alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (nativeInst_x86.cpp)

This example Java source code file (nativeInst_x86.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

amd64, assert, icache::invalidate_range, intptr_format, lds, les, nativecall, nativegeneraljump\:\:insert_unconditional, nativegeneraljump\:\:verify, nativejump, not_lp64, null, safepointsynchronize\:\:is_at_safepoint, vex

The nativeInst_x86.cpp Java example source code

/*
 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "memory/resourceArea.hpp"
#include "nativeInst_x86.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/ostream.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif

void NativeInstruction::wrote(int offset) {
  ICache::invalidate_word(addr_at(offset));
}


void NativeCall::verify() {
  // Make sure code pattern is actually a call imm32 instruction.
  int inst = ubyte_at(0);
  if (inst != instruction_code) {
    tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", instruction_address(),
                                                        inst);
    fatal("not a call disp32");
  }
}

address NativeCall::destination() const {
  // Getting the destination of a call isn't safe because that call can
  // be getting patched while you're calling this.  There's only special
  // places where this can be called but not automatically verifiable by
  // checking which locks are held.  The solution is true atomic patching
  // on x86, nyi.
  return return_address() + displacement();
}

void NativeCall::print() {
  tty->print_cr(PTR_FORMAT ": call " PTR_FORMAT,
                instruction_address(), destination());
}

// Inserts a native call instruction at a given pc
void NativeCall::insert(address code_pos, address entry) {
  intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
#ifdef AMD64
  guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
#endif // AMD64
  *code_pos = instruction_code;
  *((int32_t *)(code_pos+1)) = (int32_t) disp;
  ICache::invalidate_range(code_pos, instruction_size);
}

// MT-safe patching of a call instruction.
// First patches first word of instruction to two jmp's that jmps to them
// selfs (spinlock). Then patches the last byte, and then atomicly replaces
// the jmp's with the first 4 byte of the new instruction.
void NativeCall::replace_mt_safe(address instr_addr, address code_buffer) {
  assert(Patching_lock->is_locked() ||
         SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
  assert (instr_addr != NULL, "illegal address for code patching");

  NativeCall* n_call =  nativeCall_at (instr_addr); // checking that it is a call
  if (os::is_MP()) {
    guarantee((intptr_t)instr_addr % BytesPerWord == 0, "must be aligned");
  }

  // First patch dummy jmp in place
  unsigned char patch[4];
  assert(sizeof(patch)==sizeof(jint), "sanity check");
  patch[0] = 0xEB;       // jmp rel8
  patch[1] = 0xFE;       // jmp to self
  patch[2] = 0xEB;
  patch[3] = 0xFE;

  // First patch dummy jmp in place
  *(jint*)instr_addr = *(jint *)patch;

  // Invalidate.  Opteron requires a flush after every write.
  n_call->wrote(0);

  // Patch 4th byte
  instr_addr[4] = code_buffer[4];

  n_call->wrote(4);

  // Patch bytes 0-3
  *(jint*)instr_addr = *(jint *)code_buffer;

  n_call->wrote(0);

#ifdef ASSERT
   // verify patching
   for ( int i = 0; i < instruction_size; i++) {
     address ptr = (address)((intptr_t)code_buffer + i);
     int a_byte = (*ptr) & 0xFF;
     assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
   }
#endif

}


// Similar to replace_mt_safe, but just changes the destination.  The
// important thing is that free-running threads are able to execute this
// call instruction at all times.  If the displacement field is aligned
// we can simply rely on atomicity of 32-bit writes to make sure other threads
// will see no intermediate states.  Otherwise, the first two bytes of the
// call are guaranteed to be aligned, and can be atomically patched to a
// self-loop to guard the instruction while we change the other bytes.

