alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (perfMemory_bsd.cpp)

This example Java source code file (perfMemory_bsd.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

check, could, free_c_heap_array, new_c_heap_array, null, os_err, perfdata, perfdisablesharedmem, perfmemory, printmiscellaneous, restartable, throw_msg, traps, verbose

The perfMemory_bsd.cpp Java example source code

/*
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/vmSymbols.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "os_bsd.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/perfMemory.hpp"
#include "services/memTracker.hpp"
#include "utilities/exceptions.hpp"

// put OS-includes here
# include <sys/types.h>
# include <sys/mman.h>
# include <errno.h>
# include <stdio.h>
# include <unistd.h>
# include <sys/stat.h>
# include <signal.h>
# include <pwd.h>

static char* backing_store_file_name = NULL;  // name of the backing store
                                              // file, if successfully created.

// Standard Memory Implementation Details

// create the PerfData memory region in standard memory.
//
static char* create_standard_memory(size_t size) {

  // allocate an aligned chuck of memory
  char* mapAddress = os::reserve_memory(size);

  if (mapAddress == NULL) {
    return NULL;
  }

  // commit memory
  if (!os::commit_memory(mapAddress, size, !ExecMem)) {
    if (PrintMiscellaneous && Verbose) {
      warning("Could not commit PerfData memory\n");
    }
    os::release_memory(mapAddress, size);
    return NULL;
  }

  return mapAddress;
}

// delete the PerfData memory region
//
static void delete_standard_memory(char* addr, size_t size) {

  // there are no persistent external resources to cleanup for standard
  // memory. since DestroyJavaVM does not support unloading of the JVM,
  // cleanup of the memory resource is not performed. The memory will be
  // reclaimed by the OS upon termination of the process.
  //
  return;
}

// save the specified memory region to the given file
//
// Note: this function might be called from signal handler (by os::abort()),
// don't allocate heap memory.
//
static void save_memory_to_file(char* addr, size_t size) {

 const char* destfile = PerfMemory::get_perfdata_file_path();
 assert(destfile[0] != '\0', "invalid PerfData file path");

  int result;

  RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
              result);;
  if (result == OS_ERR) {
    if (PrintMiscellaneous && Verbose) {
      warning("Could not create Perfdata save file: %s: %s\n",
              destfile, strerror(errno));
    }
  } else {
    int fd = result;

    for (size_t remaining = size; remaining > 0;) {

      RESTARTABLE(::write(fd, addr, remaining), result);
      if (result == OS_ERR) {
        if (PrintMiscellaneous && Verbose) {
          warning("Could not write Perfdata save file: %s: %s\n",
                  destfile, strerror(errno));
        }
        break;
      }

      remaining -= (size_t)result;
      addr += result;
    }

    result = ::close(fd);
    if (PrintMiscellaneous && Verbose) {
      if (result == OS_ERR) {
        warning("Could not close %s: %s\n", destfile, strerror(errno));
      }
    }
  }
  FREE_C_HEAP_ARRAY(char, destfile, mtInternal);
}


// Shared Memory Implementation Details

// Note: the solaris and bsd shared memory implementation uses the mmap
// interface with a backing store file to implement named shared memory.
// Using the file system as the name space for shared memory allows a
// common name space to be supported across a variety of platforms. It
// also provides a name space that Java applications can deal with through
// simple file apis.
//
// The solaris and bsd implementations store the backing store file in
// a user specific temporary directory located in the /tmp file system,
// which is always a local file system and is sometimes a RAM based file
// system.

