|
Java example source code file (osThread_bsd.hpp)
The osThread_bsd.hpp Java example source code/* * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef OS_BSD_VM_OSTHREAD_BSD_HPP #define OS_BSD_VM_OSTHREAD_BSD_HPP private: int _thread_type; public: int thread_type() const { return _thread_type; } void set_thread_type(int type) { _thread_type = type; } private: #ifdef __APPLE__ typedef thread_t thread_id_t; #else typedef pid_t thread_id_t; #endif // _pthread_id is the pthread id, which is used by library calls // (e.g. pthread_kill). pthread_t _pthread_id; // This is the "thread_id" from struct thread_identifier_info. According to a // comment in thread_info.h, this is a "system-wide unique 64-bit thread id". // The value is used by SA to correlate threads. uint64_t _unique_thread_id; sigset_t _caller_sigmask; // Caller's signal mask public: // Methods to save/restore caller's signal mask sigset_t caller_sigmask() const { return _caller_sigmask; } void set_caller_sigmask(sigset_t sigmask) { _caller_sigmask = sigmask; } #ifndef PRODUCT // Used for debugging, return a unique integer for each thread. intptr_t thread_identifier() const { return (intptr_t)_pthread_id; } #endif #ifdef ASSERT // We expect no reposition failures so kill vm if we get one. // bool valid_reposition_failure() { return false; } #endif // ASSERT pthread_t pthread_id() const { return _pthread_id; } void set_pthread_id(pthread_t tid) { _pthread_id = tid; } void set_unique_thread_id(uint64_t id) { _unique_thread_id = id; } // *************************************************************** // suspension support. // *************************************************************** public: // flags that support signal based suspend/resume on Bsd are in a // separate class to avoid confusion with many flags in OSThread that // are used by VM level suspend/resume. os::SuspendResume sr; // _ucontext and _siginfo are used by SR_handler() to save thread context, // and they will later be used to walk the stack or reposition thread PC. // If the thread is not suspended in SR_handler() (e.g. self suspend), // the value in _ucontext is meaningless, so we must use the last Java // frame information as the frame. This will mean that for threads // that are parked on a mutex the profiler (and safepoint mechanism) // will see the thread as if it were still in the Java frame. This // not a problem for the profiler since the Java frame is a close // enough result. For the safepoint mechanism when the give it the // Java frame we are not at a point where the safepoint needs the // frame to that accurate (like for a compiled safepoint) since we // should be in a place where we are native and will block ourselves // if we transition. private: void* _siginfo; ucontext_t* _ucontext; int _expanding_stack; /* non zero if manually expanding stack */ address _alt_sig_stack; /* address of base of alternate signal stack */ public: void* siginfo() const { return _siginfo; } void set_siginfo(void* ptr) { _siginfo = ptr; } ucontext_t* ucontext() const { return _ucontext; } void set_ucontext(ucontext_t* ptr) { _ucontext = ptr; } void set_expanding_stack(void) { _expanding_stack = 1; } void clear_expanding_stack(void) { _expanding_stack = 0; } int expanding_stack(void) { return _expanding_stack; } void set_alt_sig_stack(address val) { _alt_sig_stack = val; } address alt_sig_stack(void) { return _alt_sig_stack; } private: Monitor* _startThread_lock; // sync parent and child in thread creation public: Monitor* startThread_lock() const { return _startThread_lock; } // *************************************************************** // Platform dependent initialization and cleanup // *************************************************************** private: void pd_initialize(); void pd_destroy(); // Reconciliation History // osThread_solaris.hpp 1.24 99/08/27 13:11:54 // End #endif // OS_BSD_VM_OSTHREAD_BSD_HPP Other Java examples (source code examples)Here is a short list of links related to this Java osThread_bsd.hpp source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.