterState object for method we are resuming __ movl(STATE(_msg), (int)BytecodeInterpreter::method_resume); __ lea(rsp, Address(rsp, -wordSize)); // prepush stack (result if any already present) __ movptr(STATE(_stack), rsp); // inform interpreter of new stack depth (parameters removed, // result if any on stack already ) __ movptr(rsp, STATE(_stack_limit)); // restore expression stack to full depth __ jmp(call_interpreter_2); // No need to bang // interpreter returning to native code (call_stub/c1/c2) // convert result and unwind initial activation // rax - result index __ bind(return_to_initial_caller); ExternalAddress stack_to_native((address)CppInterpreter::_stack_to_native_abi); // Address index(noreg, rax, Address::times_ptr); __ movptr(rax, ArrayAddress(stack_to_native, Address(noreg, rax, Address::times_ptr))); __ call(rax); // call result converter Label unwind_initial_activation; __ bind(unwind_initial_activation); // RETURN TO CALL_STUB/C1/C2 code (result if any in rax/rdx ST(0)) /* Current stack picture [ incoming parameters ] [ extra locals ] [ return address to CALL_STUB/C1/C2] fp -> [ CALL_STUB/C1/C2 fp ] BytecodeInterpreter object expression stack sp -> */ // return restoring the stack to the original sender_sp value __ movptr(rcx, STATE(_sender_sp)); __ leave(); __ pop(rdi); // get return address // set stack to sender's sp __ mov(rsp, rcx); __ jmp(rdi); // return to call_stub // OSR request, adjust return address to make current frame into adapter frame // and enter OSR nmethod __ bind(do_OSR); Label remove_initial_frame; // We are going to pop this frame. Is there another interpreter frame underneath // it or is it callstub/compiled? // Move buffer to the expected parameter location __ movptr(rcx, STATE(_result._osr._osr_buf)); __ movptr(rax, STATE(_result._osr._osr_entry)); __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD); // returning from "recursive" interpreter call? __ jcc(Assembler::equal, remove_initial_frame); // back to native code (call_stub/c1/c2) __ movptr(sender_sp_on_entry, STATE(_sender_sp)); // get sender's sp in expected register __ leave(); // pop the frame __ mov(rsp, sender_sp_on_entry); // trim any stack expansion // We know we are calling compiled so push specialized return // method uses specialized entry, push a return so we look like call stub setup // this path will handle fact that result is returned in registers and not // on the java stack. __ pushptr(return_from_native_method.addr()); __ jmp(rax); __ bind(remove_initial_frame); __ movptr(rdx, STATE(_sender_sp)); __ leave(); // get real return __ pop(rsi); // set stack to sender's sp __ mov(rsp, rdx); // repush real return __ push(rsi); // Enter OSR nmethod __ jmp(rax); // Call a new method. All we do is (temporarily) trim the expression stack // push a return address to bring us back to here and leap to the new entry. __ bind(call_method); // stack points to next free location and not top element on expression stack // method expects sp to be pointing to topmost element __ movptr(rsp, STATE(_stack)); // pop args to c++ interpreter, set sp to java stack top __ lea(rsp, Address(rsp, wordSize)); __ movptr(rbx, STATE(_result._to_call._callee)); // get method to execute // don't need a return address if reinvoking interpreter // Make it look like call_stub calling conventions // Get (potential) receiver // get size of parameters in words __ movptr(rcx, constMethod); __ load_unsigned_short(rcx, Address(rcx, ConstMethod::size_of_parameters_offset())); ExternalAddress recursive(CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation)); __ pushptr(recursive.addr()); // make it look good in the debugger InternalAddress entry(entry_point); __ cmpptr(STATE(_result._to_call._callee_entry_point), entry.addr()); // returning to interpreter? __ jcc(Assembler::equal, re_dispatch); // yes __ pop(rax); // pop dummy address // get specialized entry __ movptr(rax, STATE(_result._to_call._callee_entry_point)); // set sender SP __ mov(sender_sp_on_entry, rsp); // method uses specialized entry, push a return so we look like call stub setup // this path will handle fact that result is returned in registers and not // on the java stack. __ pushptr(return_from_native_method.addr()); __ jmp(rax); __ bind(bad_msg); __ stop("Bad message from interpreter"); // Interpreted method "returned" with an exception pass it on... // Pass result, unwind activation and continue/return to interpreter/call_stub // We handle result (if any) differently based on return to interpreter or call_stub Label unwind_initial_with_pending_exception; __ bind(throw_exception); __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD); // returning from recursive interpreter call? __ jcc(Assembler::equal, unwind_initial_with_pending_exception); // no, back to native code (call_stub/c1/c2) __ movptr(rax, STATE(_locals)); // pop