// return the user specific temporary directory name.
//
// the caller is expected to free the allocated memory.
//
static char* get_user_tmp_dir(const char* user) {

  const char* tmpdir = os::get_temp_directory();
  const char* perfdir = PERFDATA_NAME;
  size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
  char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);

  // construct the path name to user specific tmp directory
  snprintf(dirname, nbytes, "%s/%s_%s", tmpdir, perfdir, user);

  return dirname;
}

// convert the given file name into a process id. if the file
// does not meet the file naming constraints, return 0.
//
static pid_t filename_to_pid(const char* filename) {

  // a filename that doesn't begin with a digit is not a
  // candidate for conversion.
  //
  if (!isdigit(*filename)) {
    return 0;
  }

  // check if file name can be converted to an integer without
  // any leftover characters.
  //
  char* remainder = NULL;
  errno = 0;
  pid_t pid = (pid_t)strtol(filename, &remainder, 10);

  if (errno != 0) {
    return 0;
  }

  // check for left over characters. If any, then the filename is
  // not a candidate for conversion.
  //
  if (remainder != NULL && *remainder != '\0') {
    return 0;
  }

  // successful conversion, return the pid
  return pid;
}


// check if the given path is considered a secure directory for
// the backing store files. Returns true if the directory exists
// and is considered a secure location. Returns false if the path
// is a symbolic link or if an error occurred.
//
static bool is_directory_secure(const char* path) {
  struct stat statbuf;
  int result = 0;

  RESTARTABLE(::lstat(path, &statbuf), result);
  if (result == OS_ERR) {
    return false;
  }

  // the path exists, now check it's mode
  if (S_ISLNK(statbuf.st_mode) || !S_ISDIR(statbuf.st_mode)) {
    // the path represents a link or some non-directory file type,
    // which is not what we expected. declare it insecure.
    //
    return false;
  }
  else {
    // we have an existing directory, check if the permissions are safe.
    //
    if ((statbuf.st_mode & (S_IWGRP|S_IWOTH)) != 0) {
      // the directory is open for writing and could be subjected
      // to a symlnk attack. declare it insecure.
      //
      return false;
    }
  }
  return true;
}


// return the user name for the given user id
//
// the caller is expected to free the allocated memory.
//
static char* get_user_name(uid_t uid) {

  struct passwd pwent;

  // determine the max pwbuf size from sysconf, and hardcode
  // a default if this not available through sysconf.
  //
  long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
  if (bufsize == -1)
    bufsize = 1024;

  char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);

  // POSIX interface to getpwuid_r is used on LINUX
  struct passwd* p;
  int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);

  if (result != 0 || p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
    if (PrintMiscellaneous && Verbose) {
      if (result != 0) {
        warning("Could not retrieve passwd entry: %s\n",
                strerror(result));
      }
      else if (p == NULL) {
        // this check is added to protect against an observed problem
        // with getpwuid_r() on RedHat 9 where getpwuid_r returns 0,
        // indicating success, but has p == NULL. This was observed when
        // inserting a file descriptor exhaustion fault prior to the call
        // getpwuid_r() call. In this case, error is set to the appropriate
        // error condition, but this is undocumented behavior. This check
        // is safe under any condition, but the use of errno in the output
        // message may result in an erroneous message.
        // Bug Id 89052 was opened with RedHat.
        //
        warning("Could not retrieve passwd entry: %s\n",
                strerror(errno));
      }
      else {
        warning("Could not determine user name: %s\n",
                p->pw_name == NULL ? "pw_name = NULL" :
                                     "pw_name zero length");
      }
    }
    FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
    return NULL;
  }

  char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal);
  strcpy(user_name, p->pw_name);

  FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
  return user_name;
}

// return the name of the user that owns the process identified by vmid.
//
// This method uses a slow directory search algorithm to find the backing
// store file for the specified vmid and returns the user name, as determined
// by the user name suffix of the hsperfdata_<username> directory name.
//
// the caller is expected to free the allocated memory.
//
static char* get_user_name_slow(int vmid, TRAPS) {

  // short circuit the directory search if the process doesn't even exist.
  if (kill(vmid, 0) == OS_ERR) {
    if (errno == ESRCH) {
      THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
                  "Process not found");
    }
    else /* EPERM */ {
      THROW_MSG_0(vmSymbols::java_io_IOException(), strerror(errno));
    }
  }

