alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (relocInfo_x86.cpp)

This example Java source code file (relocInfo_x86.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

amd64, assembler::disp32_operand, assembler::imm_operand, assembler::locate_operand, assembler\:\:call32_operand, assembler\:\:is_polling_page_far, assembler\:\:locate_next_instruction, assembler\:\:narrow_oop_operand, assembler\:\:whichoperand, codebuffer, klass\:\:encode_klass, nativeinstruction, nativemovconstreg\*, whichoperand

The relocInfo_x86.cpp Java example source code

/*
 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "code/relocInfo.hpp"
#include "nativeInst_x86.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/safepoint.hpp"


void Relocation::pd_set_data_value(address x, intptr_t o, bool verify_only) {
#ifdef AMD64
  x += o;
  typedef Assembler::WhichOperand WhichOperand;
  WhichOperand which = (WhichOperand) format(); // that is, disp32 or imm, call32, narrow oop
  assert(which == Assembler::disp32_operand ||
         which == Assembler::narrow_oop_operand ||
         which == Assembler::imm_operand, "format unpacks ok");
  if (which == Assembler::imm_operand) {
    if (verify_only) {
      assert(*pd_address_in_code() == x, "instructions must match");
    } else {
      *pd_address_in_code() = x;
    }
  } else if (which == Assembler::narrow_oop_operand) {
    address disp = Assembler::locate_operand(addr(), which);
    // both compressed oops and compressed classes look the same
    if (Universe::heap()->is_in_reserved((oop)x)) {
    if (verify_only) {
      assert(*(uint32_t*) disp == oopDesc::encode_heap_oop((oop)x), "instructions must match");
    } else {
      *(int32_t*) disp = oopDesc::encode_heap_oop((oop)x);
    }
  } else {
      if (verify_only) {
        assert(*(uint32_t*) disp == Klass::encode_klass((Klass*)x), "instructions must match");
      } else {
        *(int32_t*) disp = Klass::encode_klass((Klass*)x);
      }
    }
  } else {
    // Note:  Use runtime_call_type relocations for call32_operand.
    address ip = addr();
    address disp = Assembler::locate_operand(ip, which);
    address next_ip = Assembler::locate_next_instruction(ip);
    if (verify_only) {
      assert(*(int32_t*) disp == (x - next_ip), "instructions must match");
    } else {
      *(int32_t*) disp = x - next_ip;
    }
  }
#else
  if (verify_only) {
    assert(*pd_address_in_code() == (x + o), "instructions must match");
  } else {
    *pd_address_in_code() = x + o;
  }
#endif // AMD64
}


address Relocation::pd_call_destination(address orig_addr) {
  intptr_t adj = 0;
  if (orig_addr != NULL) {
    // We just moved this call instruction from orig_addr to addr().
    // This means its target will appear to have grown by addr() - orig_addr.
    adj = -( addr() - orig_addr );
  }
  NativeInstruction* ni = nativeInstruction_at(addr());
  if (ni->is_call()) {
    return nativeCall_at(addr())->destination() + adj;
  } else if (ni->is_jump()) {
    return nativeJump_at(addr())->jump_destination() + adj;
  } else if (ni->is_cond_jump()) {
    return nativeGeneralJump_at(addr())->jump_destination() + adj;
  } else if (ni->is_mov_literal64()) {
    return (address) ((NativeMovConstReg*)ni)->data();
  } else {
    ShouldNotReachHere();
    return NULL;
  }
}


void Relocation::pd_set_call_destination(address x) {
  NativeInstruction* ni = nativeInstruction_at(addr());
  if (ni->is_call()) {
    nativeCall_at(addr())->set_destination(x);
  } else if (ni->is_jump()) {
    NativeJump* nj = nativeJump_at(addr());

    // Unresolved jumps are recognized by a destination of -1
    // However 64bit can't actually produce such an address
    // and encodes a jump to self but jump_destination will
    // return a -1 as the signal. We must not relocate this
    // jmp or the ic code will not see it as unresolved.