parameters get new stack value __ addptr(rax, wordSize); // account for prepush before we return __ jmp(unwind_recursive_activation); __ bind(unwind_initial_with_pending_exception); // We will unwind the current (initial) interpreter frame and forward // the exception to the caller. We must put the exception in the // expected register and clear pending exception and then forward. __ jmp(unwind_and_forward); interpreter_frame_manager = entry_point; return entry_point; } address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) { // determine code generation flags bool synchronized = false; address entry_point = NULL; switch (kind) { case Interpreter::zerolocals : break; case Interpreter::zerolocals_synchronized: synchronized = true; break; case Interpreter::native : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false); break; case Interpreter::native_synchronized : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true); break; case Interpreter::empty : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry(); break; case Interpreter::accessor : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry(); break; case Interpreter::abstract : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry(); break; case Interpreter::method_handle : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break; case Interpreter::java_lang_math_sin : // fall thru case Interpreter::java_lang_math_cos : // fall thru case Interpreter::java_lang_math_tan : // fall thru case Interpreter::java_lang_math_abs : // fall thru case Interpreter::java_lang_math_log : // fall thru case Interpreter::java_lang_math_log10 : // fall thru case Interpreter::java_lang_math_sqrt : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind); break; case Interpreter::java_lang_ref_reference_get : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break; default : ShouldNotReachHere(); break; } if (entry_point) return entry_point; return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized); } InterpreterGenerator::InterpreterGenerator(StubQueue* code) : CppInterpreterGenerator(code) { generate_all(); // down here so it can be "virtual" } // Deoptimization helpers for C++ interpreter // How much stack a method activation needs in words. int AbstractInterpreter::size_top_interpreter_activation(Method* method) { const int stub_code = 4; // see generate_call_stub // Save space for one monitor to get into the interpreted method in case // the method is synchronized int monitor_size = method->is_synchronized() ? 1*frame::interpreter_frame_monitor_size() : 0; // total static overhead size. Account for interpreter state object, return // address, saved rbp and 2 words for a "static long no_params() method" issue. const int overhead_size = sizeof(BytecodeInterpreter)/wordSize + ( frame::sender_sp_offset - frame::link_offset) + 2; const int method_stack = (method->max_locals() + method->max_stack()) * Interpreter::stackElementWords; return overhead_size + method_stack + stub_code; } // returns the activation size. static int size_activation_helper(int extra_locals_size, int monitor_size) { return (extra_locals_size + // the addition space for locals 2*BytesPerWord + // return address and saved rbp 2*BytesPerWord + // "static long no_params() method" issue sizeof(BytecodeInterpreter) + // interpreterState monitor_size); // monitors } void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill, frame* caller, frame* current, Method* method, intptr_t* locals, intptr_t* stack, intptr_t* stack_base, intptr_t* monitor_base, intptr_t* frame_bottom, bool is_top_frame ) { // What about any vtable? // to_fill->_thread = JavaThread::current(); // This gets filled in later but make it something recognizable for now to_fill->_bcp = method->code_base(); to_fill->_locals = locals; to_fill->_constants = method->constants()->cache(); to_fill->_method = method; to_fill->_mdx = NULL; to_fill->_stack = stack; if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) { to_fill->_msg = deopt_resume2; } else { to_fill->_msg = method_resume; } to_fill->_result._to_call._bcp_advance = 0; to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone to_fill->_prev_link = NULL; to_fill->_sender_sp = caller->unextended_sp(); if (caller->is_interpreted_frame()) { interpreterState prev = caller->get_interpreterState(); to_fill->_prev_link = prev; // *current->register_addr(GR_Iprev_state) = (intptr_t) prev; // Make the prev callee look proper prev->_result._to_call._callee = method; if (*prev->_bcp == Bytecodes::_invokeinterface) { prev->_result._to_call._bcp_advance = 5; } else { prev->_result._to_call._bcp_advance = 3; } } to_fill->_oop_temp = NULL; to_fill->_stack_base = stack_base; // Need +1 here because stack_base points to the word just above the first expr stack entry // and stack_limit is supposed to point to the word just below