  // directory search
  char* oldest_user = NULL;
  time_t oldest_ctime = 0;

  const char* tmpdirname = os::get_temp_directory();

  DIR* tmpdirp = os::opendir(tmpdirname);

  if (tmpdirp == NULL) {
    return NULL;
  }

  // for each entry in the directory that matches the pattern hsperfdata_*,
  // open the directory and check if the file for the given vmid exists.
  // The file with the expected name and the latest creation date is used
  // to determine the user name for the process id.
  //
  struct dirent* dentry;
  char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
  errno = 0;
  while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {

    // check if the directory entry is a hsperfdata file
    if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
      continue;
    }

    char* usrdir_name = NEW_C_HEAP_ARRAY(char,
                 strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
    strcpy(usrdir_name, tmpdirname);
    strcat(usrdir_name, "/");
    strcat(usrdir_name, dentry->d_name);

    DIR* subdirp = os::opendir(usrdir_name);

    if (subdirp == NULL) {
      FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
      continue;
    }

    // Since we don't create the backing store files in directories
    // pointed to by symbolic links, we also don't follow them when
    // looking for the files. We check for a symbolic link after the
    // call to opendir in order to eliminate a small window where the
    // symlink can be exploited.
    //
    if (!is_directory_secure(usrdir_name)) {
      FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
      os::closedir(subdirp);
      continue;
    }

    struct dirent* udentry;
    char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
    errno = 0;
    while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {

      if (filename_to_pid(udentry->d_name) == vmid) {
        struct stat statbuf;
        int result;

        char* filename = NEW_C_HEAP_ARRAY(char,
                 strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);

        strcpy(filename, usrdir_name);
        strcat(filename, "/");
        strcat(filename, udentry->d_name);

        // don't follow symbolic links for the file
        RESTARTABLE(::lstat(filename, &statbuf), result);
        if (result == OS_ERR) {
           FREE_C_HEAP_ARRAY(char, filename, mtInternal);
           continue;
        }

        // skip over files that are not regular files.
        if (!S_ISREG(statbuf.st_mode)) {
          FREE_C_HEAP_ARRAY(char, filename, mtInternal);
          continue;
        }

        // compare and save filename with latest creation time
        if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {

          if (statbuf.st_ctime > oldest_ctime) {
            char* user = strchr(dentry->d_name, '_') + 1;

            if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user, mtInternal);
            oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);

            strcpy(oldest_user, user);
            oldest_ctime = statbuf.st_ctime;
          }
        }

        FREE_C_HEAP_ARRAY(char, filename, mtInternal);
      }
    }
    os::closedir(subdirp);
    FREE_C_HEAP_ARRAY(char, udbuf, mtInternal);
    FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
  }
  os::closedir(tmpdirp);
  FREE_C_HEAP_ARRAY(char, tdbuf, mtInternal);

  return(oldest_user);
}

// return the name of the user that owns the JVM indicated by the given vmid.
//
static char* get_user_name(int vmid, TRAPS) {
  return get_user_name_slow(vmid, CHECK_NULL);
}

// return the file name of the backing store file for the named
// shared memory region for the given user name and vmid.
//
// the caller is expected to free the allocated memory.
//
static char* get_sharedmem_filename(const char* dirname, int vmid) {

  // add 2 for the file separator and a null terminator.
  size_t nbytes = strlen(dirname) + UINT_CHARS + 2;

  char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
  snprintf(name, nbytes, "%s/%d", dirname, vmid);

  return name;
}


// remove file
//
// this method removes the file specified by the given path
//
static void remove_file(const char* path) {

  int result;

  // if the file is a directory, the following unlink will fail. since
  // we don't expect to find directories in the user temp directory, we
  // won't try to handle this situation. even if accidentially or
  // maliciously planted, the directory's presence won't hurt anything.
  //
  RESTARTABLE(::unlink(path), result);
  if (PrintMiscellaneous && Verbose && result == OS_ERR) {
    if (errno != ENOENT) {
      warning("Could not unlink shared memory backing"
              " store file %s : %s\n", path, strerror(errno));
    }
  }
}


