alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (sharedRuntime_x86_64.cpp)

This example Java source code file (sharedRuntime_x86_64.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

address, assert, basictype, label, null, oopmap, register, t_array, t_double, t_long, t_object, t_void, vmregimpl\:\:stack_slot_size, vmregpair

The sharedRuntime_x86_64.cpp Java example source code

/*
 * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "code/debugInfoRec.hpp"
#include "code/icBuffer.hpp"
#include "code/vtableStubs.hpp"
#include "interpreter/interpreter.hpp"
#include "oops/compiledICHolder.hpp"
#include "prims/jvmtiRedefineClassesTrace.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/vframeArray.hpp"
#include "vmreg_x86.inline.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif

#define __ masm->

const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;

class SimpleRuntimeFrame {

  public:

  // Most of the runtime stubs have this simple frame layout.
  // This class exists to make the layout shared in one place.
  // Offsets are for compiler stack slots, which are jints.
  enum layout {
    // The frame sender code expects that rbp will be in the "natural" place and
    // will override any oopMap setting for it. We must therefore force the layout
    // so that it agrees with the frame sender code.
    rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
    rbp_off2,
    return_off, return_off2,
    framesize
  };
};

class RegisterSaver {
  // Capture info about frame layout.  Layout offsets are in jint
  // units because compiler frame slots are jints.
#define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  enum layout {
    fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
    xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
    DEF_XMM_OFFS(0),
    DEF_XMM_OFFS(1),
    DEF_XMM_OFFS(2),
    DEF_XMM_OFFS(3),
    DEF_XMM_OFFS(4),
    DEF_XMM_OFFS(5),
    DEF_XMM_OFFS(6),
    DEF_XMM_OFFS(7),
    DEF_XMM_OFFS(8),
    DEF_XMM_OFFS(9),
    DEF_XMM_OFFS(10),
    DEF_XMM_OFFS(11),
    DEF_XMM_OFFS(12),
    DEF_XMM_OFFS(13),
    DEF_XMM_OFFS(14),
    DEF_XMM_OFFS(15),
    fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
    fpu_stateH_end,
    r15_off, r15H_off,
    r14_off, r14H_off,
    r13_off, r13H_off,
    r12_off, r12H_off,
    r11_off, r11H_off,
    r10_off, r10H_off,
    r9_off,  r9H_off,
    r8_off,  r8H_off,
    rdi_off, rdiH_off,
    rsi_off, rsiH_off,
    ignore_off, ignoreH_off,  // extra copy of rbp
    rsp_off, rspH_off,
    rbx_off, rbxH_off,
    rdx_off, rdxH_off,
    rcx_off, rcxH_off,
    rax_off, raxH_off,
    // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
    align_off, alignH_off,
    flags_off, flagsH_off,
    // The frame sender code expects that rbp will be in the "natural" place and
    // will override any oopMap setting for it. We must therefore force the layout
    // so that it agrees with the frame sender code.
    rbp_off, rbpH_off,        // copy of rbp we will restore
    return_off, returnH_off,  // slot for return address
    reg_save_size             // size in compiler stack slots
  };

 public:
  static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
  static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);

  // Offsets into the register save area
  // Used by deoptimization when it is managing result register
  // values on its own

  static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
  static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
  static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
  static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
  static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }

  // During deoptimization only the result registers need to be restored,
  // all the other values have already been extracted.
  static void restore_result_registers(MacroAssembler* masm);
};

OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
  int vect_words = 0;
#ifdef COMPILER2
  if (save_vectors) {
    assert(UseAVX > 0, "256bit vectors are supported only with AVX");
    assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
    // Save upper half of YMM registes
    vect_words = 16 * 16 / wordSize;
    additional_frame_words += vect_words;
  }
#else
  assert(!save_vectors, "vectors are generated only by C2");
#endif

  // Always make the frame size 16-byte aligned
  int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
                                     reg_save_size*BytesPerInt, 16);
  // OopMap frame size is in compiler stack slots (jint's) not bytes or words
  int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
  // The caller will allocate additional_frame_words
  int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
  // CodeBlob frame size is in words.
  int frame_size_in_words = frame_size_in_bytes / wordSize;
  *total_frame_words = frame_size_in_words;

  // Save registers, fpu state, and flags.
  // We assume caller has already pushed the return address onto the
  // stack, so rsp is 8-byte aligned here.
  // We push rpb twice in this sequence because we want the real rbp
  // to be under the return like a normal enter.

  __ enter();          // rsp becomes 16-byte aligned here
  __ push_CPU_state(); // Push a multiple of 16 bytes

  if (vect_words > 0) {
    assert(vect_words*wordSize == 256, "");
    __ subptr(rsp, 256); // Save upper half of YMM registes
    __ vextractf128h(Address(rsp,  0),xmm0);
    __ vextractf128h(Address(rsp, 16),xmm1);
    __ vextractf128h(Address(rsp, 32),xmm2);
    __ vextractf128h(Address(rsp, 48),xmm3);
    __ vextractf128h(Address(rsp, 64),xmm4);
    __ vextractf128h(Address(rsp, 80),xmm5);
    __ vextractf128h(Address(rsp, 96),xmm6);
    __ vextractf128h(Address(rsp,112),xmm7);
    __ vextractf128h(Address(rsp,128),xmm8);
    __ vextractf128h(Address(rsp,144),xmm9);
    __ vextractf128h(Address(rsp,160),xmm10);
    __ vextractf128h(Address(rsp,176),xmm11);
    __ vextractf128h(Address(rsp,192),xmm12);
    __ vextractf128h(Address(rsp,208),xmm13);
    __ vextractf128h(Address(rsp,224),xmm14);
    __ vextractf128h(Address(rsp,240),xmm15);
  }
  if (frame::arg_reg_save_area_bytes != 0) {
    // Allocate argument register save area
    __ subptr(rsp, frame::arg_reg_save_area_bytes);
  }

  // Set an oopmap for the call site.  This oopmap will map all
  // oop-registers and debug-info registers as callee-saved.  This
  // will allow deoptimization at this safepoint to find all possible
  // debug-info recordings, as well as let GC find all oops.

  OopMapSet *oop_maps = new OopMapSet();
  OopMap* map = new OopMap(frame_size_in_slots, 0);

#define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_slots)

  map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
  map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
  map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
  map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
  // rbp location is known implicitly by the frame sender code, needs no oopmap
  // and the location where rbp was saved by is ignored
  map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
  map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
  map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
  map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
  map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
  map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
  map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
  map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
  map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
  map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
  map->set_callee_saved(STACK_OFFSET(xmm0_off ), xmm0->as_VMReg());
  map->set_callee_saved(STACK_OFFSET(xmm1_off ), xmm1->as_VMReg());
  map->set_callee_saved(STACK_OFFSET(xmm2_off ), xmm2->as_VMReg());
  map->set_callee_saved(STACK_OFFSET(xmm3_off ), xmm3->as_VMReg());
  map->set_callee_saved(STACK_OFFSET(xmm4_off ), xmm4->as_VMReg());
  map->set_callee_saved(STACK_OFFSET(xmm5_off ), xmm5->as_VMReg());
  map->set_callee_saved(STACK_OFFSET(xmm6_off ), xmm6->as_VMReg());
  map->set_callee_saved(STACK_OFFSET(xmm7_off ), xmm7->as_VMReg());
  map->set_callee_saved(STACK_OFFSET(xmm8_off ), xmm8->as_VMReg());
  map->set_callee_saved(STACK_OFFSET(xmm9_off ), xmm9->as_VMReg());
  map->set_callee_saved(STACK_OFFSET(xmm10_off), xmm10->as_VMReg());
  map->set_callee_saved(STACK_OFFSET(xmm11_off), xmm11->as_VMReg());
  map->set_callee_saved(STACK_OFFSET(xmm12_off), xmm12->as_VMReg());
  map->set_callee_saved(STACK_OFFSET(xmm13_off), xmm13->as_VMReg());
  map->set_callee_saved(STACK_OFFSET(xmm14_off), xmm14->as_VMReg());
  map->set_callee_saved(STACK_OFFSET(xmm15_off), xmm15->as_VMReg());

  // %%% These should all be a waste but we'll keep things as they were for now
  if (true) {
    map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
    // rbp location is known implicitly by the frame sender code, needs no oopmap
    map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET(xmm0H_off ), xmm0->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET(xmm1H_off ), xmm1->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET(xmm2H_off ), xmm2->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET(xmm3H_off ), xmm3->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET(xmm4H_off ), xmm4->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET(xmm5H_off ), xmm5->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET(xmm6H_off ), xmm6->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET(xmm7H_off ), xmm7->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET(xmm8H_off ), xmm8->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET(xmm9H_off ), xmm9->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET(xmm10H_off), xmm10->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET(xmm11H_off), xmm11->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET(xmm12H_off), xmm12->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET(xmm13H_off), xmm13->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET(xmm14H_off), xmm14->as_VMReg()->next());
    map->set_callee_saved(STACK_OFFSET(xmm15H_off), xmm15->as_VMReg()->next());
  }

  return map;
}

void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
  if (frame::arg_reg_save_area_bytes != 0) {
    // Pop arg register save area
    __ addptr(rsp, frame::arg_reg_save_area_bytes);
  }
#ifdef COMPILER2
  if (restore_vectors) {
    // Restore upper half of YMM registes.
    assert(UseAVX > 0, "256bit vectors are supported only with AVX");
    assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
    __ vinsertf128h(xmm0, Address(rsp,  0));
    __ vinsertf128h(xmm1, Address(rsp, 16));
    __ vinsertf128h(xmm2, Address(rsp, 32));
    __ vinsertf128h(xmm3, Address(rsp, 48));
    __ vinsertf128h(xmm4, Address(rsp, 64));
    __ vinsertf128h(xmm5, Address(rsp, 80));
    __ vinsertf128h(xmm6, Address(rsp, 96));
    __ vinsertf128h(xmm7, Address(rsp,112));
    __ vinsertf128h(xmm8, Address(rsp,128));
    __ vinsertf128h(xmm9, Address(rsp,144));
    __ vinsertf128h(xmm10, Address(rsp,160));
    __ vinsertf128h(xmm11, Address(rsp,176));
    __ vinsertf128h(xmm12, Address(rsp,192));
    __ vinsertf128h(xmm13, Address(rsp,208));
    __ vinsertf128h(xmm14, Address(rsp,224));
    __ vinsertf128h(xmm15, Address(rsp,240));
    __ addptr(rsp, 256);
  }
#else
  assert(!restore_vectors, "vectors are generated only by C2");
#endif
  // Recover CPU state
  __ pop_CPU_state();
  // Get the rbp described implicitly by the calling convention (no oopMap)
  __ pop(rbp);
}

void RegisterSaver::restore_result_registers(MacroAssembler* masm) {

  // Just restore result register. Only used by deoptimization. By
  // now any callee save register that needs to be restored to a c2
  // caller of the deoptee has been extracted into the vframeArray
  // and will be stuffed into the c2i adapter we create for later
  // restoration so only result registers need to be restored here.

  // Restore fp result register
  __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
  // Restore integer result register
  __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
  __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));

  // Pop all of the register save are off the stack except the return address
  __ addptr(rsp, return_offset_in_bytes());
}

// Is vector's size (in bytes) bigger than a size saved by default?
// 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
bool SharedRuntime::is_wide_vector(int size) {
  return size > 16;
}

// The java_calling_convention describes stack locations as ideal slots on
// a frame with no abi restrictions. Since we must observe abi restrictions
// (like the placement of the register window) the slots must be biased by
// the following value.
static int reg2offset_in(VMReg r) {
  // Account for saved rbp and return address
  // This should really be in_preserve_stack_slots
  return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
}

static int reg2offset_out(VMReg r) {
  return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
}

// ---------------------------------------------------------------------------
// Read the array of BasicTypes from a signature, and compute where the
// arguments should go.  Values in the VMRegPair regs array refer to 4-byte
// quantities.  Values less than VMRegImpl::stack0 are registers, those above
// refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
// as framesizes are fixed.
// VMRegImpl::stack0 refers to the first slot 0(sp).
// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
// up to RegisterImpl::number_of_registers) are the 64-bit
// integer registers.

// Note: the INPUTS in sig_bt are in units of Java argument words, which are
// either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
// units regardless of build. Of course for i486 there is no 64 bit build

// The Java calling convention is a "shifted" version of the C ABI.
// By skipping the first C ABI register we can call non-static jni methods
// with small numbers of arguments without having to shuffle the arguments
// at all. Since we control the java ABI we ought to at least get some
// advantage out of it.

int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
                                           VMRegPair *regs,
                                           int total_args_passed,
                                           int is_outgoing) {

  // Create the mapping between argument positions and
  // registers.
  static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
    j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
  };
  static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
    j_farg0, j_farg1, j_farg2, j_farg3,
    j_farg4, j_farg5, j_farg6, j_farg7
  };


  uint int_args = 0;
  uint fp_args = 0;
  uint stk_args = 0; // inc by 2 each time

  for (int i = 0; i < total_args_passed; i++) {
    switch (sig_bt[i]) {
    case T_BOOLEAN:
    case T_CHAR:
    case T_BYTE:
    case T_SHORT:
    case T_INT:
      if (int_args < Argument::n_int_register_parameters_j) {
        regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
      } else {
        regs[i].set1(VMRegImpl::stack2reg(stk_args));
        stk_args += 2;
      }
      break;
    case T_VOID:
      // halves of T_LONG or T_DOUBLE
      assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
      regs[i].set_bad();
      break;
    case T_LONG:
      assert(sig_bt[i + 1] == T_VOID, "expecting half");
      // fall through
    case T_OBJECT:
    case T_ARRAY:
    case T_ADDRESS:
      if (int_args < Argument::n_int_register_parameters_j) {
        regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
      } else {
        regs[i].set2(VMRegImpl::stack2reg(stk_args));
        stk_args += 2;
      }
      break;
    case T_FLOAT:
      if (fp_args < Argument::n_float_register_parameters_j) {
        regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
      } else {
        regs[i].set1(VMRegImpl::stack2reg(stk_args));
        stk_args += 2;
      }
      break;
    case T_DOUBLE:
      assert(sig_bt[i + 1] == T_VOID, "expecting half");
      if (fp_args < Argument::n_float_register_parameters_j) {
        regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
      } else {
        regs[i].set2(VMRegImpl::stack2reg(stk_args));
        stk_args += 2;
      }
      break;
    default:
      ShouldNotReachHere();
      break;
    }
  }

  return round_to(stk_args, 2);
}

// Patch the callers callsite with entry to compiled code if it exists.
static void patch_callers_callsite(MacroAssembler *masm) {
  Label L;
  __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
  __ jcc(Assembler::equal, L);

