|
Java example source code file (templateInterpreter_x86_32.cpp)
The templateInterpreter_x86_32.cpp Java example source code/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.hpp" #include "interpreter/bytecodeHistogram.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterGenerator.hpp" #include "interpreter/interpreterRuntime.hpp" #include "interpreter/templateTable.hpp" #include "oops/arrayOop.hpp" #include "oops/methodData.hpp" #include "oops/method.hpp" #include "oops/oop.inline.hpp" #include "prims/jvmtiExport.hpp" #include "prims/jvmtiThreadState.hpp" #include "runtime/arguments.hpp" #include "runtime/deoptimization.hpp" #include "runtime/frame.inline.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/synchronizer.hpp" #include "runtime/timer.hpp" #include "runtime/vframeArray.hpp" #include "utilities/debug.hpp" #include "utilities/macros.hpp" #define __ _masm-> #ifndef CC_INTERP const int method_offset = frame::interpreter_frame_method_offset * wordSize; const int bci_offset = frame::interpreter_frame_bcx_offset * wordSize; const int locals_offset = frame::interpreter_frame_locals_offset * wordSize; //------------------------------------------------------------------------------------------------------------------------ address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { address entry = __ pc(); // Note: There should be a minimal interpreter frame set up when stack // overflow occurs since we check explicitly for it now. // #ifdef ASSERT { Label L; __ lea(rax, Address(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize)); __ cmpptr(rax, rsp); // rax, = maximal rsp for current rbp, // (stack grows negative) __ jcc(Assembler::aboveEqual, L); // check if frame is complete __ stop ("interpreter frame not set up"); __ bind(L); } #endif // ASSERT // Restore bcp under the assumption that the current frame is still // interpreted __ restore_bcp(); // expression stack must be empty before entering the VM if an exception // happened __ empty_expression_stack(); __ empty_FPU_stack(); // throw exception __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError)); return entry; } address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) { address entry = __ pc(); // expression stack must be empty before entering the VM if an exception happened __ empty_expression_stack(); __ empty_FPU_stack(); // setup parameters // ??? convention: expect aberrant index in register rbx, __ lea(rax, ExternalAddress((address)name)); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), rax, rbx); return entry; } address TemplateInterpreterGenerator::generate_ClassCastException_handler() { address entry = __ pc(); // object is at TOS __ pop(rax); // expression stack must be empty before entering the VM if an exception // happened __ empty_expression_stack(); __ empty_FPU_stack(); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), rax); return entry; } address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) { assert(!pass_oop || message == NULL, "either oop or message but not both"); address entry = __ pc(); if (pass_oop) { // object is at TOS __ pop(rbx); } // expression stack must be empty before entering the VM if an exception happened __ empty_expression_stack(); __ empty_FPU_stack(); // setup parameters __ lea(rax, ExternalAddress((address)name)); if (pass_oop) { __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), rax, rbx); } else { if (message != NULL) { __ lea(rbx, ExternalAddress((address)message)); } else { __ movptr(rbx, NULL_WORD); } __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), rax, rbx); } // throw exception __ jump(ExternalAddress(Interpreter::throw_exception_entry())); return entry; } address TemplateInterpreterGenerator::generate_continuation_for(TosState state) { address entry = __ pc(); // NULL last_sp until next java call __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); __ dispatch_next(state); return entry; } address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { address entry = __ pc(); #ifdef COMPILER2 // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases if ((state == ftos && UseSSE < 1) || (state == dtos && UseSSE < 2)) { for (int i = 1; i < 8; i++) { __ ffree(i); } } else if (UseSSE < 2) { __ empty_FPU_stack(); } #endif if ((state == ftos && UseSSE < 1) || (state == dtos && UseSSE < 2)) { __ MacroAssembler::verify_FPU(1, "generate_return_entry_for compiled"); } else { __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled"); } // In SSE mode, interpreter returns FP results in xmm0 but they need // to end up back on the FPU so it can operate on them. if (state == ftos && UseSSE >= 1) { __ subptr(rsp, wordSize); __ movflt(Address(rsp, 0), xmm0); __ fld_s(Address(rsp, 0)); __ addptr(rsp, wordSize); } else if (state == dtos && UseSSE >= 2) { __ subptr(rsp, 2*wordSize); __ movdbl(Address(rsp, 0), xmm0); __ fld_d(Address(rsp, 0)); __ addptr(rsp, 2*wordSize); } __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_return_entry_for in interpreter"); // Restore stack bottom in case i2c adjusted stack __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize)); // and NULL it as marker that rsp is now tos until next java call __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); __ restore_bcp(); __ restore_locals(); if (state == atos) { Register mdp = rbx; Register tmp = rcx; __ profile_return_type(mdp, rax, tmp); } const Register cache = rbx; const Register index = rcx; __ get_cache_and_index_at_bcp(cache, index, 1, index_size); const Register flags = cache; __ movl(flags, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset())); __ andl(flags, ConstantPoolCacheEntry::parameter_size_mask); __ lea(rsp, Address(rsp, flags, Interpreter::stackElementScale())); __ dispatch_next(state, step); return entry; } address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) { address entry = __ pc(); // In SSE mode, FP results are in xmm0 if (state == ftos && UseSSE > 0) { __ subptr(rsp, wordSize); __ movflt(Address(rsp, 0), xmm0); __ fld_s(Address(rsp, 0)); __ addptr(rsp, wordSize); } else if (state == dtos && UseSSE >= 2) { __ subptr(rsp, 2*wordSize); __ movdbl(Address(rsp, 0), xmm0); __ fld_d(Address(rsp, 0)); __ addptr(rsp, 2*wordSize); } __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_deopt_entry_for in interpreter"); // The stack is not extended by deopt but we must NULL last_sp as this // entry is like a "return". __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); __ restore_bcp(); __ restore_locals(); // handle exceptions { Label L; const Register thread = rcx; __ get_thread(thread); __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); __ jcc(Assembler::zero, L); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception)); __ should_not_reach_here(); __ bind(L); } __ dispatch_next(state, step); return entry; } int AbstractInterpreter::BasicType_as_index(BasicType type) { int i = 0; switch (type) { case T_BOOLEAN: i = 0; break; case T_CHAR : i = 1; break; case T_BYTE : i = 2; break; case T_SHORT : i = 3; break; case T_INT : // fall through case T_LONG : // fall through case T_VOID : i = 4; break; case T_FLOAT : i = 5; break; // have to treat float and double separately for SSE case T_DOUBLE : i = 6; break; case T_OBJECT : // fall through case T_ARRAY : i = 7; break; default : ShouldNotReachHere(); } assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds"); return i; } address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) { address entry = __ pc(); switch (type) { case T_BOOLEAN: __ c2bool(rax); break; case T_CHAR : __ andptr(rax, 0xFFFF); break; case T_BYTE : __ sign_extend_byte (rax); break; case T_SHORT : __ sign_extend_short(rax); break; case T_INT : /* nothing to do */ break; case T_DOUBLE : case T_FLOAT : { const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp(); __ pop(t); // remove return address first // Must return a result for interpreter or compiler. In SSE // mode, results are returned in xmm0 and the FPU stack must // be empty. if (type == T_FLOAT && UseSSE >= 1) { // Load ST0 __ fld_d(Address(rsp, 0)); // Store as float and empty fpu stack __ fstp_s(Address(rsp, 0)); // and reload __ movflt(xmm0, Address(rsp, 0)); } else if (type == T_DOUBLE && UseSSE >= 2 ) { __ movdbl(xmm0, Address(rsp, 0)); } else { // restore ST0 __ fld_d(Address(rsp, 0)); } // and pop the temp __ addptr(rsp, 2 * wordSize); __ push(t); // restore return address } break; case T_OBJECT : // retrieve result from frame __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize)); // and verify it __ verify_oop(rax); break; default : ShouldNotReachHere(); } __ ret(0); // return from result handler return entry; } address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) { address entry = __ pc(); __ push(state); __ call_VM(noreg, runtime_entry); __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos)); return entry; } // Helpers for commoning out cases in the various type of method entries. // // increment invocation count & check for overflow // // Note: checking for negative value instead of overflow // so we have a 'sticky' overflow test // // rbx,: method // rcx: invocation counter // void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) { Label done; // Note: In tiered we increment either counters in MethodCounters* or in MDO // depending if we're profiling or not. if (TieredCompilation) { int increment = InvocationCounter::count_increment; int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift; Label no_mdo; if (ProfileInterpreter) { // Are we profiling? __ movptr(rax, Address(rbx, Method::method_data_offset())); __ testptr(rax, rax); __ jccb(Assembler::zero, no_mdo); // Increment counter in the MDO const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset())); __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow); __ jmp(done); } __ bind(no_mdo); // Increment counter in MethodCounters const Address invocation_counter(rax, MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); __ get_method_counters(rbx, rax, done); __ increment_mask_and_jump(invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow); __ bind(done); } else { const Address backedge_counter (rax, MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset()); const Address invocation_counter(rax, MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); __ get_method_counters(rbx, rax, done); if (ProfileInterpreter) { __ incrementl(Address(rax, MethodCounters::interpreter_invocation_counter_offset())); } // Update standard invocation counters __ movl(rcx, invocation_counter); __ incrementl(rcx, InvocationCounter::count_increment); __ movl(invocation_counter, rcx); // save invocation count __ movl(rax, backedge_counter); // load backedge counter __ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits __ addl(rcx, rax); // add both counters // profile_method is non-null only for interpreted method so // profile_method != NULL == !native_call // BytecodeInterpreter only calls for native so code is elided. if (ProfileInterpreter && profile_method != NULL) { // Test to see if we should create a method data oop __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit)); __ jcc(Assembler::less, *profile_method_continue); // if no method data exists, go to profile_method __ test_method_data_pointer(rax, *profile_method); } __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit)); __ jcc(Assembler::aboveEqual, *overflow); __ bind(done); } } void InterpreterGenerator::generate_counter_overflow(Label* do_continue) { // Asm interpreter on entry // rdi - locals // rsi - bcp // rbx, - method // rdx - cpool // rbp, - interpreter frame // C++ interpreter on entry // rsi - new interpreter state pointer // rbp - interpreter frame pointer // rbx - method // On return (i.e. jump to entry_point) [ back to invocation of interpreter ] // rbx, - method // rcx - rcvr (assuming there is one) // top of stack return address of interpreter caller // rsp - sender_sp // C++ interpreter only // rsi - previous interpreter state pointer // InterpreterRuntime::frequency_counter_overflow takes one argument // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp). // The call returns the address of the verified entry point for the method or NULL // if the compilation did not complete (either went background or bailed out). __ movptr(rax, (intptr_t)false); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax); __ movptr(rbx, Address(rbp, method_offset)); // restore Method* // Preserve invariant that rsi/rdi contain bcp/locals of sender frame // and jump to the interpreted entry. __ jmp(*do_continue, relocInfo::none); } void InterpreterGenerator::generate_stack_overflow_check(void) { // see if we've got enough room on the stack for locals plus overhead. // the expression stack grows down incrementally, so the normal guard // page mechanism will work for that. // // Registers live on entry: // // Asm interpreter // rdx: number of additional locals this frame needs (what we must check) // rbx,: Method* // destroyed on exit // rax, // NOTE: since the additional locals are also always pushed (wasn't obvious in // generate_method_entry) so the guard should work for them too. // // monitor entry size: see picture of stack set (generate_method_entry) and frame_x86.hpp const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; // total overhead size: entry_size + (saved rbp, thru expr stack bottom). // be sure to change this if you add/subtract anything to/from the overhead area const int overhead_size = -(frame::interpreter_frame_initial_sp_offset*wordSize) + entry_size; const int page_size = os::vm_page_size(); Label after_frame_check; // see if the frame is greater than one page in size. If so, // then we need to verify there is enough stack space remaining // for the additional locals. __ cmpl(rdx, (page_size - overhead_size)/Interpreter::stackElementSize); __ jcc(Assembler::belowEqual, after_frame_check); // compute rsp as if this were going to be the last frame on // the stack before the red zone Label after_frame_check_pop; __ push(rsi); const Register thread = rsi; __ get_thread(thread); const Address stack_base(thread, Thread::stack_base_offset()); const Address stack_size(thread, Thread::stack_size_offset()); // locals + overhead, in bytes __ lea(rax, Address(noreg, rdx, Interpreter::stackElementScale(), overhead_size)); #ifdef ASSERT Label stack_base_okay, stack_size_okay; // verify that thread stack base is non-zero __ cmpptr(stack_base, (int32_t)NULL_WORD); __ jcc(Assembler::notEqual, stack_base_okay); __ stop("stack base is zero"); __ bind(stack_base_okay); // verify that thread stack size is non-zero __ cmpptr(stack_size, 0); __ jcc(Assembler::notEqual, stack_size_okay); __ stop("stack size is zero"); __ bind(stack_size_okay); #endif // Add stack base to locals and subtract stack size __ addptr(rax, stack_base); __ subptr(rax, stack_size); // Use the maximum number of pages we might bang. const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages : (StackRedPages+StackYellowPages); __ addptr(rax, max_pages * page_size); // check against the current stack bottom __ cmpptr(rsp, rax); __ jcc(Assembler::above, after_frame_check_pop); __ pop(rsi); // get saved bcp / (c++ prev state ). // Restore sender's sp as SP. This is necessary if the sender's // frame is an extended compiled frame (see gen_c2i_adapter()) // and safer anyway in case of JSR292 adaptations. __ pop(rax); // return address must be moved if SP is changed __ mov(rsp, rsi); __ push(rax); // Note: the restored frame is not necessarily interpreted. // Use the shared runtime version of the StackOverflowError. assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated"); __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry())); // all done with frame size check __ bind(after_frame_check_pop); __ pop(rsi); __ bind(after_frame_check); } // Allocate monitor and lock method (asm interpreter) // rbx, - Method* // void InterpreterGenerator::lock_method(void) { // synchronize method const Address access_flags (rbx, Method::access_flags_offset()); const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; #ifdef ASSERT { Label L; __ movl(rax, access_flags); __ testl(rax, JVM_ACC_SYNCHRONIZED); __ jcc(Assembler::notZero, L); __ stop("method doesn't need synchronization"); __ bind(L); } #endif // ASSERT // get synchronization object { Label done; const int mirror_offset = in_bytes(Klass::java_mirror_offset()); __ movl(rax, access_flags); __ testl(rax, JVM_ACC_STATIC); __ movptr(rax, Address(rdi, Interpreter::local_offset_in_bytes(0))); // get receiver (assume this is frequent case) __ jcc(Assembler::zero, done); __ movptr(rax, Address(rbx, Method::const_offset())); __ movptr(rax, Address(rax, ConstMethod::constants_offset())); __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes())); __ movptr(rax, Address(rax, mirror_offset)); __ bind(done); } // add space for monitor & lock __ subptr(rsp, entry_size); // add space for a monitor entry __ movptr(monitor_block_top, rsp); // set new monitor block top __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object __ mov(rdx, rsp); // object address __ lock_object(rdx); } // // Generate a fixed interpreter frame. This is identical setup for interpreted methods // and for native methods hence the shared code. void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { // initialize fixed part of activation frame __ push(rax); // save return address __ enter(); // save old & set new rbp, __ push(rsi); // set sender sp __ push((int32_t)NULL_WORD); // leave last_sp as null __ movptr(rsi, Address(rbx,Method::const_offset())); // get ConstMethod* __ lea(rsi, Address(rsi,ConstMethod::codes_offset())); // get codebase __ push(rbx); // save Method* if (ProfileInterpreter) { Label method_data_continue; __ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset()))); __ testptr(rdx, rdx); __ jcc(Assembler::zero, method_data_continue); __ addptr(rdx, in_bytes(MethodData::data_offset())); __ bind(method_data_continue); __ push(rdx); // set the mdp (method data pointer) } else { __ push(0); } __ movptr(rdx, Address(rbx, Method::const_offset())); __ movptr(rdx, Address(rdx, ConstMethod::constants_offset())); __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes())); __ push(rdx); // set constant pool cache __ push(rdi); // set locals pointer if (native_call) { __ push(0); // no bcp } else { __ push(rsi); // set bcp } __ push(0); // reserve word for pointer to expression stack bottom __ movptr(Address(rsp, 0), rsp); // set expression stack bottom } // End of helpers // // Various method entries //------------------------------------------------------------------------------------------------------------------------ // // // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry address InterpreterGenerator::generate_accessor_entry(void) { // rbx,: Method* // rcx: receiver (preserve for slow entry into asm interpreter) // rsi: senderSP must preserved for slow path, set SP to it on fast path address entry_point = __ pc(); Label xreturn_path; // do fastpath for resolved accessor methods if (UseFastAccessorMethods) { Label slow_path; // If we need a safepoint check, generate full interpreter entry. ExternalAddress state(SafepointSynchronize::address_of_state()); __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()), SafepointSynchronize::_not_synchronized); __ jcc(Assembler::notEqual, slow_path); // ASM/C++ Interpreter // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1 // Note: We can only use this code if the getfield has been resolved // and if we don't have a null-pointer exception => check for // these conditions first and use slow path if necessary. // rbx,: method // rcx: receiver __ movptr(rax, Address(rsp, wordSize)); // check if local 0 != NULL and read field __ testptr(rax, rax); __ jcc(Assembler::zero, slow_path); // read first instruction word and extract bytecode @ 1 and index @ 2 __ movptr(rdx, Address(rbx, Method::const_offset())); __ movptr(rdi, Address(rdx, ConstMethod::constants_offset())); __ movl(rdx, Address(rdx, ConstMethod::codes_offset())); // Shift codes right to get the index on the right. // The bytecode fetched looks like <index><0xb4><0x2a> __ shrl(rdx, 2*BitsPerByte); __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size()))); __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes())); // rax,: local 0 // rbx,: method // rcx: receiver - do not destroy since it is needed for slow path! // rcx: scratch // rdx: constant pool cache index // rdi: constant pool cache // rsi: sender sp // check if getfield has been resolved and read constant pool cache entry // check the validity of the cache entry by testing whether _indices field // contains Bytecode::_getfield in b1 byte. assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below"); __ movl(rcx, Address(rdi, rdx, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset())); __ shrl(rcx, 2*BitsPerByte); __ andl(rcx, 0xFF); __ cmpl(rcx, Bytecodes::_getfield); __ jcc(Assembler::notEqual, slow_path); // Note: constant pool entry is not valid before bytecode is resolved __ movptr(rcx, Address(rdi, rdx, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset())); __ movl(rdx, Address(rdi, rdx, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset())); Label notByte, notShort, notChar; const Address field_address (rax, rcx, Address::times_1); // Need to differentiate between igetfield, agetfield, bgetfield etc. // because they are different sizes. // Use the type from the constant pool cache __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift); // Make sure we don't need to mask rdx after the above shift ConstantPoolCacheEntry::verify_tos_state_shift(); __ cmpl(rdx, btos); __ jcc(Assembler::notEqual, notByte); __ load_signed_byte(rax, field_address); __ jmp(xreturn_path); __ bind(notByte); __ cmpl(rdx, stos); __ jcc(Assembler::notEqual, notShort); __ load_signed_short(rax, field_address); __ jmp(xreturn_path); __ bind(notShort); __ cmpl(rdx, ctos); __ jcc(Assembler::notEqual, notChar); __ load_unsigned_short(rax, field_address); __ jmp(xreturn_path); __ bind(notChar); #ifdef ASSERT Label okay; __ cmpl(rdx, atos); __ jcc(Assembler::equal, okay); __ cmpl(rdx, itos); __ jcc(Assembler::equal, okay); __ stop("what type is this?"); __ bind(okay); #endif // ASSERT // All the rest are a 32 bit wordsize // This is ok for now. Since fast accessors should be going away __ movptr(rax, field_address); __ bind(xreturn_path); // _ireturn/_areturn __ pop(rdi); // get return address __ mov(rsp, rsi); // set sp to sender sp __ jmp(rdi); // generate a vanilla interpreter entry as the slow path __ bind(slow_path); (void) generate_normal_entry(false); return entry_point; } return NULL; } // Method entry for java.lang.ref.Reference.get. address InterpreterGenerator::generate_Reference_get_entry(void) { #if INCLUDE_ALL_GCS // Code: _aload_0, _getfield, _areturn // parameter size = 1 // // The code that gets generated by this routine is split into 2 parts: // 1. The "intrinsified" code for G1 (or any SATB based GC), // 2. The slow path - which is an expansion of the regular method entry. // // Notes:- // * In the G1 code we do not check whether we need to block for // a safepoint. If G1 is enabled then we must execute the specialized // code for Reference.get (except when the Reference object is null) // so that we can log the value in the referent field with an SATB // update buffer. // If the code for the getfield template is modified so that the // G1 pre-barrier code is executed when the current method is // Reference.get() then going through the normal method entry // will be fine. // * The G1 code below can, however, check the receiver object (the instance // of java.lang.Reference) and jump to the slow path if null. If the // Reference object is null then we obviously cannot fetch the referent // and so we don't need to call the G1 pre-barrier. Thus we can use the // regular method entry code to generate the NPE. // // This code is based on generate_accessor_enty. // rbx,: Method* // rcx: receiver (preserve for slow entry into asm interpreter) // rsi: senderSP must preserved for slow path, set SP to it on fast path address entry = __ pc(); const int referent_offset = java_lang_ref_Reference::referent_offset; guarantee(referent_offset > 0, "referent offset not initialized"); if (UseG1GC) { Label slow_path; // Check if local 0 != NULL // If the receiver is null then it is OK to jump to the slow path. __ movptr(rax, Address(rsp, wordSize)); __ testptr(rax, rax); __ jcc(Assembler::zero, slow_path); // rax: local 0 (must be preserved