// remove file
//
// this method removes the file with the given file name in the
// named directory.
//
static void remove_file(const char* dirname, const char* filename) {

  size_t nbytes = strlen(dirname) + strlen(filename) + 2;
  char* path = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);

  strcpy(path, dirname);
  strcat(path, "/");
  strcat(path, filename);

  remove_file(path);

  FREE_C_HEAP_ARRAY(char, path, mtInternal);
}


// cleanup stale shared memory resources
//
// This method attempts to remove all stale shared memory files in
// the named user temporary directory. It scans the named directory
// for files matching the pattern ^$[0-9]*$. For each file found, the
// process id is extracted from the file name and a test is run to
// determine if the process is alive. If the process is not alive,
// any stale file resources are removed.
//
static void cleanup_sharedmem_resources(const char* dirname) {

  // open the user temp directory
  DIR* dirp = os::opendir(dirname);

  if (dirp == NULL) {
    // directory doesn't exist, so there is nothing to cleanup
    return;
  }

  if (!is_directory_secure(dirname)) {
    // the directory is not a secure directory
    return;
  }

  // for each entry in the directory that matches the expected file
  // name pattern, determine if the file resources are stale and if
  // so, remove the file resources. Note, instrumented HotSpot processes
  // for this user may start and/or terminate during this search and
  // remove or create new files in this directory. The behavior of this
  // loop under these conditions is dependent upon the implementation of
  // opendir/readdir.
  //
  struct dirent* entry;
  char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
  errno = 0;
  while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {

    pid_t pid = filename_to_pid(entry->d_name);

    if (pid == 0) {

      if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {

        // attempt to remove all unexpected files, except "." and ".."
        remove_file(dirname, entry->d_name);
      }

      errno = 0;
      continue;
    }

    // we now have a file name that converts to a valid integer
    // that could represent a process id . if this process id
    // matches the current process id or the process is not running,
    // then remove the stale file resources.
    //
    // process liveness is detected by sending signal number 0 to
    // the process id (see kill(2)). if kill determines that the
    // process does not exist, then the file resources are removed.
    // if kill determines that that we don't have permission to
    // signal the process, then the file resources are assumed to
    // be stale and are removed because the resources for such a
    // process should be in a different user specific directory.
    //
    if ((pid == os::current_process_id()) ||
        (kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {

        remove_file(dirname, entry->d_name);
    }
    errno = 0;
  }
  os::closedir(dirp);
  FREE_C_HEAP_ARRAY(char, dbuf, mtInternal);
}

// make the user specific temporary directory. Returns true if
// the directory exists and is secure upon return. Returns false
// if the directory exists but is either a symlink, is otherwise
// insecure, or if an error occurred.
//
static bool make_user_tmp_dir(const char* dirname) {

  // create the directory with 0755 permissions. note that the directory
  // will be owned by euid::egid, which may not be the same as uid::gid.
  //
  if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
    if (errno == EEXIST) {
      // The directory already exists and was probably created by another
      // JVM instance. However, this could also be the result of a
      // deliberate symlink. Verify that the existing directory is safe.
      //
      if (!is_directory_secure(dirname)) {
        // directory is not secure
        if (PrintMiscellaneous && Verbose) {
          warning("%s directory is insecure\n", dirname);
        }
        return false;
      }
    }
    else {
      // we encountered some other failure while attempting
      // to create the directory
      //
      if (PrintMiscellaneous && Verbose) {
        warning("could not create directory %s: %s\n",
                dirname, strerror(errno));
      }
      return false;
    }
  }
  return true;
}

// create the shared memory file resources
//
// This method creates the shared memory file with the given size
// This method also creates the user specific temporary directory, if
// it does not yet exist.
//
static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {

  // make the user temporary directory
  if (!make_user_tmp_dir(dirname)) {
    // could not make/find the directory or the found directory
    // was not secure
    return -1;
  }

  int result;

  RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_TRUNC, S_IREAD|S_IWRITE), result);
  if (result == OS_ERR) {
    if (PrintMiscellaneous && Verbose) {
      warning("could not create file %s: %s\n", filename, strerror(errno));
    }
    return -1;
  }

  // save the file descriptor
  int fd = result;

  // set the file size
  RESTARTABLE(::ftruncate(fd, (off_t)size), result);
  if (result == OS_ERR) {
    if (PrintMiscellaneous && Verbose) {
      warning("could not set shared memory file size: %s\n", strerror(errno));
    }
    ::close(fd);
    return -1;
  }

  // Verify that we have enough disk space for this file.
  // We'll get random SIGBUS crashes on memory accesses if
  // we don't.

  for (size_t seekpos = 0; seekpos < size; seekpos += os::vm_page_size()) {
    int zero_int = 0;
    result = (int)os::seek_to_file_offset(fd, (jlong)(seekpos));
    if (result == -1 ) break;
    RESTARTABLE(::write(fd, &zero_int, 1), result);
    if (result != 1) {
      if (errno == ENOSPC) {
        warning("Insufficient space for shared memory file:\n   %s\nTry using the -Djava.io.tmpdir= option to select an alternate temp location.\n", filename);
      }
      break;
    }
  }

  if (result != -1) {
    return fd;
  } else {
    ::close(fd);
    return -1;
  }
}

// open the shared memory file for the given user and vmid. returns
// the file descriptor for the open file or -1 if the file could not
// be opened.
//
static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {

  // open the file
  int result;
  RESTARTABLE(::open(filename, oflags), result);
  if (result == OS_ERR) {
    if (errno == ENOENT) {
      THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
                  "Process not found", OS_ERR);
    }
    else if (errno == EACCES) {
      THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
                  "Permission denied", OS_ERR);
    }
    else {
      THROW_MSG_(vmSymbols::java_io_IOException(), strerror(errno), OS_ERR);
    }
  }

  return result;
}

// create a named shared memory region. returns the address of the
// memory region on success or NULL on failure. A return value of
// NULL will ultimately disable the shared memory feature.
//
// On Solaris and Bsd, the name space for shared memory objects
// is the file system name space.
//
// A monitoring application attaching to a JVM does not need to know
// the file system name of the shared memory object. However, it may
// be convenient for applications to discover the existence of newly
// created and terminating JVMs by watching the file system name space
// for files being created or removed.
//
static char* mmap_create_shared(size_t size) {

  int result;
  int fd;
  char* mapAddress;

  int vmid = os::current_process_id();

  char* user_name = get_user_name(geteuid());

  if (user_name == NULL)
    return NULL;

  char* dirname = get_user_tmp_dir(user_name);
  char* filename = get_sharedmem_filename(dirname, vmid);

  // cleanup any stale shared memory files
  cleanup_sharedmem_resources(dirname);

  assert(((size > 0) && (size % os::vm_page_size() == 0)),
         "unexpected PerfMemory region size");

  fd = create_sharedmem_resources(dirname, filename, size);

  FREE_C_HEAP_ARRAY(char, user_name, mtInternal);
  FREE_C_HEAP_ARRAY(char, dirname, mtInternal);

  if (fd == -1) {
    FREE_C_HEAP_ARRAY(char, filename, mtInternal);
    return NULL;
  }

  mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

  result = ::close(fd);
  assert(result != OS_ERR, "could not close file");

  if (mapAddress == MAP_FAILED) {
    if (PrintMiscellaneous && Verbose) {
      warning("mmap failed -  %s\n", strerror(errno));
    }
    remove_file(filename);
    FREE_C_HEAP_ARRAY(char, filename, mtInternal);
    return NULL;
  }

  // save the file name for use in delete_shared_memory()
  backing_store_file_name = filename;

  // clear the shared memory region
  (void)::memset((void*) mapAddress, 0, size);