  // Save the current stack pointer
  __ mov(r13, rsp);
  // Schedule the branch target address early.
  // Call into the VM to patch the caller, then jump to compiled callee
  // rax isn't live so capture return address while we easily can
  __ movptr(rax, Address(rsp, 0));

  // align stack so push_CPU_state doesn't fault
  __ andptr(rsp, -(StackAlignmentInBytes));
  __ push_CPU_state();

  // VM needs caller's callsite
  // VM needs target method
  // This needs to be a long call since we will relocate this adapter to
  // the codeBuffer and it may not reach

  // Allocate argument register save area
  if (frame::arg_reg_save_area_bytes != 0) {
    __ subptr(rsp, frame::arg_reg_save_area_bytes);
  }
  __ mov(c_rarg0, rbx);
  __ mov(c_rarg1, rax);
  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));

  // De-allocate argument register save area
  if (frame::arg_reg_save_area_bytes != 0) {
    __ addptr(rsp, frame::arg_reg_save_area_bytes);
  }

  __ pop_CPU_state();
  // restore sp
  __ mov(rsp, r13);
  __ bind(L);
}


static void gen_c2i_adapter(MacroAssembler *masm,
                            int total_args_passed,
                            int comp_args_on_stack,
                            const BasicType *sig_bt,
                            const VMRegPair *regs,
                            Label& skip_fixup) {
  // Before we get into the guts of the C2I adapter, see if we should be here
  // at all.  We've come from compiled code and are attempting to jump to the
  // interpreter, which means the caller made a static call to get here
  // (vcalls always get a compiled target if there is one).  Check for a
  // compiled target.  If there is one, we need to patch the caller's call.
  patch_callers_callsite(masm);

  __ bind(skip_fixup);

  // Since all args are passed on the stack, total_args_passed *
  // Interpreter::stackElementSize is the space we need. Plus 1 because
  // we also account for the return address location since
  // we store it first rather than hold it in rax across all the shuffling

  int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;

  // stack is aligned, keep it that way
  extraspace = round_to(extraspace, 2*wordSize);

  // Get return address
  __ pop(rax);

  // set senderSP value
  __ mov(r13, rsp);

  __ subptr(rsp, extraspace);

  // Store the return address in the expected location
  __ movptr(Address(rsp, 0), rax);

  // Now write the args into the outgoing interpreter space
  for (int i = 0; i < total_args_passed; i++) {
    if (sig_bt[i] == T_VOID) {
      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
      continue;
    }

    // offset to start parameters
    int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
    int next_off = st_off - Interpreter::stackElementSize;

    // Say 4 args:
    // i   st_off
    // 0   32 T_LONG
    // 1   24 T_VOID
    // 2   16 T_OBJECT
    // 3    8 T_BOOL
    // -    0 return address
    //
    // However to make thing extra confusing. Because we can fit a long/double in
    // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
    // leaves one slot empty and only stores to a single slot. In this case the
    // slot that is occupied is the T_VOID slot. See I said it was confusing.

    VMReg r_1 = regs[i].first();
    VMReg r_2 = regs[i].second();
    if (!r_1->is_valid()) {
      assert(!r_2->is_valid(), "");
      continue;
    }
    if (r_1->is_stack()) {
      // memory to memory use rax
      int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
      if (!r_2->is_valid()) {
        // sign extend??
        __ movl(rax, Address(rsp, ld_off));
        __ movptr(Address(rsp, st_off), rax);

      } else {

        __ movq(rax, Address(rsp, ld_off));

        // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
        // T_DOUBLE and T_LONG use two slots in the interpreter
        if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
          // ld_off == LSW, ld_off+wordSize == MSW
          // st_off == MSW, next_off == LSW
          __ movq(Address(rsp, next_off), rax);
#ifdef ASSERT
          // Overwrite the unused slot with known junk
          __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
          __ movptr(Address(rsp, st_off), rax);
#endif /* ASSERT */
        } else {
          __ movq(Address(rsp, st_off), rax);
        }
      }
    } else if (r_1->is_Register()) {
      Register r = r_1->as_Register();
      if (!r_2->is_valid()) {
        // must be only an int (or less ) so move only 32bits to slot
        // why not sign extend??
        __ movl(Address(rsp, st_off), r);
      } else {
        // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
        // T_DOUBLE and T_LONG use two slots in the interpreter
        if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
          // long/double in gpr
#ifdef ASSERT
          // Overwrite the unused slot with known junk
          __ mov64(rax, CONST64(0xdeadffffdeadaaab));
          __ movptr(Address(rsp, st_off), rax);
#endif /* ASSERT */
          __ movq(Address(rsp, next_off), r);
        } else {
          __ movptr(Address(rsp, st_off), r);
        }
      }
    } else {
      assert(r_1->is_XMMRegister(), "");
      if (!r_2->is_valid()) {
        // only a float use just part of the slot
        __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
      } else {
#ifdef ASSERT
        // Overwrite the unused slot with known junk
        __ mov64(rax, CONST64(0xdeadffffdeadaaac));
        __ movptr(Address(rsp, st_off), rax);
#endif /* ASSERT */
        __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
      }
    }
  }

  // Schedule the branch target address early.
  __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
  __ jmp(rcx);
}

static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
                        address code_start, address code_end,
                        Label& L_ok) {
  Label L_fail;
  __ lea(temp_reg, ExternalAddress(code_start));
  __ cmpptr(pc_reg, temp_reg);
  __ jcc(Assembler::belowEqual, L_fail);
  __ lea(temp_reg, ExternalAddress(code_end));
  __ cmpptr(pc_reg, temp_reg);
  __ jcc(Assembler::below, L_ok);
  __ bind(L_fail);
}

static void gen_i2c_adapter(MacroAssembler *masm,
                            int total_args_passed,
                            int comp_args_on_stack,
                            const BasicType *sig_bt,
                            const VMRegPair *regs) {

  // Note: r13 contains the senderSP on entry. We must preserve it since
  // we may do a i2c -> c2i transition if we lose a race where compiled
  // code goes non-entrant while we get args ready.
  // In addition we use r13 to locate all the interpreter args as
  // we must align the stack to 16 bytes on an i2c entry else we
  // lose alignment we expect in all compiled code and register
  // save code can segv when fxsave instructions find improperly
  // aligned stack pointer.

  // Adapters can be frameless because they do not require the caller
  // to perform additional cleanup work, such as correcting the stack pointer.
  // An i2c adapter is frameless because the *caller* frame, which is interpreted,
  // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
  // even if a callee has modified the stack pointer.
  // A c2i adapter is frameless because the *callee* frame, which is interpreted,
  // routinely repairs its caller's stack pointer (from sender_sp, which is set
  // up via the senderSP register).
  // In other words, if *either* the caller or callee is interpreted, we can
  // get the stack pointer repaired after a call.
  // This is why c2i and i2c adapters cannot be indefinitely composed.
  // In particular, if a c2i adapter were to somehow call an i2c adapter,
  // both caller and callee would be compiled methods, and neither would
  // clean up the stack pointer changes performed by the two adapters.
  // If this happens, control eventually transfers back to the compiled
  // caller, but with an uncorrected stack, causing delayed havoc.

  // Pick up the return address
  __ movptr(rax, Address(rsp, 0));

  if (VerifyAdapterCalls &&
      (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
    // So, let's test for cascading c2i/i2c adapters right now.
    //  assert(Interpreter::contains($return_addr) ||
    //         StubRoutines::contains($return_addr),
    //         "i2c adapter must return to an interpreter frame");
    __ block_comment("verify_i2c { ");
    Label L_ok;
    if (Interpreter::code() != NULL)
      range_check(masm, rax, r11,
                  Interpreter::code()->code_start(), Interpreter::code()->code_end(),
                  L_ok);
    if (StubRoutines::code1() != NULL)
      range_check(masm, rax, r11,
                  StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
                  L_ok);
    if (StubRoutines::code2() != NULL)
      range_check(masm, rax, r11,
                  StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
                  L_ok);
    const char* msg = "i2c adapter must return to an interpreter frame";
    __ block_comment(msg);
    __ stop(msg);
    __ bind(L_ok);
    __ block_comment("} verify_i2ce ");
  }

  // Must preserve original SP for loading incoming arguments because
  // we need to align the outgoing SP for compiled code.
  __ movptr(r11, rsp);

  // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
  // in registers, we will occasionally have no stack args.
  int comp_words_on_stack = 0;
  if (comp_args_on_stack) {
    // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
    // registers are below.  By subtracting stack0, we either get a negative
    // number (all values in registers) or the maximum stack slot accessed.

    // Convert 4-byte c2 stack slots to words.
    comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
    // Round up to miminum stack alignment, in wordSize
    comp_words_on_stack = round_to(comp_words_on_stack, 2);
    __ subptr(rsp, comp_words_on_stack * wordSize);
  }


  // Ensure compiled code always sees stack at proper alignment
  __ andptr(rsp, -16);

  // push the return address and misalign the stack that youngest frame always sees
  // as far as the placement of the call instruction
  __ push(rax);

  // Put saved SP in another register
  const Register saved_sp = rax;
  __ movptr(saved_sp, r11);

  // Will jump to the compiled code just as if compiled code was doing it.
  // Pre-load the register-jump target early, to schedule it better.
  __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));

  // Now generate the shuffle code.  Pick up all register args and move the
  // rest through the floating point stack top.
  for (int i = 0; i < total_args_passed; i++) {
    if (sig_bt[i] == T_VOID) {
      // Longs and doubles are passed in native word order, but misaligned
      // in the 32-bit build.
      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
      continue;
    }

    // Pick up 0, 1 or 2 words from SP+offset.

    assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
            "scrambled load targets?");
    // Load in argument order going down.
    int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
    // Point to interpreter value (vs. tag)
    int next_off = ld_off - Interpreter::stackElementSize;
    //
    //
    //
    VMReg r_1 = regs[i].first();
    VMReg r_2 = regs[i].second();
    if (!r_1->is_valid()) {
      assert(!r_2->is_valid(), "");
      continue;
    }
    if (r_1->is_stack()) {
      // Convert stack slot to an SP offset (+ wordSize to account for return address )
      int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;

      // We can use r13 as a temp here because compiled code doesn't need r13 as an input
      // and if we end up going thru a c2i because of a miss a reasonable value of r13
      // will be generated.
      if (!r_2->is_valid()) {
        // sign extend???
        __ movl(r13, Address(saved_sp, ld_off));
        __ movptr(Address(rsp, st_off), r13);
      } else {
        //
        // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
        // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
        // So we must adjust where to pick up the data to match the interpreter.
        //
        // Interpreter local[n] == MSW, local[n+1] == LSW however locals
        // are accessed as negative so LSW is at LOW address

        // ld_off is MSW so get LSW
        const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
                           next_off : ld_off;
        __ movq(r13, Address(saved_sp, offset));
        // st_off is LSW (i.e. reg.first())
        __ movq(Address(rsp, st_off), r13);
      }
    } else if (r_1->is_Register()) {  // Register argument
      Register r = r_1->as_Register();
      assert(r != rax, "must be different");
      if (r_2->is_valid()) {
        //
        // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
        // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
        // So we must adjust where to pick up the data to match the interpreter.

        const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
                           next_off : ld_off;

        // this can be a misaligned move
        __ movq(r, Address(saved_sp, offset));
      } else {
        // sign extend and use a full word?
        __ movl(r, Address(saved_sp, ld_off));
      }
    } else {
      if (!r_2->is_valid()) {
        __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
      } else {
        __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
      }
    }
  }

  // 6243940 We might end up in handle_wrong_method if
  // the callee is deoptimized as we race thru here. If that
  // happens we don't want to take a safepoint because the
  // caller frame will look interpreted and arguments are now
  // "compiled" so it is much better to make this transition
  // invisible to the stack walking code. Unfortunately if
  // we try and find the callee by normal means a safepoint
  // is possible. So we stash the desired callee in the thread
  // and the vm will find there should this case occur.

  __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);

  // put Method* where a c2i would expect should we end up there
  // only needed becaus eof c2 resolve stubs return Method* as a result in
  // rax
  __ mov(rax, rbx);
  __ jmp(r11);
}

// ---------------------------------------------------------------
AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
                                                            int total_args_passed,
                                                            int comp_args_on_stack,
                                                            const BasicType *sig_bt,
                                                            const VMRegPair *regs,
                                                            AdapterFingerPrint* fingerprint) {
  address i2c_entry = __ pc();

  gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);

  // -------------------------------------------------------------------------
  // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
  // to the interpreter.  The args start out packed in the compiled layout.  They
  // need to be unpacked into the interpreter layout.  This will almost always
  // require some stack space.  We grow the current (compiled) stack, then repack
  // the args.  We  finally end in a jump to the generic interpreter entry point.
  // On exit from the interpreter, the interpreter will restore our SP (lest the
  // compiled code, which relys solely on SP and not RBP, get sick).

  address c2i_unverified_entry = __ pc();
  Label skip_fixup;
  Label ok;

  Register holder = rax;
  Register receiver = j_rarg0;
  Register temp = rbx;

  {
    __ load_klass(temp, receiver);
    __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
    __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
    __ jcc(Assembler::equal, ok);
    __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));

    __ bind(ok);
    // Method might have been compiled since the call site was patched to
    // interpreted if that is the case treat it as a miss so we can get
    // the call site corrected.
    __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
    __ jcc(Assembler::equal, skip_fixup);
    __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  }

  address c2i_entry = __ pc();

  gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);

  __ flush();
  return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
}

int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
                                         VMRegPair *regs,
                                         int total_args_passed) {
// We return the amount of VMRegImpl stack slots we need to reserve for all
// the arguments NOT counting out_preserve_stack_slots.