across the G1 barrier call) // // rbx: method (at this point it's scratch) // rcx: receiver (at this point it's scratch) // rdx: scratch // rdi: scratch // // rsi: sender sp // Preserve the sender sp in case the pre-barrier // calls the runtime __ push(rsi); // Load the value of the referent field. const Address field_address(rax, referent_offset); __ movptr(rax, field_address); // Generate the G1 pre-barrier code to log the value of // the referent field in an SATB buffer. __ get_thread(rcx); __ g1_write_barrier_pre(noreg /* obj */, rax /* pre_val */, rcx /* thread */, rbx /* tmp */, true /* tosca_save */, true /* expand_call */); // _areturn __ pop(rsi); // get sender sp __ pop(rdi); // get return address __ mov(rsp, rsi); // set sp to sender sp __ jmp(rdi); __ bind(slow_path); (void) generate_normal_entry(false); return entry; } #endif // INCLUDE_ALL_GCS // If G1 is not enabled then attempt to go through the accessor entry point // Reference.get is an accessor return generate_accessor_entry(); } /** * Method entry for static native methods: * int java.util.zip.CRC32.update(int crc, int b) */ address InterpreterGenerator::generate_CRC32_update_entry() { if (UseCRC32Intrinsics) { address entry = __ pc(); // rbx,: Method* // rsi: senderSP must preserved for slow path, set SP to it on fast path // rdx: scratch // rdi: scratch Label slow_path; // If we need a safepoint check, generate full interpreter entry. ExternalAddress state(SafepointSynchronize::address_of_state()); __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()), SafepointSynchronize::_not_synchronized); __ jcc(Assembler::notEqual, slow_path); // We don't generate local frame and don't align stack because // we call stub code and there is no safepoint on this path. // Load parameters const Register crc = rax; // crc const Register val = rdx; // source java byte value const Register tbl = rdi; // scratch // Arguments are reversed on java expression stack __ movl(val, Address(rsp, wordSize)); // byte value __ movl(crc, Address(rsp, 2*wordSize)); // Initial CRC __ lea(tbl, ExternalAddress(StubRoutines::crc_table_addr())); __ notl(crc); // ~crc __ update_byte_crc32(crc, val, tbl); __ notl(crc); // ~crc // result in rax // _areturn __ pop(rdi); // get return address __ mov(rsp, rsi); // set sp to sender sp __ jmp(rdi); // generate a vanilla native entry as the slow path __ bind(slow_path); (void) generate_native_entry(false); return entry; } return generate_native_entry(false); } /** * Method entry for static native methods: * int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len) * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) */ address InterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { if (UseCRC32Intrinsics) { address entry = __ pc(); // rbx,: Method* // rsi: senderSP must preserved for slow path, set SP to it on fast path // rdx: scratch // rdi: scratch Label slow_path; // If we need a safepoint check, generate full interpreter entry. ExternalAddress state(SafepointSynchronize::address_of_state()); __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()), SafepointSynchronize::_not_synchronized); __ jcc(Assembler::notEqual, slow_path); // We don't generate local frame and don't align stack because // we call stub code and there is no safepoint on this path. // Load parameters const Register crc = rax; // crc const Register buf = rdx; // source java byte array address const Register len = rdi; // length // Arguments are reversed on java expression stack __ movl(len, Address(rsp, wordSize)); // Length // Calculate address of start element if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { __ movptr(buf, Address(rsp, 3*wordSize)); // long buf __ addptr(buf, Address(rsp, 2*wordSize)); // + offset __ movl(crc, Address(rsp, 5*wordSize)); // Initial CRC } else { __ movptr(buf, Address(rsp, 3*wordSize)); // byte[] array __ addptr(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size __ addptr(buf, Address(rsp, 2*wordSize)); // + offset __ movl(crc, Address(rsp, 4*wordSize)); // Initial CRC } __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()), crc, buf, len); // result in rax // _areturn __ pop(rdi); // get return address __ mov(rsp, rsi); // set sp to sender sp __ jmp(rdi); // generate a vanilla native entry as the slow path __ bind(slow_path); (void) generate_native_entry(false); return entry; } return generate_native_entry(false); } // // Interpreter stub for calling a native method. (asm interpreter) // This sets up a somewhat different looking stack for calling the native method // than the typical interpreter frame setup. // address InterpreterGenerator::generate_native_entry(bool synchronized) { // determine code generation flags bool inc_counter = UseCompiler || CountCompiledCalls; // rbx,: Method* // rsi: sender sp // rsi: previous interpreter state (C++ interpreter) must preserve address entry_point = __ pc(); const Address constMethod (rbx, Method::const_offset()); const Address access_flags (rbx, Method::access_flags_offset()); const Address size_of_parameters(rcx, ConstMethod::size_of_parameters_offset()); // get parameter size (always needed) __ movptr(rcx, constMethod); __ load_unsigned_short(rcx, size_of_parameters); // native calls don't need the stack size check since they have no expression stack // and the arguments are already on the stack and we only add a handful of words // to the stack // rbx,: Method* // rcx: size of parameters // rsi: sender sp __ pop(rax); // get return address // for natives the size of locals is zero // compute beginning of parameters (rdi) __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize)); // add 2 zero-initialized slots for native calls // NULL result handler __ push((int32_t)NULL_WORD); // NULL oop temp (mirror or jni oop result) __ push((int32_t)NULL_WORD); // initialize fixed part of activation frame generate_fixed_frame(true); // make sure method is native & not abstract #ifdef ASSERT __ movl(rax, access_flags); { Label L; __ testl(rax, JVM_ACC_NATIVE); __ jcc(Assembler::notZero, L); __ stop("tried to execute non-native method as native"); __ bind(L); } { Label L; __ testl(rax, JVM_ACC_ABSTRACT); __ jcc(Assembler::zero, L); __ stop("tried to execute abstract method in interpreter"); __ bind(L); } #endif // Since at this point in the method invocation the exception handler // would try to exit the monitor of synchronized methods which hasn't // been entered yet, we set the thread local variable // _do_not_unlock_if_synchronized to true. The remove_activation will // check this flag. __ get_thread(rax); const Address do_not_unlock_if_synchronized(rax, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); __ movbool(do_not_unlock_if_synchronized, true); // increment invocation count & check for overflow Label invocation_counter_overflow; if (inc_counter) { generate_counter_incr(&invocation_counter_overflow, NULL, NULL); } Label continue_after_compile; __ bind(continue_after_compile); bang_stack_shadow_pages(true); // reset the _do_not_unlock_if_synchronized flag __ get_thread(rax); __ movbool(do_not_unlock_if_synchronized, false); // check for synchronized methods // Must happen AFTER invocation_counter check and stack overflow check, // so method is not locked if overflows. // if (synchronized) { lock_method(); } else { // no synchronization necessary #ifdef ASSERT { Label L; __ movl(rax, access_flags); __ testl(rax, JVM_ACC_SYNCHRONIZED); __ jcc(Assembler::zero, L); __ stop("method needs synchronization"); __ bind(L); } #endif } // start execution #ifdef ASSERT { Label L; const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); __ movptr(rax, monitor_block_top); __ cmpptr(rax, rsp); __ jcc(Assembler::equal, L); __ stop("broken stack frame setup in interpreter"); __ bind(L); } #endif // jvmti/dtrace support __ notify_method_entry(); // work registers const Register method = rbx; const Register thread = rdi; const Register t = rcx; // allocate space for parameters __ get_method(method); __ movptr(t, Address(method, Method::const_offset())); __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset())); __ shlptr(t, Interpreter::logStackElementSize); __ addptr(t, 2*wordSize); // allocate two more