  // it does not go through os api, the operation has to record from here
  MemTracker::record_virtual_memory_reserve((address)mapAddress, size, mtInternal, CURRENT_PC);

  return mapAddress;
}

// release a named shared memory region
//
static void unmap_shared(char* addr, size_t bytes) {
  os::release_memory(addr, bytes);
}

// create the PerfData memory region in shared memory.
//
static char* create_shared_memory(size_t size) {

  // create the shared memory region.
  return mmap_create_shared(size);
}

// delete the shared PerfData memory region
//
static void delete_shared_memory(char* addr, size_t size) {

  // cleanup the persistent shared memory resources. since DestroyJavaVM does
  // not support unloading of the JVM, unmapping of the memory resource is
  // not performed. The memory will be reclaimed by the OS upon termination of
  // the process. The backing store file is deleted from the file system.

  assert(!PerfDisableSharedMem, "shouldn't be here");

  if (backing_store_file_name != NULL) {
    remove_file(backing_store_file_name);
    // Don't.. Free heap memory could deadlock os::abort() if it is called
    // from signal handler. OS will reclaim the heap memory.
    // FREE_C_HEAP_ARRAY(char, backing_store_file_name);
    backing_store_file_name = NULL;
  }
}

// return the size of the file for the given file descriptor
// or 0 if it is not a valid size for a shared memory file
//
static size_t sharedmem_filesize(int fd, TRAPS) {

  struct stat statbuf;
  int result;

  RESTARTABLE(::fstat(fd, &statbuf), result);
  if (result == OS_ERR) {
    if (PrintMiscellaneous && Verbose) {
      warning("fstat failed: %s\n", strerror(errno));
    }
    THROW_MSG_0(vmSymbols::java_io_IOException(),
                "Could not determine PerfMemory size");
  }

  if ((statbuf.st_size == 0) ||
     ((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
    THROW_MSG_0(vmSymbols::java_lang_Exception(),
                "Invalid PerfMemory size");
  }

  return (size_t)statbuf.st_size;
}

// attach to a named shared memory region.
//
static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {

  char* mapAddress;
  int result;
  int fd;
  size_t size = 0;
  const char* luser = NULL;

  int mmap_prot;
  int file_flags;

  ResourceMark rm;

  // map the high level access mode to the appropriate permission
  // constructs for the file and the shared memory mapping.
  if (mode == PerfMemory::PERF_MODE_RO) {
    mmap_prot = PROT_READ;
    file_flags = O_RDONLY;
  }
  else if (mode == PerfMemory::PERF_MODE_RW) {
#ifdef LATER
    mmap_prot = PROT_READ | PROT_WRITE;
    file_flags = O_RDWR;
#else
    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
              "Unsupported access mode");
#endif
  }
  else {
    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
              "Illegal access mode");
  }

  if (user == NULL || strlen(user) == 0) {
    luser = get_user_name(vmid, CHECK);
  }
  else {
    luser = user;
  }

  if (luser == NULL) {
    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
              "Could not map vmid to user Name");
  }

  char* dirname = get_user_tmp_dir(luser);

  // since we don't follow symbolic links when creating the backing
  // store file, we don't follow them when attaching either.
  //
  if (!is_directory_secure(dirname)) {
    FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
              "Process not found");
  }

  char* filename = get_sharedmem_filename(dirname, vmid);

  // copy heap memory to resource memory. the open_sharedmem_file
  // method below need to use the filename, but could throw an
  // exception. using a resource array prevents the leak that
  // would otherwise occur.
  char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
  strcpy(rfilename, filename);

  // free the c heap resources that are no longer needed
  if (luser != user) FREE_C_HEAP_ARRAY(char, luser, mtInternal);
  FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
  FREE_C_HEAP_ARRAY(char, filename, mtInternal);