// NOTE: These arrays will have to change when c1 is ported
#ifdef _WIN64
    static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
      c_rarg0, c_rarg1, c_rarg2, c_rarg3
    };
    static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
      c_farg0, c_farg1, c_farg2, c_farg3
    };
#else
    static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
      c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
    };
    static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
      c_farg0, c_farg1, c_farg2, c_farg3,
      c_farg4, c_farg5, c_farg6, c_farg7
    };
#endif // _WIN64


    uint int_args = 0;
    uint fp_args = 0;
    uint stk_args = 0; // inc by 2 each time

    for (int i = 0; i < total_args_passed; i++) {
      switch (sig_bt[i]) {
      case T_BOOLEAN:
      case T_CHAR:
      case T_BYTE:
      case T_SHORT:
      case T_INT:
        if (int_args < Argument::n_int_register_parameters_c) {
          regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
#ifdef _WIN64
          fp_args++;
          // Allocate slots for callee to stuff register args the stack.
          stk_args += 2;
#endif
        } else {
          regs[i].set1(VMRegImpl::stack2reg(stk_args));
          stk_args += 2;
        }
        break;
      case T_LONG:
        assert(sig_bt[i + 1] == T_VOID, "expecting half");
        // fall through
      case T_OBJECT:
      case T_ARRAY:
      case T_ADDRESS:
      case T_METADATA:
        if (int_args < Argument::n_int_register_parameters_c) {
          regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
#ifdef _WIN64
          fp_args++;
          stk_args += 2;
#endif
        } else {
          regs[i].set2(VMRegImpl::stack2reg(stk_args));
          stk_args += 2;
        }
        break;
      case T_FLOAT:
        if (fp_args < Argument::n_float_register_parameters_c) {
          regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
#ifdef _WIN64
          int_args++;
          // Allocate slots for callee to stuff register args the stack.
          stk_args += 2;
#endif
        } else {
          regs[i].set1(VMRegImpl::stack2reg(stk_args));
          stk_args += 2;
        }
        break;
      case T_DOUBLE:
        assert(sig_bt[i + 1] == T_VOID, "expecting half");
        if (fp_args < Argument::n_float_register_parameters_c) {
          regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
#ifdef _WIN64
          int_args++;
          // Allocate slots for callee to stuff register args the stack.
          stk_args += 2;
#endif
        } else {
          regs[i].set2(VMRegImpl::stack2reg(stk_args));
          stk_args += 2;
        }
        break;
      case T_VOID: // Halves of longs and doubles
        assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
        regs[i].set_bad();
        break;
      default:
        ShouldNotReachHere();
        break;
      }
    }
#ifdef _WIN64
  // windows abi requires that we always allocate enough stack space
  // for 4 64bit registers to be stored down.
  if (stk_args < 8) {
    stk_args = 8;
  }
#endif // _WIN64

  return stk_args;
}

// On 64 bit we will store integer like items to the stack as
// 64 bits items (sparc abi) even though java would only store
// 32bits for a parameter. On 32bit it will simply be 32 bits
// So this routine will do 32->32 on 32bit and 32->64 on 64bit
static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  if (src.first()->is_stack()) {
    if (dst.first()->is_stack()) {
      // stack to stack
      __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
      __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
    } else {
      // stack to reg
      __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
    }
  } else if (dst.first()->is_stack()) {
    // reg to stack
    // Do we really have to sign extend???
    // __ movslq(src.first()->as_Register(), src.first()->as_Register());
    __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  } else {
    // Do we really have to sign extend???
    // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
    if (dst.first() != src.first()) {
      __ movq(dst.first()->as_Register(), src.first()->as_Register());
    }
  }
}

static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  if (src.first()->is_stack()) {
    if (dst.first()->is_stack()) {
      // stack to stack
      __ movq(rax, Address(rbp, reg2offset_in(src.first())));
      __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
    } else {
      // stack to reg
      __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
    }
  } else if (dst.first()->is_stack()) {
    // reg to stack
    __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  } else {
    if (dst.first() != src.first()) {
      __ movq(dst.first()->as_Register(), src.first()->as_Register());
    }
  }
}

// An oop arg. Must pass a handle not the oop itself
static void object_move(MacroAssembler* masm,
                        OopMap* map,
                        int oop_handle_offset,
                        int framesize_in_slots,
                        VMRegPair src,
                        VMRegPair dst,
                        bool is_receiver,
                        int* receiver_offset) {

  // must pass a handle. First figure out the location we use as a handle

  Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();

  // See if oop is NULL if it is we need no handle

  if (src.first()->is_stack()) {

    // Oop is already on the stack as an argument
    int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
    map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
    if (is_receiver) {
      *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
    }

    __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
    __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
    // conditionally move a NULL
    __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
  } else {

    // Oop is in an a register we must store it to the space we reserve
    // on the stack for oop_handles and pass a handle if oop is non-NULL

    const Register rOop = src.first()->as_Register();
    int oop_slot;
    if (rOop == j_rarg0)
      oop_slot = 0;
    else if (rOop == j_rarg1)
      oop_slot = 1;
    else if (rOop == j_rarg2)
      oop_slot = 2;
    else if (rOop == j_rarg3)
      oop_slot = 3;
    else if (rOop == j_rarg4)
      oop_slot = 4;
    else {
      assert(rOop == j_rarg5, "wrong register");
      oop_slot = 5;
    }

    oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
    int offset = oop_slot*VMRegImpl::stack_slot_size;

    map->set_oop(VMRegImpl::stack2reg(oop_slot));
    // Store oop in handle area, may be NULL
    __ movptr(Address(rsp, offset), rOop);
    if (is_receiver) {
      *receiver_offset = offset;
    }

    __ cmpptr(rOop, (int32_t)NULL_WORD);
    __ lea(rHandle, Address(rsp, offset));
    // conditionally move a NULL from the handle area where it was just stored
    __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
  }

  // If arg is on the stack then place it otherwise it is already in correct reg.
  if (dst.first()->is_stack()) {
    __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  }
}

// A float arg may have to do float reg int reg conversion
static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");

  // The calling conventions assures us that each VMregpair is either
  // all really one physical register or adjacent stack slots.
  // This greatly simplifies the cases here compared to sparc.

  if (src.first()->is_stack()) {
    if (dst.first()->is_stack()) {
      __ movl(rax, Address(rbp, reg2offset_in(src.first())));
      __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
    } else {
      // stack to reg
      assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
      __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
    }
  } else if (dst.first()->is_stack()) {
    // reg to stack
    assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
    __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  } else {
    // reg to reg
    // In theory these overlap but the ordering is such that this is likely a nop
    if ( src.first() != dst.first()) {
      __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
    }
  }
}

// A long move
static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {

  // The calling conventions assures us that each VMregpair is either
  // all really one physical register or adjacent stack slots.
  // This greatly simplifies the cases here compared to sparc.

  if (src.is_single_phys_reg() ) {
    if (dst.is_single_phys_reg()) {
      if (dst.first() != src.first()) {
        __ mov(dst.first()->as_Register(), src.first()->as_Register());
      }
    } else {
      assert(dst.is_single_reg(), "not a stack pair");
      __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
    }
  } else if (dst.is_single_phys_reg()) {
    assert(src.is_single_reg(),  "not a stack pair");
    __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
  } else {
    assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
    __ movq(rax, Address(rbp, reg2offset_in(src.first())));
    __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  }
}

// A double move
static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {

  // The calling conventions assures us that each VMregpair is either
  // all really one physical register or adjacent stack slots.
  // This greatly simplifies the cases here compared to sparc.

  if (src.is_single_phys_reg() ) {
    if (dst.is_single_phys_reg()) {
      // In theory these overlap but the ordering is such that this is likely a nop
      if ( src.first() != dst.first()) {
        __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
      }
    } else {
      assert(dst.is_single_reg(), "not a stack pair");
      __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
    }
  } else if (dst.is_single_phys_reg()) {
    assert(src.is_single_reg(),  "not a stack pair");
    __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
  } else {
    assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
    __ movq(rax, Address(rbp, reg2offset_in(src.first())));
    __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  }
}


void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  // We always ignore the frame_slots arg and just use the space just below frame pointer
  // which by this time is free to use
  switch (ret_type) {
  case T_FLOAT:
    __ movflt(Address(rbp, -wordSize), xmm0);
    break;
  case T_DOUBLE:
    __ movdbl(Address(rbp, -wordSize), xmm0);
    break;
  case T_VOID:  break;
  default: {
    __ movptr(Address(rbp, -wordSize), rax);
    }
  }
}

void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  // We always ignore the frame_slots arg and just use the space just below frame pointer
  // which by this time is free to use
  switch (ret_type) {
  case T_FLOAT:
    __ movflt(xmm0, Address(rbp, -wordSize));
    break;
  case T_DOUBLE:
    __ movdbl(xmm0, Address(rbp, -wordSize));
    break;
  case T_VOID:  break;
  default: {
    __ movptr(rax, Address(rbp, -wordSize));
    }
  }
}

static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
    for ( int i = first_arg ; i < arg_count ; i++ ) {
      if (args[i].first()->is_Register()) {
        __ push(args[i].first()->as_Register());
      } else if (args[i].first()->is_XMMRegister()) {
        __ subptr(rsp, 2*wordSize);
        __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
      }
    }
}

static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
    for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
      if (args[i].first()->is_Register()) {
        __ pop(args[i].first()->as_Register());
      } else if (args[i].first()->is_XMMRegister()) {
        __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
        __ addptr(rsp, 2*wordSize);
      }
    }
}


static void save_or_restore_arguments(MacroAssembler* masm,
                                      const int stack_slots,
                                      const int total_in_args,
                                      const int arg_save_area,
                                      OopMap* map,
                                      VMRegPair* in_regs,
                                      BasicType* in_sig_bt) {
  // if map is non-NULL then the code should store the values,
  // otherwise it should load them.
  int slot = arg_save_area;
  // Save down double word first
  for ( int i = 0; i < total_in_args; i++) {
    if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
      int offset = slot * VMRegImpl::stack_slot_size;
      slot += VMRegImpl::slots_per_word;
      assert(slot <= stack_slots, "overflow");
      if (map != NULL) {
        __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
      } else {
        __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
      }
    }
    if (in_regs[i].first()->is_Register() &&
        (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
      int offset = slot * VMRegImpl::stack_slot_size;
      if (map != NULL) {
        __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
        if (in_sig_bt[i] == T_ARRAY) {
          map->set_oop(VMRegImpl::stack2reg(slot));;
        }
      } else {
        __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
      }
      slot += VMRegImpl::slots_per_word;
    }
  }
  // Save or restore single word registers
  for ( int i = 0; i < total_in_args; i++) {
    if (in_regs[i].first()->is_Register()) {
      int offset = slot * VMRegImpl::stack_slot_size;
      slot++;
      assert(slot <= stack_slots, "overflow");

      // Value is in an input register pass we must flush it to the stack
      const Register reg = in_regs[i].first()->as_Register();
      switch (in_sig_bt[i]) {
        case T_BOOLEAN:
        case T_CHAR:
        case T_BYTE:
        case T_SHORT:
        case T_INT:
          if (map != NULL) {
            __ movl(Address(rsp, offset), reg);
          } else {
            __ movl(reg, Address(rsp, offset));
          }
          break;
        case T_ARRAY:
        case T_LONG:
          // handled above
          break;
        case T_OBJECT:
        default: ShouldNotReachHere();
      }
    } else if (in_regs[i].first()->is_XMMRegister()) {
      if (in_sig_bt[i] == T_FLOAT) {
        int offset = slot * VMRegImpl::stack_slot_size;
        slot++;
        assert(slot <= stack_slots, "overflow");
        if (map != NULL) {
          __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
        } else {
          __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
        }
      }
    } else if (in_regs[i].first()->is_stack()) {
      if (in_sig_bt[i] == T_ARRAY && map != NULL) {
        int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
        map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
      }
    }
  }
}


// Check GC_locker::needs_gc and enter the runtime if it's true.  This
// keeps a new JNI critical region from starting until a GC has been
// forced.  Save down any oops in registers and describe them in an
// OopMap.
static void check_needs_gc_for_critical_native(MacroAssembler* masm,
                                               int stack_slots,
                                               int total_c_args,
                                               int total_in_args,
                                               int arg_save_area,
                                               OopMapSet* oop_maps,
                                               VMRegPair* in_regs,
                                               BasicType* in_sig_bt) {
  __ block_comment("check GC_locker::needs_gc");
  Label cont;
  __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
  __ jcc(Assembler::equal, cont);

  // Save down any incoming oops and call into the runtime to halt for a GC

  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  save_or_restore_arguments(masm, stack_slots, total_in_args,
                            arg_save_area, map, in_regs, in_sig_bt);

  address the_pc = __ pc();
  oop_maps->add_gc_map( __ offset(), map);
  __ set_last_Java_frame(rsp, noreg, the_pc);

  __ block_comment("block_for_jni_critical");
  __ movptr(c_rarg0, r15_thread);
  __ mov(r12, rsp); // remember sp
  __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  __ andptr(rsp, -16); // align stack as required by ABI
  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
  __ mov(rsp, r12); // restore sp
  __ reinit_heapbase();

  __ reset_last_Java_frame(false, true);

  save_or_restore_arguments(masm, stack_slots, total_in_args,
                            arg_save_area, NULL, in_regs, in_sig_bt);

  __ bind(cont);
#ifdef ASSERT
  if (StressCriticalJNINatives) {
    // Stress register saving
    OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
    save_or_restore_arguments(masm, stack_slots, total_in_args,
                              arg_save_area, map, in_regs, in_sig_bt);
    // Destroy argument registers
    for (int i = 0; i < total_in_args - 1; i++) {
      if (in_regs[i].first()->is_Register()) {
        const Register reg = in_regs[i].first()->as_Register();
        __ xorptr(reg, reg);
      } else if (in_regs[i].first()->is_XMMRegister()) {
        __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
      } else if (in_regs[i].first()->is_FloatRegister()) {
        ShouldNotReachHere();
      } else if (in_regs[i].first()->is_stack()) {
        // Nothing to do
      } else {
        ShouldNotReachHere();
      }
      if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
        i++;
      }
    }

    save_or_restore_arguments(masm, stack_slots, total_in_args,
                              arg_save_area, NULL, in_regs, in_sig_bt);
  }
#endif
}

// Unpack an array argument into a pointer to the body and the length
// if the array is non-null, otherwise pass 0 for both.
static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
  Register tmp_reg = rax;
  assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
         "possible collision");
  assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
         "possible collision");

  __ block_comment("unpack_array_argument {");

  // Pass the length, ptr pair
  Label is_null, done;
  VMRegPair tmp;
  tmp.set_ptr(tmp_reg->as_VMReg());
  if (reg.first()->is_stack()) {
    // Load the arg up from the stack
    move_ptr(masm, reg, tmp);
    reg = tmp;
  }
  __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
  __ jccb(Assembler::equal, is_null);
  __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  move_ptr(masm, tmp, body_arg);
  // load the length relative to the body.
  __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
                           arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  move32_64(masm, tmp, length_arg);
  __ jmpb(done);
  __ bind(is_null);
  // Pass zeros
  __ xorptr(tmp_reg, tmp_reg);
  move_ptr(masm, tmp, body_arg);
  move32_64(masm, tmp, length_arg);
  __ bind(done);