slots for JNIEnv and possible mirror __ subptr(rsp, t); __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics // get signature handler { Label L; __ movptr(t, Address(method, Method::signature_handler_offset())); __ testptr(t, t); __ jcc(Assembler::notZero, L); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method); __ get_method(method); __ movptr(t, Address(method, Method::signature_handler_offset())); __ bind(L); } // call signature handler assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rdi, "adjust this code"); assert(InterpreterRuntime::SignatureHandlerGenerator::to () == rsp, "adjust this code"); assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == t , "adjust this code"); // The generated handlers do not touch RBX (the method oop). // However, large signatures cannot be cached and are generated // each time here. The slow-path generator will blow RBX // sometime, so we must reload it after the call. __ call(t); __ get_method(method); // slow path call blows RBX on DevStudio 5.0 // result handler is in rax, // set result handler __ movptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize), rax); // pass mirror handle if static call { Label L; const int mirror_offset = in_bytes(Klass::java_mirror_offset()); __ movl(t, Address(method, Method::access_flags_offset())); __ testl(t, JVM_ACC_STATIC); __ jcc(Assembler::zero, L); // get mirror __ movptr(t, Address(method, Method:: const_offset())); __ movptr(t, Address(t, ConstMethod::constants_offset())); __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes())); __ movptr(t, Address(t, mirror_offset)); // copy mirror into activation frame __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize), t); // pass handle to mirror __ lea(t, Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize)); __ movptr(Address(rsp, wordSize), t); __ bind(L); } // get native function entry point { Label L; __ movptr(rax, Address(method, Method::native_function_offset())); ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry()); __ cmpptr(rax, unsatisfied.addr()); __ jcc(Assembler::notEqual, L); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method); __ get_method(method); __ movptr(rax, Address(method, Method::native_function_offset())); __ bind(L); } // pass JNIEnv __ get_thread(thread); __ lea(t, Address(thread, JavaThread::jni_environment_offset())); __ movptr(Address(rsp, 0), t); // set_last_Java_frame_before_call // It is enough that the pc() // points into the right code segment. It does not have to be the correct return pc. __ set_last_Java_frame(thread, noreg, rbp, __ pc()); // change thread state #ifdef ASSERT { Label L; __ movl(t, Address(thread, JavaThread::thread_state_offset())); __ cmpl(t, _thread_in_Java); __ jcc(Assembler::equal, L); __ stop("Wrong thread state in native stub"); __ bind(L); } #endif // Change state to native __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native); __ call(rax); // result potentially in rdx:rax or ST0 // Verify or restore cpu control state after JNI call __ restore_cpu_control_state_after_jni(); // save potential result in ST(0) & rdx:rax // (if result handler is the T_FLOAT or T_DOUBLE handler, result must be in ST0 - // the check is necessary to avoid potential Intel FPU overflow problems by saving/restoring 'empty' FPU registers) // It is safe to do this push because state is _thread_in_native and return address will be found // via _last_native_pc and not via _last_jave_sp // NOTE: the order of theses push(es) is known to frame::interpreter_frame_result. // If the order changes or anything else is added to the stack the code in // interpreter_frame_result will have to be changed. { Label L; Label push_double; ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT)); ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE)); __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize), float_handler.addr()); __ jcc(Assembler::equal, push_double); __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize), double_handler.addr()); __ jcc(Assembler::notEqual, L); __ bind(push_double); __ push(dtos); __ bind(L); } __ push(ltos); // change thread state __ get_thread(thread); __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans); if(os::is_MP()) { if (UseMembar) { // Force this write out before the read below __ membar(Assembler::Membar_mask_bits( Assembler::LoadLoad | Assembler::LoadStore | Assembler::StoreLoad | Assembler::StoreStore)); } else { // Write serialization page so VM thread can do a pseudo remote membar. // We use the current thread pointer to calculate a thread specific // offset to write to within the page. This minimizes bus traffic // due to cache line collision. __ serialize_memory(thread, rcx); } } if (AlwaysRestoreFPU) { // Make sure the control word is correct. __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std())); } // check for safepoint operation in progress and/or pending suspend requests { Label Continue; __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()), SafepointSynchronize::_not_synchronized); Label L; __ jcc(Assembler::notEqual, L); __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0); __ jcc(Assembler::equal, Continue); __ bind(L); // Don't use call_VM as it will see a possible pending exception and forward it // and never return here preventing us from clearing _last_native_pc down below. // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are // preserved and correspond to the bcp/locals pointers. So we do a runtime call // by hand. // __ push(thread); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); __ increment(rsp, wordSize); __ get_thread(thread); __ bind(Continue); } // change thread state __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java); __ reset_last_Java_frame(thread, true, true); // reset handle block __ movptr(t, Address(thread, JavaThread::active_handles_offset())); __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD); // If result was an oop then unbox and save it in the frame { Label L; Label no_oop, store_result; ExternalAddress handler(AbstractInterpreter::result_handler(T_OBJECT)); __ cmpptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize), handler.addr()); __ jcc(Assembler::notEqual, no_oop); __ cmpptr(Address(rsp, 0), (int32_t)NULL_WORD); __ pop(ltos); __ testptr(rax, rax); __ jcc(Assembler::zero, store_result); // unbox __ movptr(rax, Address(rax, 0)); __ bind(store_result); __ movptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset)*wordSize), rax); // keep stack depth as expected by pushing oop which will eventually be discarded __ push(ltos); __ bind(no_oop); } { Label no_reguard; __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled); __ jcc(Assembler::notEqual, no_reguard); __ pusha(); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages))); __ popa(); __ bind(no_reguard); } // restore rsi to have legal interpreter frame, // i.e., bci == 0 <=> rsi == code_base() // Can't call_VM until bcp is within reasonable. __ get_method(method); // method is junk from thread_in_native to now. __ movptr(rsi, Address(method,Method::const_offset())); // get ConstMethod* __ lea(rsi, Address(rsi,ConstMethod::codes_offset())); // get codebase // handle exceptions (exception handling will handle unlocking!) { Label L; __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); __ jcc(Assembler::zero, L); // Note: At some point we may want to unify this with the code used in call_VM_base(); // i.e., we should use the StubRoutines::forward_exception code. For now this // doesn't work here because the rsp is not correctly set at this point. __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception)); __ should_not_reach_here(); __ bind(L); } // do unlocking if necessary { Label L; __ movl(t, Address(method, Method::access_flags_offset())); __ testl(t, JVM_ACC_SYNCHRONIZED); __ jcc(Assembler::zero, L); // the code below should be shared with interpreter macro assembler implementation { Label unlock; // BasicObjectLock will be first in list, since this is a synchronized method. However, need // to check that the object has not been unlocked by an explicit monitorexit bytecode. const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock)); __ lea(rdx, monitor); // address of first monitor __ movptr(t, Address(rdx, BasicObjectLock::obj_offset_in_bytes())); __ testptr(t, t); __ jcc(Assembler::notZero, unlock); // Entry already unlocked, need to throw exception __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); __ should_not_reach_here(); __ bind(unlock); __ unlock_object(rdx); } __ bind(L); } // jvmti/dtrace support // Note: This must happen _after_ handling/throwing any exceptions since // the exception handler code notifies the runtime of method exits // too. If this happens before, method entry/exit notifications are // not properly paired (was bug - gri 11/22/99). __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI); // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result __ pop(ltos); __ movptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize)); __ call(t); // remove activation __ movptr(t, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp __ leave(); // remove frame anchor __ pop(rdi); // get return address __ mov(rsp, t); // set sp to sender sp __ jmp(rdi); if (inc_counter) { // Handle overflow of counter and compile method __ bind(invocation_counter_overflow); generate_counter_overflow(&continue_after_compile); } return entry_point; } // // Generic interpreted method entry to (asm) interpreter // address InterpreterGenerator::generate_normal_entry(bool synchronized) { // determine code generation flags bool inc_counter = UseCompiler || CountCompiledCalls; // rbx,: Method* // rsi: sender sp address entry_point = __ pc(); const Address constMethod (rbx, Method::const_offset()); const Address access_flags (rbx, Method::access_flags_offset()); const Address size_of_parameters(rdx, ConstMethod::size_of_parameters_offset()); const Address size_of_locals (rdx, ConstMethod::size_of_locals_offset()); // get parameter size (always needed) __ movptr(rdx, constMethod); __ load_unsigned_short(rcx, size_of_parameters); // rbx,: Method* // rcx: size of parameters // rsi: sender_sp (could differ from sp+wordSize if we were called via c2i ) __ load_unsigned_short(rdx, size_of_locals); // get size of locals in words __ subl(rdx, rcx); // rdx = no. of additional locals // see if we've got enough room on the stack for locals plus overhead. generate_stack_overflow_check(); // get return address __ pop(rax); // compute beginning of parameters (rdi) __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize)); // rdx - # of additional locals // allocate space for locals // explicitly initialize locals { Label exit, loop; __ testl(rdx, rdx); __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0 __ bind(loop); __ push((int32_t)NULL_WORD); // initialize local variables __ decrement(rdx); // until everything initialized __ jcc(Assembler::greater, loop); __ bind(exit); } // initialize fixed part of activation frame generate_fixed_frame(false); // make sure method is not native & not abstract #ifdef ASSERT __ movl(rax, access_flags); { Label L; __ testl(rax, JVM_ACC_NATIVE); __ jcc(Assembler::zero, L); __ stop("tried to execute native method as non-native"); __ bind(L); } { Label L; __ testl(rax, JVM_ACC_ABSTRACT); __ jcc(Assembler::zero, L); __ stop("tried to execute abstract method in interpreter"); __ bind(L); } #endif // Since at this point in the method invocation the exception handler // would try to exit the monitor of synchronized methods which hasn't // been entered yet, we set the thread local variable // _do_not_unlock_if_synchronized to true. The remove_activation will // check this flag. __ get_thread(rax); const Address do_not_unlock_if_synchronized(rax, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); __ movbool(do_not_unlock_if_synchronized, true); __ profile_parameters_type(rax, rcx, rdx); // increment invocation count & check for overflow Label invocation_counter_overflow; Label profile_method; Label profile_method_continue; if (inc_counter) { generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue); if (ProfileInterpreter) { __ bind(profile_method_continue); } } Label continue_after_compile; __ bind(continue_after_compile); bang_stack_shadow_pages(false); // reset the _do_not_unlock_if_synchronized flag __ get_thread(rax); __ movbool(do_not_unlock_if_synchronized, false); // check for synchronized methods // Must happen AFTER invocation_counter check and stack overflow check, // so method is not locked if overflows. // if (synchronized) { // Allocate monitor and lock method lock_method(); } else { // no synchronization necessary #ifdef ASSERT { Label L; __ movl(rax, access_flags); __ testl(rax, JVM_ACC_SYNCHRONIZED); __ jcc(Assembler::zero, L); __ stop("method needs synchronization"); __ bind(L); } #endif } // start execution #ifdef ASSERT { Label L; const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); __ movptr(rax, monitor_block_top); __ cmpptr(rax, rsp); __ jcc(Assembler::equal, L); __ stop("broken stack frame setup in interpreter"); __ bind(L); } #endif // jvmti support __ notify_method_entry(); __ dispatch_next(vtos); // invocation counter overflow if (inc_counter) { if (ProfileInterpreter) { // We have decided to profile this method in the interpreter __ bind(profile_method); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); __ set_method_data_pointer_for_bcp(); __ get_method(rbx); __ jmp(profile_method_continue); } // Handle overflow of counter and compile method __ bind(invocation_counter_overflow); generate_counter_overflow(&continue_after_compile); } return entry_point; } //------------------------------------------------------------------------------------------------------------------------ // Entry points // // Here we generate the various kind of entries into the interpreter. // The two main entry type are generic bytecode methods and native call method. // These both come in synchronized and non-synchronized versions but the // frame layout they create is very similar. The other method entry // types are really just special purpose entries that are really entry // and interpretation all in one. These are for trivial methods like // accessor, empty, or special math methods. // // When control flow reaches any of the entry types for the interpreter // the following holds -> // // Arguments: // // rbx,: Method* // rcx: receiver // // // Stack layout immediately at entry // // [ return address ] <--- rsp // [ parameter n ] // ... // [ parameter 1 ] // [ expression stack ] (caller's java expression stack) // Assuming that we don't go to one of the trivial specialized // entries the stack will look like below when we are ready to execute // the first bytecode (or call the native routine). The register usage // will be as the template based interpreter expects (see interpreter_x86.hpp). // // local variables follow incoming parameters immediately; i.e. // the return address is moved to the end of the locals). // // [ monitor entry ] <--- rsp // ... // [ monitor entry ] // [ expr. stack bottom ] // [ saved rsi ] // [ current rdi ] // [ Method* ] // [ saved rbp, ] <--- rbp, // [ return address ] // [ local variable m ] // ... // [ local variable 1 ] // [ parameter n ] // ... // [ parameter 1 ] <--- rdi address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) { // determine code generation flags bool synchronized = false; address entry_point = NULL; InterpreterGenerator* ig_this = (InterpreterGenerator*)this; switch (kind) { case Interpreter::zerolocals : break; case Interpreter::zerolocals_synchronized: synchronized = true; break; case Interpreter::native : entry_point = ig_this->generate_native_entry(false); break; case Interpreter::native_synchronized : entry_point = ig_this->generate_native_entry(true); break; case Interpreter::empty : entry_point = ig_this->generate_empty_entry(); break; case Interpreter::accessor : entry_point = ig_this->generate_accessor_entry(); break; case Interpreter::abstract : entry_point = ig_this->generate_abstract_entry(); break; case Interpreter::java_lang_math_sin : // fall thru case Interpreter::java_lang_math_cos : // fall thru case Interpreter::java_lang_math_tan : // fall thru case Interpreter::java_lang_math_abs : // fall thru case Interpreter::java_lang_math_log : // fall thru case