// We cannot rely on locks here, since the free-running threads must run at
// full speed.
//
// Used in the runtime linkage of calls; see class CompiledIC.
// (Cf. 4506997 and 4479829, where threads witnessed garbage displacements.)
void NativeCall::set_destination_mt_safe(address dest) {
  debug_only(verify());
  // Make sure patching code is locked.  No two threads can patch at the same
  // time but one may be executing this code.
  assert(Patching_lock->is_locked() ||
         SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
  // Both C1 and C2 should now be generating code which aligns the patched address
  // to be within a single cache line except that C1 does not do the alignment on
  // uniprocessor systems.
  bool is_aligned = ((uintptr_t)displacement_address() + 0) / cache_line_size ==
                    ((uintptr_t)displacement_address() + 3) / cache_line_size;

  guarantee(!os::is_MP() || is_aligned, "destination must be aligned");

  if (is_aligned) {
    // Simple case:  The destination lies within a single cache line.
    set_destination(dest);
  } else if ((uintptr_t)instruction_address() / cache_line_size ==
             ((uintptr_t)instruction_address()+1) / cache_line_size) {
    // Tricky case:  The instruction prefix lies within a single cache line.
    intptr_t disp = dest - return_address();
#ifdef AMD64
    guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
#endif // AMD64

    int call_opcode = instruction_address()[0];

    // First patch dummy jump in place:
    {
      u_char patch_jump[2];
      patch_jump[0] = 0xEB;       // jmp rel8
      patch_jump[1] = 0xFE;       // jmp to self

      assert(sizeof(patch_jump)==sizeof(short), "sanity check");
      *(short*)instruction_address() = *(short*)patch_jump;
    }
    // Invalidate.  Opteron requires a flush after every write.
    wrote(0);

    // (Note: We assume any reader which has already started to read
    // the unpatched call will completely read the whole unpatched call
    // without seeing the next writes we are about to make.)

    // Next, patch the last three bytes:
    u_char patch_disp[5];
    patch_disp[0] = call_opcode;
    *(int32_t*)&patch_disp[1] = (int32_t)disp;
    assert(sizeof(patch_disp)==instruction_size, "sanity check");
    for (int i = sizeof(short); i < instruction_size; i++)
      instruction_address()[i] = patch_disp[i];

    // Invalidate.  Opteron requires a flush after every write.
    wrote(sizeof(short));

    // (Note: We assume that any reader which reads the opcode we are
    // about to repatch will also read the writes we just made.)

    // Finally, overwrite the jump:
    *(short*)instruction_address() = *(short*)patch_disp;
    // Invalidate.  Opteron requires a flush after every write.
    wrote(0);

    debug_only(verify());
    guarantee(destination() == dest, "patch succeeded");
  } else {
    // Impossible:  One or the other must be atomically writable.
    ShouldNotReachHere();
  }
}


void NativeMovConstReg::verify() {
#ifdef AMD64
  // make sure code pattern is actually a mov reg64, imm64 instruction
  if ((ubyte_at(0) != Assembler::REX_W && ubyte_at(0) != Assembler::REX_WB) ||
      (ubyte_at(1) & (0xff ^ register_mask)) != 0xB8) {
    print();
    fatal("not a REX.W[B] mov reg64, imm64");
  }
#else
  // make sure code pattern is actually a mov reg, imm32 instruction
  u_char test_byte = *(u_char*)instruction_address();
  u_char test_byte_2 = test_byte & ( 0xff ^ register_mask);
  if (test_byte_2 != instruction_code) fatal("not a mov reg, imm32");
#endif // AMD64
}


void NativeMovConstReg::print() {
  tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT,
                instruction_address(), data());
}

//-------------------------------------------------------------------

int NativeMovRegMem::instruction_start() const {
  int off = 0;
  u_char instr_0 = ubyte_at(off);

  // See comment in Assembler::locate_operand() about VEX prefixes.
  if (instr_0 == instruction_VEX_prefix_2bytes) {
    assert((UseAVX > 0), "shouldn't have VEX prefix");
    NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions"));
    return 2;
  }
  if (instr_0 == instruction_VEX_prefix_3bytes) {
    assert((UseAVX > 0), "shouldn't have VEX prefix");
    NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions"));
    return 3;
  }

  // First check to see if we have a (prefixed or not) xor
  if (instr_0 >= instruction_prefix_wide_lo && // 0x40
      instr_0 <= instruction_prefix_wide_hi) { // 0x4f
    off++;
    instr_0 = ubyte_at(off);
  }

  if (instr_0 == instruction_code_xor) {
    off += 2;
    instr_0 = ubyte_at(off);
  }