  __ block_comment("} unpack_array_argument");
}


// Different signatures may require very different orders for the move
// to avoid clobbering other arguments.  There's no simple way to
// order them safely.  Compute a safe order for issuing stores and
// break any cycles in those stores.  This code is fairly general but
// it's not necessary on the other platforms so we keep it in the
// platform dependent code instead of moving it into a shared file.
// (See bugs 7013347 & 7145024.)
// Note that this code is specific to LP64.
class ComputeMoveOrder: public StackObj {
  class MoveOperation: public ResourceObj {
    friend class ComputeMoveOrder;
   private:
    VMRegPair        _src;
    VMRegPair        _dst;
    int              _src_index;
    int              _dst_index;
    bool             _processed;
    MoveOperation*  _next;
    MoveOperation*  _prev;

    static int get_id(VMRegPair r) {
      return r.first()->value();
    }

   public:
    MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
      _src(src)
    , _src_index(src_index)
    , _dst(dst)
    , _dst_index(dst_index)
    , _next(NULL)
    , _prev(NULL)
    , _processed(false) {
    }

    VMRegPair src() const              { return _src; }
    int src_id() const                 { return get_id(src()); }
    int src_index() const              { return _src_index; }
    VMRegPair dst() const              { return _dst; }
    void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
    int dst_index() const              { return _dst_index; }
    int dst_id() const                 { return get_id(dst()); }
    MoveOperation* next() const       { return _next; }
    MoveOperation* prev() const       { return _prev; }
    void set_processed()               { _processed = true; }
    bool is_processed() const          { return _processed; }

    // insert
    void break_cycle(VMRegPair temp_register) {
      // create a new store following the last store
      // to move from the temp_register to the original
      MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());

      // break the cycle of links and insert new_store at the end
      // break the reverse link.
      MoveOperation* p = prev();
      assert(p->next() == this, "must be");
      _prev = NULL;
      p->_next = new_store;
      new_store->_prev = p;

      // change the original store to save it's value in the temp.
      set_dst(-1, temp_register);
    }

    void link(GrowableArray<MoveOperation*>& killer) {
      // link this store in front the store that it depends on
      MoveOperation* n = killer.at_grow(src_id(), NULL);
      if (n != NULL) {
        assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
        _next = n;
        n->_prev = this;
      }
    }
  };

 private:
  GrowableArray<MoveOperation*> edges;

 public:
  ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
                    BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
    // Move operations where the dest is the stack can all be
    // scheduled first since they can't interfere with the other moves.
    for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
      if (in_sig_bt[i] == T_ARRAY) {
        c_arg--;
        if (out_regs[c_arg].first()->is_stack() &&
            out_regs[c_arg + 1].first()->is_stack()) {
          arg_order.push(i);
          arg_order.push(c_arg);
        } else {
          if (out_regs[c_arg].first()->is_stack() ||
              in_regs[i].first() == out_regs[c_arg].first()) {
            add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
          } else {
            add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
          }
        }
      } else if (in_sig_bt[i] == T_VOID) {
        arg_order.push(i);
        arg_order.push(c_arg);
      } else {
        if (out_regs[c_arg].first()->is_stack() ||
            in_regs[i].first() == out_regs[c_arg].first()) {
          arg_order.push(i);
          arg_order.push(c_arg);
        } else {
          add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
        }
      }
    }
    // Break any cycles in the register moves and emit the in the
    // proper order.
    GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
    for (int i = 0; i < stores->length(); i++) {
      arg_order.push(stores->at(i)->src_index());
      arg_order.push(stores->at(i)->dst_index());
    }
 }

  // Collected all the move operations
  void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
    if (src.first() == dst.first()) return;
    edges.append(new MoveOperation(src_index, src, dst_index, dst));
  }

  // Walk the edges breaking cycles between moves.  The result list
  // can be walked in order to produce the proper set of loads
  GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
    // Record which moves kill which values
    GrowableArray<MoveOperation*> killer;
    for (int i = 0; i < edges.length(); i++) {
      MoveOperation* s = edges.at(i);
      assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
      killer.at_put_grow(s->dst_id(), s, NULL);
    }
    assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
           "make sure temp isn't in the registers that are killed");

    // create links between loads and stores
    for (int i = 0; i < edges.length(); i++) {
      edges.at(i)->link(killer);
    }

    // at this point, all the move operations are chained together
    // in a doubly linked list.  Processing it backwards finds
    // the beginning of the chain, forwards finds the end.  If there's
    // a cycle it can be broken at any point,  so pick an edge and walk
    // backward until the list ends or we end where we started.
    GrowableArray<MoveOperation*>* stores = new GrowableArray();
    for (int e = 0; e < edges.length(); e++) {
      MoveOperation* s = edges.at(e);
      if (!s->is_processed()) {
        MoveOperation* start = s;
        // search for the beginning of the chain or cycle
        while (start->prev() != NULL && start->prev() != s) {
          start = start->prev();
        }
        if (start->prev() == s) {
          start->break_cycle(temp_register);
        }
        // walk the chain forward inserting to store list
        while (start != NULL) {
          stores->append(start);
          start->set_processed();
          start = start->next();
        }
      }
    }
    return stores;
  }
};

static void verify_oop_args(MacroAssembler* masm,
                            methodHandle method,
                            const BasicType* sig_bt,
                            const VMRegPair* regs) {
  Register temp_reg = rbx;  // not part of any compiled calling seq
  if (VerifyOops) {
    for (int i = 0; i < method->size_of_parameters(); i++) {
      if (sig_bt[i] == T_OBJECT ||
          sig_bt[i] == T_ARRAY) {
        VMReg r = regs[i].first();
        assert(r->is_valid(), "bad oop arg");
        if (r->is_stack()) {
          __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
          __ verify_oop(temp_reg);
        } else {
          __ verify_oop(r->as_Register());
        }
      }
    }
  }
}

static void gen_special_dispatch(MacroAssembler* masm,
                                 methodHandle method,
                                 const BasicType* sig_bt,
                                 const VMRegPair* regs) {
  verify_oop_args(masm, method, sig_bt, regs);
  vmIntrinsics::ID iid = method->intrinsic_id();

  // Now write the args into the outgoing interpreter space
  bool     has_receiver   = false;
  Register receiver_reg   = noreg;
  int      member_arg_pos = -1;
  Register member_reg     = noreg;
  int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
  if (ref_kind != 0) {
    member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
    member_reg = rbx;  // known to be free at this point
    has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
  } else if (iid == vmIntrinsics::_invokeBasic) {
    has_receiver = true;
  } else {
    fatal(err_msg_res("unexpected intrinsic id %d", iid));
  }

  if (member_reg != noreg) {
    // Load the member_arg into register, if necessary.
    SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
    VMReg r = regs[member_arg_pos].first();
    if (r->is_stack()) {
      __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
    } else {
      // no data motion is needed
      member_reg = r->as_Register();
    }
  }

  if (has_receiver) {
    // Make sure the receiver is loaded into a register.
    assert(method->size_of_parameters() > 0, "oob");
    assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
    VMReg r = regs[0].first();
    assert(r->is_valid(), "bad receiver arg");
    if (r->is_stack()) {
      // Porting note:  This assumes that compiled calling conventions always
      // pass the receiver oop in a register.  If this is not true on some
      // platform, pick a temp and load the receiver from stack.
      fatal("receiver always in a register");
      receiver_reg = j_rarg0;  // known to be free at this point
      __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
    } else {
      // no data motion is needed
      receiver_reg = r->as_Register();
    }
  }

  // Figure out which address we are really jumping to:
  MethodHandles::generate_method_handle_dispatch(masm, iid,
                                                 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
}

// ---------------------------------------------------------------------------
// Generate a native wrapper for a given method.  The method takes arguments
// in the Java compiled code convention, marshals them to the native
// convention (handlizes oops, etc), transitions to native, makes the call,
// returns to java state (possibly blocking), unhandlizes any result and
// returns.
//
// Critical native functions are a shorthand for the use of
// GetPrimtiveArrayCritical and disallow the use of any other JNI
// functions.  The wrapper is expected to unpack the arguments before
// passing them to the callee and perform checks before and after the
// native call to ensure that they GC_locker
// lock_critical/unlock_critical semantics are followed.  Some other
// parts of JNI setup are skipped like the tear down of the JNI handle
// block and the check for pending exceptions it's impossible for them
// to be thrown.
//
// They are roughly structured like this:
//    if (GC_locker::needs_gc())
//      SharedRuntime::block_for_jni_critical();
//    tranistion to thread_in_native
//    unpack arrray arguments and call native entry point
//    check for safepoint in progress
//    check if any thread suspend flags are set
//      call into JVM and possible unlock the JNI critical
//      if a GC was suppressed while in the critical native.
//    transition back to thread_in_Java
//    return to caller
//
nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
                                                methodHandle method,
                                                int compile_id,
                                                BasicType* in_sig_bt,
                                                VMRegPair* in_regs,
                                                BasicType ret_type) {
  if (method->is_method_handle_intrinsic()) {
    vmIntrinsics::ID iid = method->intrinsic_id();
    intptr_t start = (intptr_t)__ pc();
    int vep_offset = ((intptr_t)__ pc()) - start;
    gen_special_dispatch(masm,
                         method,
                         in_sig_bt,
                         in_regs);
    int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
    __ flush();
    int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
    return nmethod::new_native_nmethod(method,
                                       compile_id,
                                       masm->code(),
                                       vep_offset,
                                       frame_complete,
                                       stack_slots / VMRegImpl::slots_per_word,
                                       in_ByteSize(-1),
                                       in_ByteSize(-1),
                                       (OopMapSet*)NULL);
  }
  bool is_critical_native = true;
  address native_func = method->critical_native_function();
  if (native_func == NULL) {
    native_func = method->native_function();
    is_critical_native = false;
  }
  assert(native_func != NULL, "must have function");

  // An OopMap for lock (and class if static)
  OopMapSet *oop_maps = new OopMapSet();
  intptr_t start = (intptr_t)__ pc();

  // We have received a description of where all the java arg are located
  // on entry to the wrapper. We need to convert these args to where
  // the jni function will expect them. To figure out where they go
  // we convert the java signature to a C signature by inserting
  // the hidden arguments as arg[0] and possibly arg[1] (static method)

  const int total_in_args = method->size_of_parameters();
  int total_c_args = total_in_args;
  if (!is_critical_native) {
    total_c_args += 1;
    if (method->is_static()) {
      total_c_args++;
    }
  } else {
    for (int i = 0; i < total_in_args; i++) {
      if (in_sig_bt[i] == T_ARRAY) {
        total_c_args++;
      }
    }
  }

  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  BasicType* in_elem_bt = NULL;

  int argc = 0;
  if (!is_critical_native) {
    out_sig_bt[argc++] = T_ADDRESS;
    if (method->is_static()) {
      out_sig_bt[argc++] = T_OBJECT;
    }

    for (int i = 0; i < total_in_args ; i++ ) {
      out_sig_bt[argc++] = in_sig_bt[i];
    }
  } else {
    Thread* THREAD = Thread::current();
    in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
    SignatureStream ss(method->signature());
    for (int i = 0; i < total_in_args ; i++ ) {
      if (in_sig_bt[i] == T_ARRAY) {
        // Arrays are passed as int, elem* pair
        out_sig_bt[argc++] = T_INT;
        out_sig_bt[argc++] = T_ADDRESS;
        Symbol* atype = ss.as_symbol(CHECK_NULL);
        const char* at = atype->as_C_string();
        if (strlen(at) == 2) {
          assert(at[0] == '[', "must be");
          switch (at[1]) {
            case 'B': in_elem_bt[i]  = T_BYTE; break;
            case 'C': in_elem_bt[i]  = T_CHAR; break;
            case 'D': in_elem_bt[i]  = T_DOUBLE; break;
            case 'F': in_elem_bt[i]  = T_FLOAT; break;
            case 'I': in_elem_bt[i]  = T_INT; break;
            case 'J': in_elem_bt[i]  = T_LONG; break;
            case 'S': in_elem_bt[i]  = T_SHORT; break;
            case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
            default: ShouldNotReachHere();
          }
        }
      } else {
        out_sig_bt[argc++] = in_sig_bt[i];
        in_elem_bt[i] = T_VOID;
      }
      if (in_sig_bt[i] != T_VOID) {
        assert(in_sig_bt[i] == ss.type(), "must match");
        ss.next();
      }
    }
  }

  // Now figure out where the args must be stored and how much stack space
  // they require.
  int out_arg_slots;
  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);

  // Compute framesize for the wrapper.  We need to handlize all oops in
  // incoming registers

  // Calculate the total number of stack slots we will need.

  // First count the abi requirement plus all of the outgoing args
  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;

  // Now the space for the inbound oop handle area
  int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
  if (is_critical_native) {
    // Critical natives may have to call out so they need a save area
    // for register arguments.
    int double_slots = 0;
    int single_slots = 0;
    for ( int i = 0; i < total_in_args; i++) {
      if (in_regs[i].first()->is_Register()) {
        const Register reg = in_regs[i].first()->as_Register();
        switch (in_sig_bt[i]) {
          case T_BOOLEAN:
          case T_BYTE:
          case T_SHORT:
          case T_CHAR:
          case T_INT:  single_slots++; break;
          case T_ARRAY:  // specific to LP64 (7145024)
          case T_LONG: double_slots++; break;
          default:  ShouldNotReachHere();
        }
      } else if (in_regs[i].first()->is_XMMRegister()) {
        switch (in_sig_bt[i]) {
          case T_FLOAT:  single_slots++; break;
          case T_DOUBLE: double_slots++; break;
          default:  ShouldNotReachHere();
        }
      } else if (in_regs[i].first()->is_FloatRegister()) {
        ShouldNotReachHere();
      }
    }
    total_save_slots = double_slots * 2 + single_slots;
    // align the save area
    if (double_slots != 0) {
      stack_slots = round_to(stack_slots, 2);
    }
  }

  int oop_handle_offset = stack_slots;
  stack_slots += total_save_slots;

  // Now any space we need for handlizing a klass if static method

  int klass_slot_offset = 0;
  int klass_offset = -1;
  int lock_slot_offset = 0;
  bool is_static = false;

  if (method->is_static()) {
    klass_slot_offset = stack_slots;
    stack_slots += VMRegImpl::slots_per_word;
    klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
    is_static = true;
  }

  // Plus a lock if needed

  if (method->is_synchronized()) {
    lock_slot_offset = stack_slots;
    stack_slots += VMRegImpl::slots_per_word;
  }

  // Now a place (+2) to save return values or temp during shuffling
  // + 4 for return address (which we own) and saved rbp
  stack_slots += 6;

  // Ok The space we have allocated will look like:
  //
  //
  // FP-> |                     |
  //      |---------------------|
  //      | 2 slots for moves   |
  //      |---------------------|
  //      | lock box (if sync)  |
  //      |---------------------| <- lock_slot_offset
  //      | klass (if static)   |
  //      |---------------------| <- klass_slot_offset
  //      | oopHandle area      |
  //      |---------------------| <- oop_handle_offset (6 java arg registers)
  //      | outbound memory     |
  //      | based arguments     |
  //      |                     |
  //      |---------------------|
  //      |                     |
  // SP-> | out_preserved_slots |
  //
  //


  // Now compute actual number of stack words we need rounding to make
  // stack properly aligned.
  stack_slots = round_to(stack_slots, StackAlignmentInSlots);

  int stack_size = stack_slots * VMRegImpl::stack_slot_size;

  // First thing make an ic check to see if we should even be here

  // We are free to use all registers as temps without saving them and
  // restoring them except rbp. rbp is the only callee save register
  // as far as the interpreter and the compiler(s) are concerned.


  const Register ic_reg = rax;
  const Register receiver = j_rarg0;

  Label hit;
  Label exception_pending;

  assert_different_registers(ic_reg, receiver, rscratch1);
  __ verify_oop(receiver);
  __ load_klass(rscratch1, receiver);
  __ cmpq(ic_reg, rscratch1);
  __ jcc(Assembler::equal, hit);

  __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));

  // Verified entry point must be aligned
  __ align(8);

  __ bind(hit);

  int vep_offset = ((intptr_t)__ pc()) - start;

  // The instruction at the verified entry point must be 5 bytes or longer
  // because it can be patched on the fly by make_non_entrant. The stack bang
  // instruction fits that requirement.