Interpreter::java_lang_math_log10 : // fall thru case Interpreter::java_lang_math_sqrt : // fall thru case Interpreter::java_lang_math_pow : // fall thru case Interpreter::java_lang_math_exp : entry_point = ig_this->generate_math_entry(kind); break; case Interpreter::java_lang_ref_reference_get : entry_point = ig_this->generate_Reference_get_entry(); break; case Interpreter::java_util_zip_CRC32_update : entry_point = ig_this->generate_CRC32_update_entry(); break; case Interpreter::java_util_zip_CRC32_updateBytes : // fall thru case Interpreter::java_util_zip_CRC32_updateByteBuffer : entry_point = ig_this->generate_CRC32_updateBytes_entry(kind); break; default: fatal(err_msg("unexpected method kind: %d", kind)); break; } if (entry_point) return entry_point; return ig_this->generate_normal_entry(synchronized); } // These should never be compiled since the interpreter will prefer // the compiled version to the intrinsic version. bool AbstractInterpreter::can_be_compiled(methodHandle m) { switch (method_kind(m)) { case Interpreter::java_lang_math_sin : // fall thru case Interpreter::java_lang_math_cos : // fall thru case Interpreter::java_lang_math_tan : // fall thru case Interpreter::java_lang_math_abs : // fall thru case Interpreter::java_lang_math_log : // fall thru case Interpreter::java_lang_math_log10 : // fall thru case Interpreter::java_lang_math_sqrt : // fall thru case Interpreter::java_lang_math_pow : // fall thru case Interpreter::java_lang_math_exp : return false; default: return true; } } // How much stack a method activation needs in words. int AbstractInterpreter::size_top_interpreter_activation(Method* method) { const int stub_code = 4; // see generate_call_stub // Save space for one monitor to get into the interpreted method in case // the method is synchronized int monitor_size = method->is_synchronized() ? 1*frame::interpreter_frame_monitor_size() : 0; // total overhead size: entry_size + (saved rbp, thru expr stack bottom). // be sure to change this if you add/subtract anything to/from the overhead area const int overhead_size = -frame::interpreter_frame_initial_sp_offset; const int method_stack = (method->max_locals() + method->max_stack()) * Interpreter::stackElementWords; return overhead_size + method_stack + stub_code; } // asm based interpreter deoptimization helpers int AbstractInterpreter::layout_activation(Method* method, int tempcount, int popframe_extra_args, int moncount, int caller_actual_parameters, int callee_param_count, int callee_locals, frame* caller, frame* interpreter_frame, bool is_top_frame, bool is_bottom_frame) { // Note: This calculation must exactly parallel the frame setup // in AbstractInterpreterGenerator::generate_method_entry. // If interpreter_frame!=NULL, set up the method, locals, and monitors. // The frame interpreter_frame, if not NULL, is guaranteed to be the right size, // as determined by a previous call to this method. // It is also guaranteed to be walkable even though it is in a skeletal state // NOTE: return size is in words not bytes // fixed size of an interpreter frame: int max_locals = method->max_locals() * Interpreter::stackElementWords; int extra_locals = (method->max_locals() - method->size_of_parameters()) * Interpreter::stackElementWords; int overhead = frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset; // Our locals were accounted for by the caller (or last_frame_adjust on the transistion) // Since the callee parameters already account for the callee's params we only need to account for // the extra locals. int size = overhead + ((callee_locals - callee_param_count)*Interpreter::stackElementWords) + (moncount*frame::interpreter_frame_monitor_size()) + tempcount*Interpreter::stackElementWords + popframe_extra_args; if (interpreter_frame != NULL) { #ifdef ASSERT if (!EnableInvokeDynamic) // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences? // Probably, since deoptimization doesn't work yet. assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable"); assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)"); #endif interpreter_frame->interpreter_frame_set_method(method); // NOTE the difference in using sender_sp and interpreter_frame_sender_sp // interpreter_frame_sender_sp is the original sp of the caller (the unextended_sp) // and sender_sp is fp+8 intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1; #ifdef ASSERT if (caller->is_interpreted_frame()) { assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement"); } #endif interpreter_frame->interpreter_frame_set_locals(locals); BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin(); BasicObjectLock* monbot = montop - moncount; interpreter_frame->interpreter_frame_set_monitor_end(monbot); // Set last_sp intptr_t* rsp = (intptr_t*) monbot - tempcount*Interpreter::stackElementWords - popframe_extra_args; interpreter_frame->interpreter_frame_set_last_sp(rsp); // All frames but the initial (oldest) interpreter frame we fill in have a // value for sender_sp that allows walking the stack but isn't // truly correct. Correct the value here. if (extra_locals != 0 && interpreter_frame->sender_sp() == interpreter_frame->interpreter_frame_sender_sp() ) { interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() + extra_locals); } *interpreter_frame->interpreter_frame_cache_addr() = method->constants()->cache(); } return size; } //------------------------------------------------------------------------------------------------------------------------ // Exceptions void TemplateInterpreterGenerator::generate_throw_exception() { // Entry point in previous activation (i.e., if the caller was interpreted) Interpreter::_rethrow_exception_entry = __ pc(); const Register thread = rcx; // Restore sp to interpreter_frame_last_sp even though we are going // to empty the expression stack for the exception processing. __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); // rax,: exception // rdx: return address/pc that threw exception __ restore_bcp(); // rsi points to call/send __ restore_locals(); // Entry point for exceptions thrown within interpreter code Interpreter::_throw_exception_entry = __ pc(); // expression stack is undefined here // rax,: exception // rsi: exception bcp __ verify_oop(rax); // expression stack must be empty before entering the VM in case of an exception __ empty_expression_stack(); __ empty_FPU_stack(); // find exception handler address and preserve exception oop __ call_VM(rdx, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), rax); // rax,: exception handler entry point // rdx: preserved exception oop // rsi: bcp for exception handler __ push_ptr(rdx); // push exception which is now the only value on the stack __ jmp(rax); // jump to exception handler (may be _remove_activation_entry!) // If the exception is not handled in the current frame the frame is removed and // the exception is rethrown (i.e. exception continuation is _rethrow_exception). // // Note: At this point the bci is still the bxi for the instruction which caused // the exception and the expression stack is empty. Thus, for any VM calls // at this point, GC will find a legal oop map (with empty expression stack). // In current activation // tos: exception // rsi: exception bcp // // JVMTI PopFrame support // Interpreter::_remove_activation_preserving_args_entry = __ pc(); __ empty_expression_stack(); __ empty_FPU_stack(); // Set the popframe_processing bit in pending_popframe_condition indicating that we are // currently handling popframe, so that call_VMs that may happen later do not trigger new // popframe handling cycles. __ get_thread(thread); __ movl(rdx, Address(thread, JavaThread::popframe_condition_offset())); __ orl(rdx, JavaThread::popframe_processing_bit); __ movl(Address(thread, JavaThread::popframe_condition_offset()), rdx); { // Check to see whether we are returning to a deoptimized frame. // (The PopFrame call ensures that the caller of the popped frame is // either interpreted or compiled and deoptimizes it if compiled.) // In this case, we can't call dispatch_next() after the frame is // popped, but instead must save the incoming arguments and restore // them after deoptimization has occurred. // // Note that we