  // Now look for the real instruction and the many prefix/size specifiers.

  if (instr_0 == instruction_operandsize_prefix ) {  // 0x66
    off++; // Not SSE instructions
    instr_0 = ubyte_at(off);
  }

  if ( instr_0 == instruction_code_xmm_ss_prefix || // 0xf3
       instr_0 == instruction_code_xmm_sd_prefix) { // 0xf2
    off++;
    instr_0 = ubyte_at(off);
  }

  if ( instr_0 >= instruction_prefix_wide_lo && // 0x40
       instr_0 <= instruction_prefix_wide_hi) { // 0x4f
    off++;
    instr_0 = ubyte_at(off);
  }


  if (instr_0 == instruction_extended_prefix ) {  // 0x0f
    off++;
  }

  return off;
}

address NativeMovRegMem::instruction_address() const {
  return addr_at(instruction_start());
}

address NativeMovRegMem::next_instruction_address() const {
  address ret = instruction_address() + instruction_size;
  u_char instr_0 =  *(u_char*) instruction_address();
  switch (instr_0) {
  case instruction_operandsize_prefix:

    fatal("should have skipped instruction_operandsize_prefix");
    break;

  case instruction_extended_prefix:
    fatal("should have skipped instruction_extended_prefix");
    break;

  case instruction_code_mem2reg_movslq: // 0x63
  case instruction_code_mem2reg_movzxb: // 0xB6
  case instruction_code_mem2reg_movsxb: // 0xBE
  case instruction_code_mem2reg_movzxw: // 0xB7
  case instruction_code_mem2reg_movsxw: // 0xBF
  case instruction_code_reg2mem:        // 0x89 (q/l)
  case instruction_code_mem2reg:        // 0x8B (q/l)
  case instruction_code_reg2memb:       // 0x88
  case instruction_code_mem2regb:       // 0x8a

  case instruction_code_float_s:        // 0xd9 fld_s a
  case instruction_code_float_d:        // 0xdd fld_d a

  case instruction_code_xmm_load:       // 0x10
  case instruction_code_xmm_store:      // 0x11
  case instruction_code_xmm_lpd:        // 0x12
    {
      // If there is an SIB then instruction is longer than expected
      u_char mod_rm = *(u_char*)(instruction_address() + 1);
      if ((mod_rm & 7) == 0x4) {
        ret++;
      }
    }
  case instruction_code_xor:
    fatal("should have skipped xor lead in");
    break;

  default:
    fatal("not a NativeMovRegMem");
  }
  return ret;

}

int NativeMovRegMem::offset() const{
  int off = data_offset + instruction_start();
  u_char mod_rm = *(u_char*)(instruction_address() + 1);
  // nnnn(r12|rsp) isn't coded as simple mod/rm since that is
  // the encoding to use an SIB byte. Which will have the nnnn
  // field off by one byte
  if ((mod_rm & 7) == 0x4) {
    off++;
  }
  return int_at(off);
}

void NativeMovRegMem::set_offset(int x) {
  int off = data_offset + instruction_start();
  u_char mod_rm = *(u_char*)(instruction_address() + 1);
  // nnnn(r12|rsp) isn't coded as simple mod/rm since that is
  // the encoding to use an SIB byte. Which will have the nnnn
  // field off by one byte
  if ((mod_rm & 7) == 0x4) {
    off++;
  }
  set_int_at(off, x);
}

void NativeMovRegMem::verify() {
  // make sure code pattern is actually a mov [reg+offset], reg instruction
  u_char test_byte = *(u_char*)instruction_address();
  switch (test_byte) {
    case instruction_code_reg2memb:  // 0x88 movb a, r
    case instruction_code_reg2mem:   // 0x89 movl a, r (can be movq in 64bit)
    case instruction_code_mem2regb:  // 0x8a movb r, a
    case instruction_code_mem2reg:   // 0x8b movl r, a (can be movq in 64bit)
      break;