  // Generate stack overflow check

  if (UseStackBanging) {
    __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  } else {
    // need a 5 byte instruction to allow MT safe patching to non-entrant
    __ fat_nop();
  }

  // Generate a new frame for the wrapper.
  __ enter();
  // -2 because return address is already present and so is saved rbp
  __ subptr(rsp, stack_size - 2*wordSize);

  // Frame is now completed as far as size and linkage.
  int frame_complete = ((intptr_t)__ pc()) - start;

#ifdef ASSERT
    {
      Label L;
      __ mov(rax, rsp);
      __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
      __ cmpptr(rax, rsp);
      __ jcc(Assembler::equal, L);
      __ stop("improperly aligned stack");
      __ bind(L);
    }
#endif /* ASSERT */


  // We use r14 as the oop handle for the receiver/klass
  // It is callee save so it survives the call to native

  const Register oop_handle_reg = r14;

  if (is_critical_native) {
    check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
                                       oop_handle_offset, oop_maps, in_regs, in_sig_bt);
  }

  //
  // We immediately shuffle the arguments so that any vm call we have to
  // make from here on out (sync slow path, jvmti, etc.) we will have
  // captured the oops from our caller and have a valid oopMap for
  // them.

  // -----------------
  // The Grand Shuffle

  // The Java calling convention is either equal (linux) or denser (win64) than the
  // c calling convention. However the because of the jni_env argument the c calling
  // convention always has at least one more (and two for static) arguments than Java.
  // Therefore if we move the args from java -> c backwards then we will never have
  // a register->register conflict and we don't have to build a dependency graph
  // and figure out how to break any cycles.
  //

  // Record esp-based slot for receiver on stack for non-static methods
  int receiver_offset = -1;

  // This is a trick. We double the stack slots so we can claim
  // the oops in the caller's frame. Since we are sure to have
  // more args than the caller doubling is enough to make
  // sure we can capture all the incoming oop args from the
  // caller.
  //
  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);

  // Mark location of rbp (someday)
  // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));

  // Use eax, ebx as temporaries during any memory-memory moves we have to do
  // All inbound args are referenced based on rbp and all outbound args via rsp.


#ifdef ASSERT
  bool reg_destroyed[RegisterImpl::number_of_registers];
  bool freg_destroyed[XMMRegisterImpl::number_of_registers];
  for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
    reg_destroyed[r] = false;
  }
  for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
    freg_destroyed[f] = false;
  }

#endif /* ASSERT */

  // This may iterate in two different directions depending on the
  // kind of native it is.  The reason is that for regular JNI natives
  // the incoming and outgoing registers are offset upwards and for
  // critical natives they are offset down.
  GrowableArray<int> arg_order(2 * total_in_args);
  VMRegPair tmp_vmreg;
  tmp_vmreg.set1(rbx->as_VMReg());

  if (!is_critical_native) {
    for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
      arg_order.push(i);
      arg_order.push(c_arg);
    }
  } else {
    // Compute a valid move order, using tmp_vmreg to break any cycles
    ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
  }

  int temploc = -1;
  for (int ai = 0; ai < arg_order.length(); ai += 2) {
    int i = arg_order.at(ai);
    int c_arg = arg_order.at(ai + 1);
    __ block_comment(err_msg("move %d -> %d", i, c_arg));
    if (c_arg == -1) {
      assert(is_critical_native, "should only be required for critical natives");
      // This arg needs to be moved to a temporary
      __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
      in_regs[i] = tmp_vmreg;
      temploc = i;
      continue;
    } else if (i == -1) {
      assert(is_critical_native, "should only be required for critical natives");
      // Read from the temporary location
      assert(temploc != -1, "must be valid");
      i = temploc;
      temploc = -1;
    }
#ifdef ASSERT
    if (in_regs[i].first()->is_Register()) {
      assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
    } else if (in_regs[i].first()->is_XMMRegister()) {
      assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
    }
    if (out_regs[c_arg].first()->is_Register()) {
      reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
    } else if (out_regs[c_arg].first()->is_XMMRegister()) {
      freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
    }
#endif /* ASSERT */
    switch (in_sig_bt[i]) {
      case T_ARRAY:
        if (is_critical_native) {
          unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
          c_arg++;
#ifdef ASSERT
          if (out_regs[c_arg].first()->is_Register()) {
            reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
          } else if (out_regs[c_arg].first()->is_XMMRegister()) {
            freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
          }
#endif
          break;
        }
      case T_OBJECT:
        assert(!is_critical_native, "no oop arguments");
        object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
                    ((i == 0) && (!is_static)),
                    &receiver_offset);
        break;
      case T_VOID:
        break;

      case T_FLOAT:
        float_move(masm, in_regs[i], out_regs[c_arg]);
          break;

      case T_DOUBLE:
        assert( i + 1 < total_in_args &&
                in_sig_bt[i + 1] == T_VOID &&
                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
        double_move(masm, in_regs[i], out_regs[c_arg]);
        break;

      case T_LONG :
        long_move(masm, in_regs[i], out_regs[c_arg]);
        break;

      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");

      default:
        move32_64(masm, in_regs[i], out_regs[c_arg]);
    }
  }

  int c_arg;

  // Pre-load a static method's oop into r14.  Used both by locking code and
  // the normal JNI call code.
  if (!is_critical_native) {
    // point c_arg at the first arg that is already loaded in case we
    // need to spill before we call out
    c_arg = total_c_args - total_in_args;

    if (method->is_static()) {

      //  load oop into a register
      __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));

      // Now handlize the static class mirror it's known not-null.
      __ movptr(Address(rsp, klass_offset), oop_handle_reg);
      map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));

      // Now get the handle
      __ lea(oop_handle_reg, Address(rsp, klass_offset));
      // store the klass handle as second argument
      __ movptr(c_rarg1, oop_handle_reg);
      // and protect the arg if we must spill
      c_arg--;
    }
  } else {
    // For JNI critical methods we need to save all registers in save_args.
    c_arg = 0;
  }

  // Change state to native (we save the return address in the thread, since it might not
  // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  // points into the right code segment. It does not have to be the correct return pc.
  // We use the same pc/oopMap repeatedly when we call out

  intptr_t the_pc = (intptr_t) __ pc();
  oop_maps->add_gc_map(the_pc - start, map);

  __ set_last_Java_frame(rsp, noreg, (address)the_pc);


  // We have all of the arguments setup at this point. We must not touch any register
  // argument registers at this point (what if we save/restore them there are no oop?

  {
    SkipIfEqual skip(masm, &DTraceMethodProbes, false);
    // protect the args we've loaded
    save_args(masm, total_c_args, c_arg, out_regs);
    __ mov_metadata(c_rarg1, method());
    __ call_VM_leaf(
      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
      r15_thread, c_rarg1);
    restore_args(masm, total_c_args, c_arg, out_regs);
  }

  // RedefineClasses() tracing support for obsolete method entry
  if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
    // protect the args we've loaded
    save_args(masm, total_c_args, c_arg, out_regs);
    __ mov_metadata(c_rarg1, method());
    __ call_VM_leaf(
      CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
      r15_thread, c_rarg1);
    restore_args(masm, total_c_args, c_arg, out_regs);
  }

  // Lock a synchronized method

  // Register definitions used by locking and unlocking

  const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
  const Register obj_reg  = rbx;  // Will contain the oop
  const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
  const Register old_hdr  = r13;  // value of old header at unlock time

  Label slow_path_lock;
  Label lock_done;

  if (method->is_synchronized()) {
    assert(!is_critical_native, "unhandled");


    const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();

    // Get the handle (the 2nd argument)
    __ mov(oop_handle_reg, c_rarg1);

    // Get address of the box

    __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));

    // Load the oop from the handle
    __ movptr(obj_reg, Address(oop_handle_reg, 0));

    if (UseBiasedLocking) {
      __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
    }

    // Load immediate 1 into swap_reg %rax
    __ movl(swap_reg, 1);

    // Load (object->mark() | 1) into swap_reg %rax
    __ orptr(swap_reg, Address(obj_reg, 0));

    // Save (object->mark() | 1) into BasicLock's displaced header
    __ movptr(Address(lock_reg, mark_word_offset), swap_reg);

    if (os::is_MP()) {
      __ lock();
    }

    // src -> dest iff dest == rax else rax <- dest
    __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
    __ jcc(Assembler::equal, lock_done);

    // Hmm should this move to the slow path code area???

    // Test if the oopMark is an obvious stack pointer, i.e.,
    //  1) (mark & 3) == 0, and
    //  2) rsp <= mark < mark + os::pagesize()
    // These 3 tests can be done by evaluating the following
    // expression: ((mark - rsp) & (3 - os::vm_page_size())),
    // assuming both stack pointer and pagesize have their
    // least significant 2 bits clear.
    // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg

    __ subptr(swap_reg, rsp);
    __ andptr(swap_reg, 3 - os::vm_page_size());

    // Save the test result, for recursive case, the result is zero
    __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
    __ jcc(Assembler::notEqual, slow_path_lock);

    // Slow path will re-enter here

    __ bind(lock_done);
  }


  // Finally just about ready to make the JNI call


  // get JNIEnv* which is first argument to native
  if (!is_critical_native) {
    __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
  }

  // Now set thread in native
  __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);

  __ call(RuntimeAddress(native_func));

  // Verify or restore cpu control state after JNI call
  __ restore_cpu_control_state_after_jni();

  // Unpack native results.
  switch (ret_type) {
  case T_BOOLEAN: __ c2bool(rax);            break;
  case T_CHAR   : __ movzwl(rax, rax);      break;
  case T_BYTE   : __ sign_extend_byte (rax); break;
  case T_SHORT  : __ sign_extend_short(rax); break;
  case T_INT    : /* nothing to do */        break;
  case T_DOUBLE :
  case T_FLOAT  :
    // Result is in xmm0 we'll save as needed
    break;
  case T_ARRAY:                 // Really a handle
  case T_OBJECT:                // Really a handle
      break; // can't de-handlize until after safepoint check
  case T_VOID: break;
  case T_LONG: break;
  default       : ShouldNotReachHere();
  }

  // Switch thread to "native transition" state before reading the synchronization state.
  // This additional state is necessary because reading and testing the synchronization
  // state is not atomic w.r.t. GC, as this scenario demonstrates:
  //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  //     VM thread changes sync state to synchronizing and suspends threads for GC.
  //     Thread A is resumed to finish this native method, but doesn't block here since it
  //     didn't see any synchronization is progress, and escapes.
  __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);

  if(os::is_MP()) {
    if (UseMembar) {
      // Force this write out before the read below
      __ membar(Assembler::Membar_mask_bits(
           Assembler::LoadLoad | Assembler::LoadStore |
           Assembler::StoreLoad | Assembler::StoreStore));
    } else {
      // Write serialization page so VM thread can do a pseudo remote membar.
      // We use the current thread pointer to calculate a thread specific
      // offset to write to within the page. This minimizes bus traffic
      // due to cache line collision.
      __ serialize_memory(r15_thread, rcx);
    }
  }

  Label after_transition;

  // check for safepoint operation in progress and/or pending suspend requests
  {
    Label Continue;

    __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
             SafepointSynchronize::_not_synchronized);

    Label L;
    __ jcc(Assembler::notEqual, L);
    __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
    __ jcc(Assembler::equal, Continue);
    __ bind(L);

    // Don't use call_VM as it will see a possible pending exception and forward it
    // and never return here preventing us from clearing _last_native_pc down below.
    // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
    // preserved and correspond to the bcp/locals pointers. So we do a runtime call
    // by hand.
    //
    save_native_result(masm, ret_type, stack_slots);
    __ mov(c_rarg0, r15_thread);
    __ mov(r12, rsp); // remember sp
    __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
    __ andptr(rsp, -16); // align stack as required by ABI
    if (!is_critical_native) {
      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
    } else {
      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
    }
    __ mov(rsp, r12); // restore sp
    __ reinit_heapbase();
    // Restore any method result value
    restore_native_result(masm, ret_type, stack_slots);

    if (is_critical_native) {
      // The call above performed the transition to thread_in_Java so
      // skip the transition logic below.
      __ jmpb(after_transition);
    }

    __ bind(Continue);
  }

  // change thread state
  __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
  __ bind(after_transition);

  Label reguard;
  Label reguard_done;
  __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  __ jcc(Assembler::equal, reguard);
  __ bind(reguard_done);

  // native result if any is live

  // Unlock
  Label unlock_done;
  Label slow_path_unlock;
  if (method->is_synchronized()) {

    // Get locked oop from the handle we passed to jni
    __ movptr(obj_reg, Address(oop_handle_reg, 0));

    Label done;

    if (UseBiasedLocking) {
      __ biased_locking_exit(obj_reg, old_hdr, done);
    }

    // Simple recursive lock?