don't compare the return PC against the // deoptimization blob's unpack entry because of the presence of // adapter frames in C2. Label caller_not_deoptimized; __ movptr(rdx, Address(rbp, frame::return_addr_offset * wordSize)); __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), rdx); __ testl(rax, rax); __ jcc(Assembler::notZero, caller_not_deoptimized); // Compute size of arguments for saving when returning to deoptimized caller __ get_method(rax); __ movptr(rax, Address(rax, Method::const_offset())); __ load_unsigned_short(rax, Address(rax, ConstMethod::size_of_parameters_offset())); __ shlptr(rax, Interpreter::logStackElementSize); __ restore_locals(); __ subptr(rdi, rax); __ addptr(rdi, wordSize); // Save these arguments __ get_thread(thread); __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), thread, rax, rdi); __ remove_activation(vtos, rdx, /* throw_monitor_exception */ false, /* install_monitor_exception */ false, /* notify_jvmdi */ false); // Inform deoptimization that it is responsible for restoring these arguments __ get_thread(thread); __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_force_deopt_reexecution_bit); // Continue in deoptimization handler __ jmp(rdx); __ bind(caller_not_deoptimized); } __ remove_activation(vtos, rdx, /* throw_monitor_exception */ false, /* install_monitor_exception */ false, /* notify_jvmdi */ false); // Finish with popframe handling // A previous I2C followed by a deoptimization might have moved the // outgoing arguments further up the stack. PopFrame expects the // mutations to those outgoing arguments to be preserved and other // constraints basically require this frame to look exactly as // though it had previously invoked an interpreted activation with // no space between the top of the expression stack (current // last_sp) and the top of stack. Rather than force deopt to // maintain this kind of invariant all the time we call a small // fixup routine to move the mutated arguments onto the top of our // expression stack if necessary. __ mov(rax, rsp); __ movptr(rbx, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize)); __ get_thread(thread); // PC must point into interpreter here __ set_last_Java_frame(thread, noreg, rbp, __ pc()); __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), thread, rax, rbx); __ get_thread(thread); __ reset_last_Java_frame(thread, true, true); // Restore the last_sp and null it out __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize)); __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); __ restore_bcp(); __ restore_locals(); // The method data pointer was incremented already during // call profiling. We have to restore the mdp for the current bcp. if (ProfileInterpreter) { __ set_method_data_pointer_for_bcp(); } // Clear the popframe condition flag __ get_thread(thread); __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_inactive); #if INCLUDE_JVMTI if (EnableInvokeDynamic) { Label L_done; const Register local0 = rdi; __ cmpb(Address(rsi, 0), Bytecodes::_invokestatic); __ jcc(Assembler::notEqual, L_done); // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL. __ get_method(rdx); __ movptr(rax, Address(local0, 0)); __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), rax, rdx, rsi); __ testptr(rax, rax); __ jcc(Assembler::zero, L_done); __ movptr(Address(rbx, 0), rax); __ bind(L_done); } #endif // INCLUDE_JVMTI __ dispatch_next(vtos); // end of PopFrame support Interpreter::_remove_activation_entry = __ pc(); // preserve exception over this code sequence __ pop_ptr(rax); __ get_thread(thread); __ movptr(Address(thread, JavaThread::vm_result_offset()), rax); // remove the activation (without doing throws on illegalMonitorExceptions) __ remove_activation(vtos, rdx, false, true, false); // restore exception __ get_thread(thread); __ get_vm_result(rax, thread); // Inbetween activations - previous activation type unknown yet // compute continuation point - the continuation point expects // the following registers set up: // // rax: exception // rdx: return address/pc that threw exception // rsp: expression stack of caller // rbp: rbp, of caller __ push(rax); // save exception __ push(rdx); // save return address __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, rdx); __ mov(rbx, rax); // save exception handler __ pop(rdx); // restore return address __ pop(rax); // restore exception // Note that an "issuing PC" is actually the next PC after the call __ jmp(rbx); // jump to exception handler of caller } // // JVMTI ForceEarlyReturn support // address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { address entry = __ pc(); const Register thread = rcx; __ restore_bcp(); __ restore_locals(); __ empty_expression_stack(); __ empty_FPU_stack(); __ load_earlyret_value(state); __ get_thread(thread); __ movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset())); const Address cond_addr(rcx, JvmtiThreadState::earlyret_state_offset()); // Clear the earlyret state __ movl(cond_addr, JvmtiThreadState::earlyret_inactive); __ remove_activation(state, rsi, false, /* throw_monitor_exception */ false, /* install_monitor_exception */ true); /* notify_jvmdi */ __ jmp(rsi); return entry; } // end of ForceEarlyReturn support //------------------------------------------------------------------------------------------------------------------------ // Helper for vtos entry point generation void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) { assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); Label L; fep = __ pc(); __ push(ftos); __ jmp(L); dep = __ pc(); __ push(dtos); __ jmp(L); lep = __ pc(); __ push(ltos); __ jmp(L); aep = __ pc(); __ push(atos); __ jmp(L); bep = cep = sep = // fall through iep = __ pc(); __ push(itos); // fall through vep = __ pc(); __ bind(L); // fall through generate_and_dispatch(t); } //------------------------------------------------------------------------------------------------------------------------ // Generation of individual instructions // helpers for generate_and_dispatch InterpreterGenerator::InterpreterGenerator(StubQueue* code) : TemplateInterpreterGenerator(code) { generate_all(); // down here so it can be "virtual" } //------------------------------------------------------------------------------------------------------------------------ // Non-product code #ifndef PRODUCT address TemplateInterpreterGenerator::generate_trace_code(TosState state) { address entry = __ pc(); // prepare expression stack __ pop(rcx); // pop return address so expression stack is 'pure' __ push(state); // save tosca // pass tosca registers as arguments & call tracer __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), rcx, rax, rdx); __ mov(rcx, rax); // make sure return address is not destroyed by pop(state) __ pop(state); // restore tosca // return __ jmp(rcx); return entry; } void TemplateInterpreterGenerator::count_bytecode() { __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value)); } void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()])); } void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx); __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes); __ orl(rbx, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes); ExternalAddress table((address) BytecodePairHistogram::_counters); Address index(noreg, rbx, Address::times_4); __ incrementl(ArrayAddress(table, index)); } void TemplateInterpreterGenerator::trace_bytecode(Template* t) { // Call a little run-time stub to avoid blow-up for each bytecode. // The run-time runtime saves the right registers, depending on // the tosca in-state for the given template. assert(Interpreter::trace_code(t->tos_in()) != NULL, "entry must have been generated"); __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in()))); } void TemplateInterpreterGenerator::stop_interpreter_at() { Label L; __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value), StopInterpreterAt); __ jcc(Assembler::notEqual, L); __ int3(); __ bind(L); } #endif // !PRODUCT #endif // CC_INTERP Other Java examples (source code examples)Here is a short list of links related to this Java templateInterpreter_x86_32.cpp source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.