    case instruction_code_mem2reg_movslq: // 0x63 movsql r, a
    case instruction_code_mem2reg_movzxb: // 0xb6 movzbl r, a (movzxb)
    case instruction_code_mem2reg_movzxw: // 0xb7 movzwl r, a (movzxw)
    case instruction_code_mem2reg_movsxb: // 0xbe movsbl r, a (movsxb)
    case instruction_code_mem2reg_movsxw: // 0xbf  movswl r, a (movsxw)
      break;

    case instruction_code_float_s:   // 0xd9 fld_s a
    case instruction_code_float_d:   // 0xdd fld_d a
    case instruction_code_xmm_load:  // 0x10 movsd xmm, a
    case instruction_code_xmm_store: // 0x11 movsd a, xmm
    case instruction_code_xmm_lpd:   // 0x12 movlpd xmm, a
      break;

    default:
          fatal ("not a mov [reg+offs], reg instruction");
  }
}


void NativeMovRegMem::print() {
  tty->print_cr("0x%x: mov reg, [reg + %x]", instruction_address(), offset());
}

//-------------------------------------------------------------------

void NativeLoadAddress::verify() {
  // make sure code pattern is actually a mov [reg+offset], reg instruction
  u_char test_byte = *(u_char*)instruction_address();
#ifdef _LP64
  if ( (test_byte == instruction_prefix_wide ||
        test_byte == instruction_prefix_wide_extended) ) {
    test_byte = *(u_char*)(instruction_address() + 1);
  }
#endif // _LP64
  if ( ! ((test_byte == lea_instruction_code)
          LP64_ONLY(|| (test_byte == mov64_instruction_code) ))) {
    fatal ("not a lea reg, [reg+offs] instruction");
  }
}


void NativeLoadAddress::print() {
  tty->print_cr("0x%x: lea [reg + %x], reg", instruction_address(), offset());
}

//--------------------------------------------------------------------------------

void NativeJump::verify() {
  if (*(u_char*)instruction_address() != instruction_code) {
    fatal("not a jump instruction");
  }
}


void NativeJump::insert(address code_pos, address entry) {
  intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
#ifdef AMD64
  guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
#endif // AMD64

  *code_pos = instruction_code;
  *((int32_t*)(code_pos + 1)) = (int32_t)disp;

  ICache::invalidate_range(code_pos, instruction_size);
}

void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) {
  // Patching to not_entrant can happen while activations of the method are
  // in use. The patching in that instance must happen only when certain
  // alignment restrictions are true. These guarantees check those
  // conditions.
#ifdef AMD64
  const int linesize = 64;
#else
  const int linesize = 32;
#endif // AMD64

  // Must be wordSize aligned
  guarantee(((uintptr_t) verified_entry & (wordSize -1)) == 0,
            "illegal address for code patching 2");
  // First 5 bytes must be within the same cache line - 4827828
  guarantee((uintptr_t) verified_entry / linesize ==
            ((uintptr_t) verified_entry + 4) / linesize,
            "illegal address for code patching 3");
}


// MT safe inserting of a jump over an unknown instruction sequence (used by nmethod::makeZombie)
// The problem: jmp <dest> is a 5-byte instruction. Atomical write can be only with 4 bytes.
// First patches the first word atomically to be a jump to itself.
// Then patches the last byte  and then atomically patches the first word (4-bytes),
// thus inserting the desired jump
// This code is mt-safe with the following conditions: entry point is 4 byte aligned,
// entry point is in same cache line as unverified entry point, and the instruction being
// patched is >= 5 byte (size of patch).
//
// In C2 the 5+ byte sized instruction is enforced by code in MachPrologNode::emit.
// In C1 the restriction is enforced by CodeEmitter::method_entry
//
void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
  // complete jump instruction (to be inserted) is in code_buffer;
  unsigned char code_buffer[5];
  code_buffer[0] = instruction_code;
  intptr_t disp = (intptr_t)dest - ((intptr_t)verified_entry + 1 + 4);
#ifdef AMD64
  guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
#endif // AMD64
  *(int32_t*)(code_buffer + 1) = (int32_t)disp;

  check_verified_entry_alignment(entry, verified_entry);