    __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
    __ jcc(Assembler::equal, done);

    // Must save rax if if it is live now because cmpxchg must use it
    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
      save_native_result(masm, ret_type, stack_slots);
    }


    // get address of the stack lock
    __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
    //  get old displaced header
    __ movptr(old_hdr, Address(rax, 0));

    // Atomic swap old header if oop still contains the stack lock
    if (os::is_MP()) {
      __ lock();
    }
    __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
    __ jcc(Assembler::notEqual, slow_path_unlock);

    // slow path re-enters here
    __ bind(unlock_done);
    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
      restore_native_result(masm, ret_type, stack_slots);
    }

    __ bind(done);

  }
  {
    SkipIfEqual skip(masm, &DTraceMethodProbes, false);
    save_native_result(masm, ret_type, stack_slots);
    __ mov_metadata(c_rarg1, method());
    __ call_VM_leaf(
         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
         r15_thread, c_rarg1);
    restore_native_result(masm, ret_type, stack_slots);
  }

  __ reset_last_Java_frame(false, true);

  // Unpack oop result
  if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
      Label L;
      __ testptr(rax, rax);
      __ jcc(Assembler::zero, L);
      __ movptr(rax, Address(rax, 0));
      __ bind(L);
      __ verify_oop(rax);
  }

  if (!is_critical_native) {
    // reset handle block
    __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
    __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  }

  // pop our frame

  __ leave();

  if (!is_critical_native) {
    // Any exception pending?
    __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
    __ jcc(Assembler::notEqual, exception_pending);
  }

  // Return

  __ ret(0);

  // Unexpected paths are out of line and go here

  if (!is_critical_native) {
    // forward the exception
    __ bind(exception_pending);

    // and forward the exception
    __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  }

  // Slow path locking & unlocking
  if (method->is_synchronized()) {

    // BEGIN Slow path lock
    __ bind(slow_path_lock);

    // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
    // args are (oop obj, BasicLock* lock, JavaThread* thread)

    // protect the args we've loaded
    save_args(masm, total_c_args, c_arg, out_regs);

    __ mov(c_rarg0, obj_reg);
    __ mov(c_rarg1, lock_reg);
    __ mov(c_rarg2, r15_thread);

    // Not a leaf but we have last_Java_frame setup as we want
    __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
    restore_args(masm, total_c_args, c_arg, out_regs);

#ifdef ASSERT
    { Label L;
    __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
    __ jcc(Assembler::equal, L);
    __ stop("no pending exception allowed on exit from monitorenter");
    __ bind(L);
    }
#endif
    __ jmp(lock_done);

    // END Slow path lock

    // BEGIN Slow path unlock
    __ bind(slow_path_unlock);

    // If we haven't already saved the native result we must save it now as xmm registers
    // are still exposed.

    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
      save_native_result(masm, ret_type, stack_slots);
    }

    __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));

    __ mov(c_rarg0, obj_reg);
    __ mov(r12, rsp); // remember sp
    __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
    __ andptr(rsp, -16); // align stack as required by ABI

    // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
    // NOTE that obj_reg == rbx currently
    __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
    __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);

    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
    __ mov(rsp, r12); // restore sp
    __ reinit_heapbase();
#ifdef ASSERT
    {
      Label L;
      __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
      __ jcc(Assembler::equal, L);
      __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
      __ bind(L);
    }
#endif /* ASSERT */

    __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);

    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
      restore_native_result(masm, ret_type, stack_slots);
    }
    __ jmp(unlock_done);

    // END Slow path unlock

  } // synchronized

  // SLOW PATH Reguard the stack if needed

  __ bind(reguard);
  save_native_result(masm, ret_type, stack_slots);
  __ mov(r12, rsp); // remember sp
  __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  __ andptr(rsp, -16); // align stack as required by ABI
  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  __ mov(rsp, r12); // restore sp
  __ reinit_heapbase();
  restore_native_result(masm, ret_type, stack_slots);
  // and continue
  __ jmp(reguard_done);



  __ flush();

  nmethod *nm = nmethod::new_native_nmethod(method,
                                            compile_id,
                                            masm->code(),
                                            vep_offset,
                                            frame_complete,
                                            stack_slots / VMRegImpl::slots_per_word,
                                            (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
                                            in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
                                            oop_maps);

  if (is_critical_native) {
    nm->set_lazy_critical_native(true);
  }

  return nm;

}

#ifdef HAVE_DTRACE_H
// ---------------------------------------------------------------------------
// Generate a dtrace nmethod for a given signature.  The method takes arguments
// in the Java compiled code convention, marshals them to the native
// abi and then leaves nops at the position you would expect to call a native
// function. When the probe is enabled the nops are replaced with a trap
// instruction that dtrace inserts and the trace will cause a notification
// to dtrace.
//
// The probes are only able to take primitive types and java/lang/String as
// arguments.  No other java types are allowed. Strings are converted to utf8
// strings so that from dtrace point of view java strings are converted to C
// strings. There is an arbitrary fixed limit on the total space that a method
// can use for converting the strings. (256 chars per string in the signature).
// So any java string larger then this is truncated.

static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
static bool offsets_initialized = false;


nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
                                                methodHandle method) {


  // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  // be single threaded in this method.
  assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");

  if (!offsets_initialized) {
    fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
    fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
    fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
    fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
    fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
    fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;

    fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
    fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
    fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
    fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
    fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
    fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
    fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
    fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;

    offsets_initialized = true;
  }
  // Fill in the signature array, for the calling-convention call.
  int total_args_passed = method->size_of_parameters();

  BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);

  // The signature we are going to use for the trap that dtrace will see
  // java/lang/String is converted. We drop "this" and any other object
  // is converted to NULL.  (A one-slot java/lang/Long object reference
  // is converted to a two-slot long, which is why we double the allocation).
  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);

  int i=0;
  int total_strings = 0;
  int first_arg_to_pass = 0;
  int total_c_args = 0;

  // Skip the receiver as dtrace doesn't want to see it
  if( !method->is_static() ) {
    in_sig_bt[i++] = T_OBJECT;
    first_arg_to_pass = 1;
  }

  // We need to convert the java args to where a native (non-jni) function
  // would expect them. To figure out where they go we convert the java
  // signature to a C signature.

  SignatureStream ss(method->signature());
  for ( ; !ss.at_return_type(); ss.next()) {
    BasicType bt = ss.type();
    in_sig_bt[i++] = bt;  // Collect remaining bits of signature
    out_sig_bt[total_c_args++] = bt;
    if( bt == T_OBJECT) {
      Symbol* s = ss.as_symbol_or_null();   // symbol is created
      if (s == vmSymbols::java_lang_String()) {
        total_strings++;
        out_sig_bt[total_c_args-1] = T_ADDRESS;
      } else if (s == vmSymbols::java_lang_Boolean() ||
                 s == vmSymbols::java_lang_Character() ||
                 s == vmSymbols::java_lang_Byte() ||
                 s == vmSymbols::java_lang_Short() ||
                 s == vmSymbols::java_lang_Integer() ||
                 s == vmSymbols::java_lang_Float()) {
        out_sig_bt[total_c_args-1] = T_INT;
      } else if (s == vmSymbols::java_lang_Long() ||
                 s == vmSymbols::java_lang_Double()) {
        out_sig_bt[total_c_args-1] = T_LONG;
        out_sig_bt[total_c_args++] = T_VOID;
      }
    } else if ( bt == T_LONG || bt == T_DOUBLE ) {
      in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
      // We convert double to long
      out_sig_bt[total_c_args-1] = T_LONG;
      out_sig_bt[total_c_args++] = T_VOID;
    } else if ( bt == T_FLOAT) {
      // We convert float to int
      out_sig_bt[total_c_args-1] = T_INT;
    }
  }

  assert(i==total_args_passed, "validly parsed signature");

  // Now get the compiled-Java layout as input arguments
  int comp_args_on_stack;
  comp_args_on_stack = SharedRuntime::java_calling_convention(
      in_sig_bt, in_regs, total_args_passed, false);

  // Now figure out where the args must be stored and how much stack space
  // they require (neglecting out_preserve_stack_slots but space for storing
  // the 1st six register arguments). It's weird see int_stk_helper.

  int out_arg_slots;
  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);

  // Calculate the total number of stack slots we will need.

  // First count the abi requirement plus all of the outgoing args
  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;

  // Now space for the string(s) we must convert
  int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  for (i = 0; i < total_strings ; i++) {
    string_locs[i] = stack_slots;
    stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  }

  // Plus the temps we might need to juggle register args
  // regs take two slots each
  stack_slots += (Argument::n_int_register_parameters_c +
                  Argument::n_float_register_parameters_c) * 2;


  // + 4 for return address (which we own) and saved rbp,

  stack_slots += 4;

  // Ok The space we have allocated will look like:
  //
  //
  // FP-> |                     |
  //      |---------------------|
  //      | string[n]           |
  //      |---------------------| <- string_locs[n]
  //      | string[n-1]         |
  //      |---------------------| <- string_locs[n-1]
  //      | ...                 |
  //      | ...                 |
  //      |---------------------| <- string_locs[1]
  //      | string[0]           |
  //      |---------------------| <- string_locs[0]
  //      | outbound memory     |
  //      | based arguments     |
  //      |                     |
  //      |---------------------|
  //      |                     |
  // SP-> | out_preserved_slots |
  //
  //

  // Now compute actual number of stack words we need rounding to make
  // stack properly aligned.
  stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);

  int stack_size = stack_slots * VMRegImpl::stack_slot_size;

  intptr_t start = (intptr_t)__ pc();

  // First thing make an ic check to see if we should even be here

  // We are free to use all registers as temps without saving them and
  // restoring them except rbp. rbp, is the only callee save register
  // as far as the interpreter and the compiler(s) are concerned.

  const Register ic_reg = rax;
  const Register receiver = rcx;
  Label hit;
  Label exception_pending;


  __ verify_oop(receiver);
  __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  __ jcc(Assembler::equal, hit);

  __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));

  // verified entry must be aligned for code patching.
  // and the first 5 bytes must be in the same cache line
  // if we align at 8 then we will be sure 5 bytes are in the same line
  __ align(8);

  __ bind(hit);

  int vep_offset = ((intptr_t)__ pc()) - start;


  // The instruction at the verified entry point must be 5 bytes or longer
  // because it can be patched on the fly by make_non_entrant. The stack bang
  // instruction fits that requirement.

  // Generate stack overflow check

  if (UseStackBanging) {
    if (stack_size <= StackShadowPages*os::vm_page_size()) {
      __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
    } else {
      __ movl(rax, stack_size);
      __ bang_stack_size(rax, rbx);
    }
  } else {
    // need a 5 byte instruction to allow MT safe patching to non-entrant
    __ fat_nop();
  }

  assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
         "valid size for make_non_entrant");

  // Generate a new frame for the wrapper.
  __ enter();

  // -4 because return address is already present and so is saved rbp,
  if (stack_size - 2*wordSize != 0) {
    __ subq(rsp, stack_size - 2*wordSize);
  }

  // Frame is now completed as far a size and linkage.

  int frame_complete = ((intptr_t)__ pc()) - start;

  int c_arg, j_arg;

  // State of input register args

  bool  live[ConcreteRegisterImpl::number_of_registers];

  live[j_rarg0->as_VMReg()->value()] = false;
  live[j_rarg1->as_VMReg()->value()] = false;
  live[j_rarg2->as_VMReg()->value()] = false;
  live[j_rarg3->as_VMReg()->value()] = false;
  live[j_rarg4->as_VMReg()->value()] = false;
  live[j_rarg5->as_VMReg()->value()] = false;

  live[j_farg0->as_VMReg()->value()] = false;
  live[j_farg1->as_VMReg()->value()] = false;
  live[j_farg2->as_VMReg()->value()] = false;
  live[j_farg3->as_VMReg()->value()] = false;
  live[j_farg4->as_VMReg()->value()] = false;
  live[j_farg5->as_VMReg()->value()] = false;
  live[j_farg6->as_VMReg()->value()] = false;
  live[j_farg7->as_VMReg()->value()] = false;


  bool rax_is_zero = false;

  // All args (except strings) destined for the stack are moved first
  for (j_arg = first_arg_to_pass, c_arg = 0 ;
       j_arg < total_args_passed ; j_arg++, c_arg++ ) {
    VMRegPair src = in_regs[j_arg];
    VMRegPair dst = out_regs[c_arg];

    // Get the real reg value or a dummy (rsp)

    int src_reg = src.first()->is_reg() ?
                  src.first()->value() :
                  rsp->as_VMReg()->value();

    bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
                    (in_sig_bt[j_arg] == T_OBJECT &&
                     out_sig_bt[c_arg] != T_INT &&
                     out_sig_bt[c_arg] != T_ADDRESS &&
                     out_sig_bt[c_arg] != T_LONG);

    live[src_reg] = !useless;

    if (dst.first()->is_stack()) {

      // Even though a string arg in a register is still live after this loop
      // after the string conversion loop (next) it will be dead so we take
      // advantage of that now for simpler code to manage live.

      live[src_reg] = false;
      switch (in_sig_bt[j_arg]) {

        case T_ARRAY:
        case T_OBJECT:
          {
            Address stack_dst(rsp, reg2offset_out(dst.first()));

            if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
              // need to unbox a one-word value
              Register in_reg = rax;
              if ( src.first()->is_reg() ) {
                in_reg = src.first()->as_Register();
              } else {
                __ movq(rax, Address(rbp, reg2offset_in(src.first())));
                rax_is_zero = false;
              }
              Label skipUnbox;
              __ movptr(Address(rsp, reg2offset_out(dst.first())),
                        (int32_t)NULL_WORD);
              __ testq(in_reg, in_reg);
              __ jcc(Assembler::zero, skipUnbox);

              BasicType bt = out_sig_bt[c_arg];
              int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
              Address src1(in_reg, box_offset);
              if ( bt == T_LONG ) {
                __ movq(in_reg,  src1);
                __ movq(stack_dst, in_reg);
                assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
                ++c_arg; // skip over T_VOID to keep the loop indices in sync
              } else {
                __ movl(in_reg,  src1);
                __ movl(stack_dst, in_reg);
              }

              __ bind(skipUnbox);
            } else if (out_sig_bt[c_arg] != T_ADDRESS) {
              // Convert the arg to NULL
              if (!rax_is_zero) {
                __ xorq(rax, rax);
                rax_is_zero = true;
              }
              __ movq(stack_dst, rax);
            }
          }
          break;

        case T_VOID:
          break;

        case T_FLOAT:
          // This does the right thing since we know it is destined for the
          // stack
          float_move(masm, src, dst);
          break;

        case T_DOUBLE:
          // This does the right thing since we know it is destined for the
          // stack
          double_move(masm, src, dst);
          break;

        case T_LONG :
          long_move(masm, src, dst);
          break;

        case T_ADDRESS: assert(false, "found T_ADDRESS in java args");

        default:
          move32_64(masm, src, dst);
      }
    }

  }

  // If we have any strings we must store any register based arg to the stack
  // This includes any still live xmm registers too.