    if (nj->jump_destination() == (address) -1) {
      x = addr(); // jump to self
    }
    nj->set_jump_destination(x);
  } else if (ni->is_cond_jump()) {
    // %%%% kludge this, for now, until we get a jump_destination method
    address old_dest = nativeGeneralJump_at(addr())->jump_destination();
    address disp = Assembler::locate_operand(addr(), Assembler::call32_operand);
    *(jint*)disp += (x - old_dest);
  } else if (ni->is_mov_literal64()) {
    ((NativeMovConstReg*)ni)->set_data((intptr_t)x);
  } else {
    ShouldNotReachHere();
  }
}


address* Relocation::pd_address_in_code() {
  // All embedded Intel addresses are stored in 32-bit words.
  // Since the addr points at the start of the instruction,
  // we must parse the instruction a bit to find the embedded word.
  assert(is_data(), "must be a DataRelocation");
  typedef Assembler::WhichOperand WhichOperand;
  WhichOperand which = (WhichOperand) format(); // that is, disp32 or imm/imm32
#ifdef AMD64
  assert(which == Assembler::disp32_operand ||
         which == Assembler::call32_operand ||
         which == Assembler::imm_operand, "format unpacks ok");
  // The "address" in the code is a displacement can't return it as
  // and address* since it is really a jint*
  guarantee(which == Assembler::imm_operand, "must be immediate operand");
#else
  assert(which == Assembler::disp32_operand || which == Assembler::imm_operand, "format unpacks ok");
#endif // AMD64
  return (address*) Assembler::locate_operand(addr(), which);
}


address Relocation::pd_get_address_from_code() {
#ifdef AMD64
  // All embedded Intel addresses are stored in 32-bit words.
  // Since the addr points at the start of the instruction,
  // we must parse the instruction a bit to find the embedded word.
  assert(is_data(), "must be a DataRelocation");
  typedef Assembler::WhichOperand WhichOperand;
  WhichOperand which = (WhichOperand) format(); // that is, disp32 or imm/imm32
  assert(which == Assembler::disp32_operand ||
         which == Assembler::call32_operand ||
         which == Assembler::imm_operand, "format unpacks ok");
  if (which != Assembler::imm_operand) {
    address ip = addr();
    address disp = Assembler::locate_operand(ip, which);
    address next_ip = Assembler::locate_next_instruction(ip);
    address a = next_ip + *(int32_t*) disp;
    return a;
  }
#endif // AMD64
  return *pd_address_in_code();
}

void poll_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
#ifdef _LP64
  if (!Assembler::is_polling_page_far()) {
    typedef Assembler::WhichOperand WhichOperand;
    WhichOperand which = (WhichOperand) format();
    // This format is imm but it is really disp32
    which = Assembler::disp32_operand;
    address orig_addr = old_addr_for(addr(), src, dest);
    NativeInstruction* oni = nativeInstruction_at(orig_addr);
    int32_t* orig_disp = (int32_t*) Assembler::locate_operand(orig_addr, which);
    // This poll_addr is incorrect by the size of the instruction it is irrelevant
    intptr_t poll_addr = (intptr_t)oni + *orig_disp;

    NativeInstruction* ni = nativeInstruction_at(addr());
    intptr_t new_disp = poll_addr - (intptr_t) ni;

    int32_t* disp = (int32_t*) Assembler::locate_operand(addr(), which);
    * disp = (int32_t)new_disp;
  }
#endif // _LP64
}

void poll_return_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
#ifdef _LP64
  if (!Assembler::is_polling_page_far()) {
    typedef Assembler::WhichOperand WhichOperand;
    WhichOperand which = (WhichOperand) format();
    // This format is imm but it is really disp32
    which = Assembler::disp32_operand;
    address orig_addr = old_addr_for(addr(), src, dest);
    NativeInstruction* oni = nativeInstruction_at(orig_addr);
    int32_t* orig_disp = (int32_t*) Assembler::locate_operand(orig_addr, which);
    // This poll_addr is incorrect by the size of the instruction it is irrelevant
    intptr_t poll_addr = (intptr_t)oni + *orig_disp;

    NativeInstruction* ni = nativeInstruction_at(addr());
    intptr_t new_disp = poll_addr - (intptr_t) ni;

    int32_t* disp = (int32_t*) Assembler::locate_operand(addr(), which);
    * disp = (int32_t)new_disp;
  }
#endif // _LP64
}

void metadata_Relocation::pd_fix_value(address x) {
}

Other Java examples (source code examples)

Here is a short list of links related to this Java relocInfo_x86.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.