  // Can't call nativeJump_at() because it's asserts jump exists
  NativeJump* n_jump = (NativeJump*) verified_entry;

  //First patch dummy jmp in place

  unsigned char patch[4];
  assert(sizeof(patch)==sizeof(int32_t), "sanity check");
  patch[0] = 0xEB;       // jmp rel8
  patch[1] = 0xFE;       // jmp to self
  patch[2] = 0xEB;
  patch[3] = 0xFE;

  // First patch dummy jmp in place
  *(int32_t*)verified_entry = *(int32_t *)patch;

  n_jump->wrote(0);

  // Patch 5th byte (from jump instruction)
  verified_entry[4] = code_buffer[4];

  n_jump->wrote(4);

  // Patch bytes 0-3 (from jump instruction)
  *(int32_t*)verified_entry = *(int32_t *)code_buffer;
  // Invalidate.  Opteron requires a flush after every write.
  n_jump->wrote(0);

}

void NativePopReg::insert(address code_pos, Register reg) {
  assert(reg->encoding() < 8, "no space for REX");
  assert(NativePopReg::instruction_size == sizeof(char), "right address unit for update");
  *code_pos = (u_char)(instruction_code | reg->encoding());
  ICache::invalidate_range(code_pos, instruction_size);
}


void NativeIllegalInstruction::insert(address code_pos) {
  assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update");
  *(short *)code_pos = instruction_code;
  ICache::invalidate_range(code_pos, instruction_size);
}

void NativeGeneralJump::verify() {
  assert(((NativeInstruction *)this)->is_jump() ||
         ((NativeInstruction *)this)->is_cond_jump(), "not a general jump instruction");
}


void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
  intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
#ifdef AMD64
  guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
#endif // AMD64

  *code_pos = unconditional_long_jump;
  *((int32_t *)(code_pos+1)) = (int32_t) disp;
  ICache::invalidate_range(code_pos, instruction_size);
}


// MT-safe patching of a long jump instruction.
// First patches first word of instruction to two jmp's that jmps to them
// selfs (spinlock). Then patches the last byte, and then atomicly replaces
// the jmp's with the first 4 byte of the new instruction.
void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) {
   assert (instr_addr != NULL, "illegal address for code patching (4)");
   NativeGeneralJump* n_jump =  nativeGeneralJump_at (instr_addr); // checking that it is a jump

   // Temporary code
   unsigned char patch[4];
   assert(sizeof(patch)==sizeof(int32_t), "sanity check");
   patch[0] = 0xEB;       // jmp rel8
   patch[1] = 0xFE;       // jmp to self
   patch[2] = 0xEB;
   patch[3] = 0xFE;

   // First patch dummy jmp in place
   *(int32_t*)instr_addr = *(int32_t *)patch;
    n_jump->wrote(0);

   // Patch 4th byte
   instr_addr[4] = code_buffer[4];

    n_jump->wrote(4);

   // Patch bytes 0-3
   *(jint*)instr_addr = *(jint *)code_buffer;

    n_jump->wrote(0);

#ifdef ASSERT
   // verify patching
   for ( int i = 0; i < instruction_size; i++) {
     address ptr = (address)((intptr_t)code_buffer + i);
     int a_byte = (*ptr) & 0xFF;
     assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
   }
#endif

}



address NativeGeneralJump::jump_destination() const {
  int op_code = ubyte_at(0);
  bool is_rel32off = (op_code == 0xE9 || op_code == 0x0F);
  int  offset  = (op_code == 0x0F)  ? 2 : 1;
  int  length  = offset + ((is_rel32off) ? 4 : 1);

  if (is_rel32off)
    return addr_at(0) + length + int_at(offset);
  else
    return addr_at(0) + length + sbyte_at(offset);
}

bool NativeInstruction::is_dtrace_trap() {
  return (*(int32_t*)this & 0xff) == 0xcc;
}

Other Java examples (source code examples)

Here is a short list of links related to this Java nativeInst_x86.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.