  int sid = 0;

  if (total_strings > 0 ) {
    for (j_arg = first_arg_to_pass, c_arg = 0 ;
         j_arg < total_args_passed ; j_arg++, c_arg++ ) {
      VMRegPair src = in_regs[j_arg];
      VMRegPair dst = out_regs[c_arg];

      if (src.first()->is_reg()) {
        Address src_tmp(rbp, fp_offset[src.first()->value()]);

        // string oops were left untouched by the previous loop even if the
        // eventual (converted) arg is destined for the stack so park them
        // away now (except for first)

        if (out_sig_bt[c_arg] == T_ADDRESS) {
          Address utf8_addr = Address(
              rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
          if (sid != 1) {
            // The first string arg won't be killed until after the utf8
            // conversion
            __ movq(utf8_addr, src.first()->as_Register());
          }
        } else if (dst.first()->is_reg()) {
          if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {

            // Convert the xmm register to an int and store it in the reserved
            // location for the eventual c register arg
            XMMRegister f = src.first()->as_XMMRegister();
            if (in_sig_bt[j_arg] == T_FLOAT) {
              __ movflt(src_tmp, f);
            } else {
              __ movdbl(src_tmp, f);
            }
          } else {
            // If the arg is an oop type we don't support don't bother to store
            // it remember string was handled above.
            bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
                            (in_sig_bt[j_arg] == T_OBJECT &&
                             out_sig_bt[c_arg] != T_INT &&
                             out_sig_bt[c_arg] != T_LONG);

            if (!useless) {
              __ movq(src_tmp, src.first()->as_Register());
            }
          }
        }
      }
      if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
        assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
        ++c_arg; // skip over T_VOID to keep the loop indices in sync
      }
    }

    // Now that the volatile registers are safe, convert all the strings
    sid = 0;

    for (j_arg = first_arg_to_pass, c_arg = 0 ;
         j_arg < total_args_passed ; j_arg++, c_arg++ ) {
      if (out_sig_bt[c_arg] == T_ADDRESS) {
        // It's a string
        Address utf8_addr = Address(
            rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
        // The first string we find might still be in the original java arg
        // register

        VMReg src = in_regs[j_arg].first();

        // We will need to eventually save the final argument to the trap
        // in the von-volatile location dedicated to src. This is the offset
        // from fp we will use.
        int src_off = src->is_reg() ?
            fp_offset[src->value()] : reg2offset_in(src);

        // This is where the argument will eventually reside
        VMRegPair dst = out_regs[c_arg];

        if (src->is_reg()) {
          if (sid == 1) {
            __ movq(c_rarg0, src->as_Register());
          } else {
            __ movq(c_rarg0, utf8_addr);
          }
        } else {
          // arg is still in the original location
          __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
        }
        Label done, convert;

        // see if the oop is NULL
        __ testq(c_rarg0, c_rarg0);
        __ jcc(Assembler::notEqual, convert);

        if (dst.first()->is_reg()) {
          // Save the ptr to utf string in the origina src loc or the tmp
          // dedicated to it
          __ movq(Address(rbp, src_off), c_rarg0);
        } else {
          __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
        }
        __ jmp(done);

        __ bind(convert);

        __ lea(c_rarg1, utf8_addr);
        if (dst.first()->is_reg()) {
          __ movq(Address(rbp, src_off), c_rarg1);
        } else {
          __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
        }
        // And do the conversion
        __ call(RuntimeAddress(
                CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));

        __ bind(done);
      }
      if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
        assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
        ++c_arg; // skip over T_VOID to keep the loop indices in sync
      }
    }
    // The get_utf call killed all the c_arg registers
    live[c_rarg0->as_VMReg()->value()] = false;
    live[c_rarg1->as_VMReg()->value()] = false;
    live[c_rarg2->as_VMReg()->value()] = false;
    live[c_rarg3->as_VMReg()->value()] = false;
    live[c_rarg4->as_VMReg()->value()] = false;
    live[c_rarg5->as_VMReg()->value()] = false;

    live[c_farg0->as_VMReg()->value()] = false;
    live[c_farg1->as_VMReg()->value()] = false;
    live[c_farg2->as_VMReg()->value()] = false;
    live[c_farg3->as_VMReg()->value()] = false;
    live[c_farg4->as_VMReg()->value()] = false;
    live[c_farg5->as_VMReg()->value()] = false;
    live[c_farg6->as_VMReg()->value()] = false;
    live[c_farg7->as_VMReg()->value()] = false;
  }

  // Now we can finally move the register args to their desired locations

  rax_is_zero = false;

  for (j_arg = first_arg_to_pass, c_arg = 0 ;
       j_arg < total_args_passed ; j_arg++, c_arg++ ) {

    VMRegPair src = in_regs[j_arg];
    VMRegPair dst = out_regs[c_arg];

    // Only need to look for args destined for the interger registers (since we
    // convert float/double args to look like int/long outbound)
    if (dst.first()->is_reg()) {
      Register r =  dst.first()->as_Register();

      // Check if the java arg is unsupported and thereofre useless
      bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
                      (in_sig_bt[j_arg] == T_OBJECT &&
                       out_sig_bt[c_arg] != T_INT &&
                       out_sig_bt[c_arg] != T_ADDRESS &&
                       out_sig_bt[c_arg] != T_LONG);


      // If we're going to kill an existing arg save it first
      if (live[dst.first()->value()]) {
        // you can't kill yourself
        if (src.first() != dst.first()) {
          __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
        }
      }
      if (src.first()->is_reg()) {
        if (live[src.first()->value()] ) {
          if (in_sig_bt[j_arg] == T_FLOAT) {
            __ movdl(r, src.first()->as_XMMRegister());
          } else if (in_sig_bt[j_arg] == T_DOUBLE) {
            __ movdq(r, src.first()->as_XMMRegister());
          } else if (r != src.first()->as_Register()) {
            if (!useless) {
              __ movq(r, src.first()->as_Register());
            }
          }
        } else {
          // If the arg is an oop type we don't support don't bother to store
          // it
          if (!useless) {
            if (in_sig_bt[j_arg] == T_DOUBLE ||
                in_sig_bt[j_arg] == T_LONG  ||
                in_sig_bt[j_arg] == T_OBJECT ) {
              __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
            } else {
              __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
            }
          }
        }
        live[src.first()->value()] = false;
      } else if (!useless) {
        // full sized move even for int should be ok
        __ movq(r, Address(rbp, reg2offset_in(src.first())));
      }

      // At this point r has the original java arg in the final location
      // (assuming it wasn't useless). If the java arg was an oop
      // we have a bit more to do

      if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
        if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
          // need to unbox a one-word value
          Label skip;
          __ testq(r, r);
          __ jcc(Assembler::equal, skip);
          BasicType bt = out_sig_bt[c_arg];
          int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
          Address src1(r, box_offset);
          if ( bt == T_LONG ) {
            __ movq(r, src1);
          } else {
            __ movl(r, src1);
          }
          __ bind(skip);

        } else if (out_sig_bt[c_arg] != T_ADDRESS) {
          // Convert the arg to NULL
          __ xorq(r, r);
        }
      }

      // dst can longer be holding an input value
      live[dst.first()->value()] = false;
    }
    if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
      assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
      ++c_arg; // skip over T_VOID to keep the loop indices in sync
    }
  }


  // Ok now we are done. Need to place the nop that dtrace wants in order to
  // patch in the trap
  int patch_offset = ((intptr_t)__ pc()) - start;

  __ nop();


  // Return

  __ leave();
  __ ret(0);

  __ flush();

  nmethod *nm = nmethod::new_dtrace_nmethod(
      method, masm->code(), vep_offset, patch_offset, frame_complete,
      stack_slots / VMRegImpl::slots_per_word);
  return nm;

}

#endif // HAVE_DTRACE_H

// this function returns the adjust size (in number of words) to a c2i adapter
// activation for use during deoptimization
int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
  return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
}


uint SharedRuntime::out_preserve_stack_slots() {
  return 0;
}

//------------------------------generate_deopt_blob----------------------------
void SharedRuntime::generate_deopt_blob() {
  // Allocate space for the code
  ResourceMark rm;
  // Setup code generation tools
  CodeBuffer buffer("deopt_blob", 2048, 1024);
  MacroAssembler* masm = new MacroAssembler(&buffer);
  int frame_size_in_words;
  OopMap* map = NULL;
  OopMapSet *oop_maps = new OopMapSet();

  // -------------
  // This code enters when returning to a de-optimized nmethod.  A return
  // address has been pushed on the the stack, and return values are in
  // registers.
  // If we are doing a normal deopt then we were called from the patched
  // nmethod from the point we returned to the nmethod. So the return
  // address on the stack is wrong by NativeCall::instruction_size
  // We will adjust the value so it looks like we have the original return
  // address on the stack (like when we eagerly deoptimized).
  // In the case of an exception pending when deoptimizing, we enter
  // with a return address on the stack that points after the call we patched
  // into the exception handler. We have the following register state from,
  // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
  //    rax: exception oop
  //    rbx: exception handler
  //    rdx: throwing pc
  // So in this case we simply jam rdx into the useless return address and
  // the stack looks just like we want.
  //
  // At this point we need to de-opt.  We save the argument return
  // registers.  We call the first C routine, fetch_unroll_info().  This
  // routine captures the return values and returns a structure which
  // describes the current frame size and the sizes of all replacement frames.
  // The current frame is compiled code and may contain many inlined
  // functions, each with their own JVM state.  We pop the current frame, then
  // push all the new frames.  Then we call the C routine unpack_frames() to
  // populate these frames.  Finally unpack_frames() returns us the new target
  // address.  Notice that callee-save registers are BLOWN here; they have
  // already been captured in the vframeArray at the time the return PC was
  // patched.
  address start = __ pc();
  Label cont;

  // Prolog for non exception case!

  // Save everything in sight.
  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);

  // Normal deoptimization.  Save exec mode for unpack_frames.
  __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
  __ jmp(cont);

  int reexecute_offset = __ pc() - start;

  // Reexecute case
  // return address is the pc describes what bci to do re-execute at

  // No need to update map as each call to save_live_registers will produce identical oopmap
  (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);

  __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
  __ jmp(cont);

  int exception_offset = __ pc() - start;

  // Prolog for exception case

  // all registers are dead at this entry point, except for rax, and
  // rdx which contain the exception oop and exception pc
  // respectively.  Set them in TLS and fall thru to the
  // unpack_with_exception_in_tls entry point.

  __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
  __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);

  int exception_in_tls_offset = __ pc() - start;

  // new implementation because exception oop is now passed in JavaThread

  // Prolog for exception case
  // All registers must be preserved because they might be used by LinearScan
  // Exceptiop oop and throwing PC are passed in JavaThread
  // tos: stack at point of call to method that threw the exception (i.e. only
  // args are on the stack, no return address)

  // make room on stack for the return address
  // It will be patched later with the throwing pc. The correct value is not
  // available now because loading it from memory would destroy registers.
  __ push(0);

  // Save everything in sight.
  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);

  // Now it is safe to overwrite any register

  // Deopt during an exception.  Save exec mode for unpack_frames.
  __ movl(r14, Deoptimization::Unpack_exception); // callee-saved

  // load throwing pc from JavaThread and patch it as the return address
  // of the current frame. Then clear the field in JavaThread

  __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  __ movptr(Address(rbp, wordSize), rdx);
  __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);

#ifdef ASSERT
  // verify that there is really an exception oop in JavaThread
  __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  __ verify_oop(rax);

  // verify that there is no pending exception
  Label no_pending_exception;
  __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
  __ testptr(rax, rax);
  __ jcc(Assembler::zero, no_pending_exception);
  __ stop("must not have pending exception here");
  __ bind(no_pending_exception);
#endif

  __ bind(cont);

  // Call C code.  Need thread and this frame, but NOT official VM entry
  // crud.  We cannot block on this call, no GC can happen.
  //
  // UnrollBlock* fetch_unroll_info(JavaThread* thread)

  // fetch_unroll_info needs to call last_java_frame().

  __ set_last_Java_frame(noreg, noreg, NULL);
#ifdef ASSERT
  { Label L;
    __ cmpptr(Address(r15_thread,
                    JavaThread::last_Java_fp_offset()),
            (int32_t)0);
    __ jcc(Assembler::equal, L);
    __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
    __ bind(L);
  }
#endif // ASSERT
  __ mov(c_rarg0, r15_thread);
  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));

  // Need to have an oopmap that tells fetch_unroll_info where to
  // find any register it might need.
  oop_maps->add_gc_map(__ pc() - start, map);

  __ reset_last_Java_frame(false, false);

  // Load UnrollBlock* into rdi
  __ mov(rdi, rax);

   Label noException;
  __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
  __ jcc(Assembler::notEqual, noException);
  __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  // QQQ this is useless it was NULL above
  __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
  __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);

  __ verify_oop(rax);

  // Overwrite the result registers with the exception results.
  __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  // I think this is useless
  __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);

  __ bind(noException);

  // Only register save data is on the stack.
  // Now restore the result registers.  Everything else is either dead
  // or captured in the vframeArray.
  RegisterSaver::restore_result_registers(masm);

  // All of the register save area has been popped of the stack. Only the
  // return address remains.

  // Pop all the frames we must move/replace.
  //
  // Frame picture (youngest to oldest)
  // 1: self-frame (no frame link)
  // 2: deopting frame  (no frame link)
  // 3: caller of deopting frame (could be compiled/interpreted).
  //
  // Note: by leaving the return address of self-frame on the stack
  // and using the size of frame 2 to adjust the stack
  // when we are done the return to frame 3 will still be on the stack.