the last expr stack entry. // See generate_compute_interpreter_state. to_fill->_stack_limit = stack_base - (method->max_stack() + 1); to_fill->_monitor_base = (BasicObjectLock*) monitor_base; to_fill->_self_link = to_fill; assert(stack >= to_fill->_stack_limit && stack < to_fill->_stack_base, "Stack top out of range"); } int AbstractInterpreter::layout_activation(Method* method, int tempcount, // int popframe_extra_args, int moncount, int caller_actual_parameters, int callee_param_count, int callee_locals, frame* caller, frame* interpreter_frame, bool is_top_frame, bool is_bottom_frame) { assert(popframe_extra_args == 0, "FIX ME"); // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state() // does as far as allocating an interpreter frame. // If interpreter_frame!=NULL, set up the method, locals, and monitors. // The frame interpreter_frame, if not NULL, is guaranteed to be the right size, // as determined by a previous call to this method. // It is also guaranteed to be walkable even though it is in a skeletal state // NOTE: return size is in words not bytes // NOTE: tempcount is the current size of the java expression stack. For top most // frames we will allocate a full sized expression stack and not the curback // version that non-top frames have. // Calculate the amount our frame will be adjust by the callee. For top frame // this is zero. // NOTE: ia64 seems to do this wrong (or at least backwards) in that it // calculates the extra locals based on itself. Not what the callee does // to it. So it ignores last_frame_adjust value. Seems suspicious as far // as getting sender_sp correct. int extra_locals_size = (callee_locals - callee_param_count) * BytesPerWord; int monitor_size = sizeof(BasicObjectLock) * moncount; // First calculate the frame size without any java expression stack int short_frame_size = size_activation_helper(extra_locals_size, monitor_size); // Now with full size expression stack int full_frame_size = short_frame_size + method->max_stack() * BytesPerWord; // and now with only live portion of the expression stack short_frame_size = short_frame_size + tempcount * BytesPerWord; // the size the activation is right now. Only top frame is full size int frame_size = (is_top_frame ? full_frame_size : short_frame_size); if (interpreter_frame != NULL) { #ifdef ASSERT assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable"); #endif // MUCHO HACK intptr_t* frame_bottom = (intptr_t*) ((intptr_t)interpreter_frame->sp() - (full_frame_size - frame_size)); /* Now fillin the interpreterState object */ // The state object is the first thing on the frame and easily located interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter)); // Find the locals pointer. This is rather simple on x86 because there is no // confusing rounding at the callee to account for. We can trivially locate // our locals based on the current fp(). // Note: the + 2 is for handling the "static long no_params() method" issue. // (too bad I don't really remember that issue well...) intptr_t* locals; // If the caller is interpreted we need to make sure that locals points to the first // argument that the caller passed and not in an area where the stack might have been extended. // because the stack to stack to converter needs a proper locals value in order to remove the // arguments from the caller and place the result in the proper location. Hmm maybe it'd be // simpler if we simply stored the result in the BytecodeInterpreter object and let the c++ code // adjust the stack?? HMMM QQQ // if (caller->is_interpreted_frame()) { // locals must agree with the caller because it will be used to set the // caller's tos when we return. interpreterState prev = caller->get_interpreterState(); // stack() is prepushed. locals = prev->stack() + method->size_of_parameters(); // locals = caller->unextended_sp() + (method->size_of_parameters() - 1); if (locals != interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2) { // os::breakpoint(); } } else { // this is where a c2i would have placed locals (except for the +2) locals = interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2; } intptr_t* monitor_base = (intptr_t*) cur_state; intptr_t* stack_base = (intptr_t*) ((intptr_t) monitor_base - monitor_size); /* +1 because stack is always prepushed */ intptr_t* stack = (intptr_t*) ((intptr_t) stack_base - (tempcount + 1) * BytesPerWord); BytecodeInterpreter::layout_interpreterState(cur_state, caller, interpreter_frame, method, locals, stack, stack_base, monitor_base, frame_bottom, is_top_frame); // BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp()); } return frame_size/BytesPerWord; } #endif // CC_INTERP (all) Other Java examples (source code examples)Here is a short list of links related to this Java cppInterpreter_x86.cpp source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.