  // Pop deoptimized frame
  __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  __ addptr(rsp, rcx);

  // rsp should be pointing at the return address to the caller (3)

  // Pick up the initial fp we should save
  // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
  __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));

  // Stack bang to make sure there's enough room for these interpreter frames.
  if (UseStackBanging) {
    __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
    __ bang_stack_size(rbx, rcx);
  }

  // Load address of array of frame pcs into rcx
  __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));

  // Trash the old pc
  __ addptr(rsp, wordSize);

  // Load address of array of frame sizes into rsi
  __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));

  // Load counter into rdx
  __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));

  // Now adjust the caller's stack to make up for the extra locals
  // but record the original sp so that we can save it in the skeletal interpreter
  // frame and the stack walking of interpreter_sender will get the unextended sp
  // value and not the "real" sp value.

  const Register sender_sp = r8;

  __ mov(sender_sp, rsp);
  __ movl(rbx, Address(rdi,
                       Deoptimization::UnrollBlock::
                       caller_adjustment_offset_in_bytes()));
  __ subptr(rsp, rbx);

  // Push interpreter frames in a loop
  Label loop;
  __ bind(loop);
  __ movptr(rbx, Address(rsi, 0));      // Load frame size
#ifdef CC_INTERP
  __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
#ifdef ASSERT
  __ push(0xDEADDEAD);                  // Make a recognizable pattern
  __ push(0xDEADDEAD);
#else /* ASSERT */
  __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
#endif /* ASSERT */
#else
  __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
#endif // CC_INTERP
  __ pushptr(Address(rcx, 0));          // Save return address
  __ enter();                           // Save old & set new ebp
  __ subptr(rsp, rbx);                  // Prolog
#ifdef CC_INTERP
  __ movptr(Address(rbp,
                  -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
            sender_sp); // Make it walkable
#else /* CC_INTERP */
  // This value is corrected by layout_activation_impl
  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
#endif /* CC_INTERP */
  __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
  __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  __ decrementl(rdx);                   // Decrement counter
  __ jcc(Assembler::notZero, loop);
  __ pushptr(Address(rcx, 0));          // Save final return address

  // Re-push self-frame
  __ enter();                           // Save old & set new ebp

  // Allocate a full sized register save area.
  // Return address and rbp are in place, so we allocate two less words.
  __ subptr(rsp, (frame_size_in_words - 2) * wordSize);

  // Restore frame locals after moving the frame
  __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
  __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);

  // Call C code.  Need thread but NOT official VM entry
  // crud.  We cannot block on this call, no GC can happen.  Call should
  // restore return values to their stack-slots with the new SP.
  //
  // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)

  // Use rbp because the frames look interpreted now
  // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
  // Don't need the precise return PC here, just precise enough to point into this code blob.
  address the_pc = __ pc();
  __ set_last_Java_frame(noreg, rbp, the_pc);

  __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
  __ mov(c_rarg0, r15_thread);
  __ movl(c_rarg1, r14); // second arg: exec_mode
  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  // Revert SP alignment after call since we're going to do some SP relative addressing below
  __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));

  // Set an oopmap for the call site
  // Use the same PC we used for the last java frame
  oop_maps->add_gc_map(the_pc - start,
                       new OopMap( frame_size_in_words, 0 ));

  // Clear fp AND pc
  __ reset_last_Java_frame(true, true);

  // Collect return values
  __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
  __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
  // I think this is useless (throwing pc?)
  __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));

  // Pop self-frame.
  __ leave();                           // Epilog

  // Jump to interpreter
  __ ret(0);

  // Make sure all code is generated
  masm->flush();

  _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
  _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
}

#ifdef COMPILER2
//------------------------------generate_uncommon_trap_blob--------------------
void SharedRuntime::generate_uncommon_trap_blob() {
  // Allocate space for the code
  ResourceMark rm;
  // Setup code generation tools
  CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
  MacroAssembler* masm = new MacroAssembler(&buffer);

  assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");

  address start = __ pc();

  // Push self-frame.  We get here with a return address on the
  // stack, so rsp is 8-byte aligned until we allocate our frame.
  __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!

  // No callee saved registers. rbp is assumed implicitly saved
  __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);

  // compiler left unloaded_class_index in j_rarg0 move to where the
  // runtime expects it.
  __ movl(c_rarg1, j_rarg0);

  __ set_last_Java_frame(noreg, noreg, NULL);

  // Call C code.  Need thread but NOT official VM entry
  // crud.  We cannot block on this call, no GC can happen.  Call should
  // capture callee-saved registers as well as return values.
  // Thread is in rdi already.
  //
  // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);

  __ mov(c_rarg0, r15_thread);
  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));

  // Set an oopmap for the call site
  OopMapSet* oop_maps = new OopMapSet();
  OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);

  // location of rbp is known implicitly by the frame sender code

  oop_maps->add_gc_map(__ pc() - start, map);

  __ reset_last_Java_frame(false, false);

  // Load UnrollBlock* into rdi
  __ mov(rdi, rax);

  // Pop all the frames we must move/replace.
  //
  // Frame picture (youngest to oldest)
  // 1: self-frame (no frame link)
  // 2: deopting frame  (no frame link)
  // 3: caller of deopting frame (could be compiled/interpreted).

  // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
  __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!

  // Pop deoptimized frame (int)
  __ movl(rcx, Address(rdi,
                       Deoptimization::UnrollBlock::
                       size_of_deoptimized_frame_offset_in_bytes()));
  __ addptr(rsp, rcx);

  // rsp should be pointing at the return address to the caller (3)

  // Pick up the initial fp we should save
  // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
  __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));

  // Stack bang to make sure there's enough room for these interpreter frames.
  if (UseStackBanging) {
    __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
    __ bang_stack_size(rbx, rcx);
  }

  // Load address of array of frame pcs into rcx (address*)
  __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));

  // Trash the return pc
  __ addptr(rsp, wordSize);

  // Load address of array of frame sizes into rsi (intptr_t*)
  __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes()));

  // Counter
  __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int)

  // Now adjust the caller's stack to make up for the extra locals but
  // record the original sp so that we can save it in the skeletal
  // interpreter frame and the stack walking of interpreter_sender
  // will get the unextended sp value and not the "real" sp value.

  const Register sender_sp = r8;

  __ mov(sender_sp, rsp);
  __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int)
  __ subptr(rsp, rbx);

  // Push interpreter frames in a loop
  Label loop;
  __ bind(loop);
  __ movptr(rbx, Address(rsi, 0)); // Load frame size
  __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
  __ pushptr(Address(rcx, 0));     // Save return address
  __ enter();                      // Save old & set new rbp
  __ subptr(rsp, rbx);             // Prolog
#ifdef CC_INTERP
  __ movptr(Address(rbp,
                  -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
            sender_sp); // Make it walkable
#else // CC_INTERP
  __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
            sender_sp);            // Make it walkable
  // This value is corrected by layout_activation_impl
  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
#endif // CC_INTERP
  __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
  __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
  __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
  __ decrementl(rdx);              // Decrement counter
  __ jcc(Assembler::notZero, loop);
  __ pushptr(Address(rcx, 0));     // Save final return address

  // Re-push self-frame
  __ enter();                 // Save old & set new rbp
  __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
                              // Prolog

  // Use rbp because the frames look interpreted now
  // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
  // Don't need the precise return PC here, just precise enough to point into this code blob.
  address the_pc = __ pc();
  __ set_last_Java_frame(noreg, rbp, the_pc);

  // Call C code.  Need thread but NOT official VM entry
  // crud.  We cannot block on this call, no GC can happen.  Call should
  // restore return values to their stack-slots with the new SP.
  // Thread is in rdi already.
  //
  // BasicType unpack_frames(JavaThread* thread, int exec_mode);

  __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
  __ mov(c_rarg0, r15_thread);
  __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));

  // Set an oopmap for the call site
  // Use the same PC we used for the last java frame
  oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));

  // Clear fp AND pc
  __ reset_last_Java_frame(true, true);

  // Pop self-frame.
  __ leave();                 // Epilog

  // Jump to interpreter
  __ ret(0);

  // Make sure all code is generated
  masm->flush();

  _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
                                                 SimpleRuntimeFrame::framesize >> 1);
}
#endif // COMPILER2


//------------------------------generate_handler_blob------
//
// Generate a special Compile2Runtime blob that saves all registers,
// and setup oopmap.
//
SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
  assert(StubRoutines::forward_exception_entry() != NULL,
         "must be generated before");

  ResourceMark rm;
  OopMapSet *oop_maps = new OopMapSet();
  OopMap* map;

  // Allocate space for the code.  Setup code generation tools.
  CodeBuffer buffer("handler_blob", 2048, 1024);
  MacroAssembler* masm = new MacroAssembler(&buffer);

  address start   = __ pc();
  address call_pc = NULL;
  int frame_size_in_words;
  bool cause_return = (poll_type == POLL_AT_RETURN);
  bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);

  // Make room for return address (or push it again)
  if (!cause_return) {
    __ push(rbx);
  }

  // Save registers, fpu state, and flags
  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);

  // The following is basically a call_VM.  However, we need the precise
  // address of the call in order to generate an oopmap. Hence, we do all the
  // work outselves.

  __ set_last_Java_frame(noreg, noreg, NULL);

  // The return address must always be correct so that frame constructor never
  // sees an invalid pc.

  if (!cause_return) {
    // overwrite the dummy value we pushed on entry
    __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
    __ movptr(Address(rbp, wordSize), c_rarg0);
  }

  // Do the call
  __ mov(c_rarg0, r15_thread);
  __ call(RuntimeAddress(call_ptr));

  // Set an oopmap for the call site.  This oopmap will map all
  // oop-registers and debug-info registers as callee-saved.  This
  // will allow deoptimization at this safepoint to find all possible
  // debug-info recordings, as well as let GC find all oops.

  oop_maps->add_gc_map( __ pc() - start, map);

  Label noException;

  __ reset_last_Java_frame(false, false);

  __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  __ jcc(Assembler::equal, noException);

  // Exception pending

  RegisterSaver::restore_live_registers(masm, save_vectors);

  __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));

  // No exception case
  __ bind(noException);

  // Normal exit, restore registers and exit.
  RegisterSaver::restore_live_registers(masm, save_vectors);

  __ ret(0);

  // Make sure all code is generated
  masm->flush();

  // Fill-out other meta info
  return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
}

//
// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
//
// Generate a stub that calls into vm to find out the proper destination
// of a java call. All the argument registers are live at this point
// but since this is generic code we don't know what they are and the caller
// must do any gc of the args.
//
RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");

  // allocate space for the code
  ResourceMark rm;

  CodeBuffer buffer(name, 1000, 512);
  MacroAssembler* masm                = new MacroAssembler(&buffer);

  int frame_size_in_words;

  OopMapSet *oop_maps = new OopMapSet();
  OopMap* map = NULL;

  int start = __ offset();

  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);

  int frame_complete = __ offset();

  __ set_last_Java_frame(noreg, noreg, NULL);

  __ mov(c_rarg0, r15_thread);

  __ call(RuntimeAddress(destination));


  // Set an oopmap for the call site.
  // We need this not only for callee-saved registers, but also for volatile
  // registers that the compiler might be keeping live across a safepoint.

  oop_maps->add_gc_map( __ offset() - start, map);

  // rax contains the address we are going to jump to assuming no exception got installed

  // clear last_Java_sp
  __ reset_last_Java_frame(false, false);
  // check for pending exceptions
  Label pending;
  __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  __ jcc(Assembler::notEqual, pending);

  // get the returned Method*
  __ get_vm_result_2(rbx, r15_thread);
  __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);

  __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);

  RegisterSaver::restore_live_registers(masm);

  // We are back the the original state on entry and ready to go.

  __ jmp(rax);

  // Pending exception after the safepoint

  __ bind(pending);

  RegisterSaver::restore_live_registers(masm);

  // exception pending => remove activation and forward to exception handler

  __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);

  __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
  __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));

  // -------------
  // make sure all code is generated
  masm->flush();

  // return the  blob
  // frame_size_words or bytes??
  return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
}


#ifdef COMPILER2
// This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
//
//------------------------------generate_exception_blob---------------------------
// creates exception blob at the end
// Using exception blob, this code is jumped from a compiled method.
// (see emit_exception_handler in x86_64.ad file)
//
// Given an exception pc at a call we call into the runtime for the
// handler in this method. This handler might merely restore state
// (i.e. callee save registers) unwind the frame and jump to the
// exception handler for the nmethod if there is no Java level handler
// for the nmethod.
//
// This code is entered with a jmp.
//
// Arguments:
//   rax: exception oop
//   rdx: exception pc
//
// Results:
//   rax: exception oop
//   rdx: exception pc in caller or ???
//   destination: exception handler of caller
//
// Note: the exception pc MUST be at a call (precise debug information)
//       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
//

void OptoRuntime::generate_exception_blob() {
  assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
  assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
  assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");

  assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");

  // Allocate space for the code
  ResourceMark rm;
  // Setup code generation tools
  CodeBuffer buffer("exception_blob", 2048, 1024);
  MacroAssembler* masm = new MacroAssembler(&buffer);


  address start = __ pc();

  // Exception pc is 'return address' for stack walker
  __ push(rdx);
  __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog

  // Save callee-saved registers.  See x86_64.ad.

  // rbp is an implicitly saved callee saved register (i.e. the calling
  // convention will save restore it in prolog/epilog) Other than that
  // there are no callee save registers now that adapter frames are gone.

  __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);

  // Store exception in Thread object. We cannot pass any arguments to the
  // handle_exception call, since we do not want to make any assumption
  // about the size of the frame where the exception happened in.
  // c_rarg0 is either rdi (Linux) or rcx (Windows).
  __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
  __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);

  // This call does all the hard work.  It checks if an exception handler
  // exists in the method.
  // If so, it returns the handler address.
  // If not, it prepares for stack-unwinding, restoring the callee-save
  // registers of the frame being removed.
  //
  // address OptoRuntime::handle_exception_C(JavaThread* thread)

  // At a method handle call, the stack may not be properly aligned
  // when returning with an exception.
  address the_pc = __ pc();
  __ set_last_Java_frame(noreg, noreg, the_pc);
  __ mov(c_rarg0, r15_thread);
  __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));

  // Set an oopmap for the call site.  This oopmap will only be used if we
  // are unwinding the stack.  Hence, all locations will be dead.
  // Callee-saved registers will be the same as the frame above (i.e.,
  // handle_exception_stub), since they were restored when we got the
  // exception.

  OopMapSet* oop_maps = new OopMapSet();

  oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));

  __ reset_last_Java_frame(false, true);

  // Restore callee-saved registers

  // rbp is an implicitly saved callee saved register (i.e. the calling
  // convention will save restore it in prolog/epilog) Other than that
  // there are no callee save registers no that adapter frames are gone.

  __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));

  __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
  __ pop(rdx);                  // No need for exception pc anymore

  // rax: exception handler

  // Restore SP from BP if the exception PC is a MethodHandle call site.
  __ cmpl(Address(r15_thread, JavaThread::is_method_handle_return_offset()), 0);
  __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);

  // We have a handler in rax (could be deopt blob).
  __ mov(r8, rax);

  // Get the exception oop
  __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  // Get the exception pc in case we are deoptimized
  __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
#ifdef ASSERT
  __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
  __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
#endif
  // Clear the exception oop so GC no longer processes it as a root.
  __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);

  // rax: exception oop
  // r8:  exception handler
  // rdx: exception pc
  // Jump to handler

  __ jmp(r8);

  // Make sure all code is generated
  masm->flush();

  // Set exception blob
  _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
}
#endif // COMPILER2

Other Java examples (source code examples)

Here is a short list of links related to this Java sharedRuntime_x86_64.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.