  // open the shared memory file for the give vmid
  fd = open_sharedmem_file(rfilename, file_flags, CHECK);
  assert(fd != OS_ERR, "unexpected value");

  if (*sizep == 0) {
    size = sharedmem_filesize(fd, CHECK);
  } else {
    size = *sizep;
  }

  assert(size > 0, "unexpected size <= 0");

  mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);

  // attempt to close the file - restart if it gets interrupted,
  // but ignore other failures
  result = ::close(fd);
  assert(result != OS_ERR, "could not close file");

  if (mapAddress == MAP_FAILED) {
    if (PrintMiscellaneous && Verbose) {
      warning("mmap failed: %s\n", strerror(errno));
    }
    THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
              "Could not map PerfMemory");
  }

  // it does not go through os api, the operation has to record from here
  MemTracker::record_virtual_memory_reserve((address)mapAddress, size, mtInternal, CURRENT_PC);

  *addr = mapAddress;
  *sizep = size;

  if (PerfTraceMemOps) {
    tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
               INTPTR_FORMAT "\n", size, vmid, (void*)mapAddress);
  }
}




// create the PerfData memory region
//
// This method creates the memory region used to store performance
// data for the JVM. The memory may be created in standard or
// shared memory.
//
void PerfMemory::create_memory_region(size_t size) {

  if (PerfDisableSharedMem) {
    // do not share the memory for the performance data.
    _start = create_standard_memory(size);
  }
  else {
    _start = create_shared_memory(size);
    if (_start == NULL) {

      // creation of the shared memory region failed, attempt
      // to create a contiguous, non-shared memory region instead.
      //
      if (PrintMiscellaneous && Verbose) {
        warning("Reverting to non-shared PerfMemory region.\n");
      }
      PerfDisableSharedMem = true;
      _start = create_standard_memory(size);
    }
  }

  if (_start != NULL) _capacity = size;

}

// delete the PerfData memory region
//
// This method deletes the memory region used to store performance
// data for the JVM. The memory region indicated by the <address, size>
// tuple will be inaccessible after a call to this method.
//
void PerfMemory::delete_memory_region() {

  assert((start() != NULL && capacity() > 0), "verify proper state");

  // If user specifies PerfDataSaveFile, it will save the performance data
  // to the specified file name no matter whether PerfDataSaveToFile is specified
  // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
  // -XX:+PerfDataSaveToFile.
  if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
    save_memory_to_file(start(), capacity());
  }

  if (PerfDisableSharedMem) {
    delete_standard_memory(start(), capacity());
  }
  else {
    delete_shared_memory(start(), capacity());
  }
}

// attach to the PerfData memory region for another JVM
//
// This method returns an <address, size> tuple that points to
// a memory buffer that is kept reasonably synchronized with
// the PerfData memory region for the indicated JVM. This
// buffer may be kept in synchronization via shared memory
// or some other mechanism that keeps the buffer updated.
//
// If the JVM chooses not to support the attachability feature,
// this method should throw an UnsupportedOperation exception.
//
// This implementation utilizes named shared memory to map
// the indicated process's PerfData memory region into this JVMs
// address space.
//
void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {

  if (vmid == 0 || vmid == os::current_process_id()) {
     *addrp = start();
     *sizep = capacity();
     return;
  }

  mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
}

// detach from the PerfData memory region of another JVM
//
// This method detaches the PerfData memory region of another
// JVM, specified as an <address, size> tuple of a buffer
// in this process's address space. This method may perform
// arbitrary actions to accomplish the detachment. The memory
// region specified by <address, size> will be inaccessible after
// a call to this method.
//
// If the JVM chooses not to support the attachability feature,
// this method should throw an UnsupportedOperation exception.
//
// This implementation utilizes named shared memory to detach
// the indicated process's PerfData memory region from this
// process's address space.
//
void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {

  assert(addr != 0, "address sanity check");
  assert(bytes > 0, "capacity sanity check");

  if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
    // prevent accidental detachment of this process's PerfMemory region
    return;
  }

  unmap_shared(addr, bytes);
}

char* PerfMemory::backing_store_filename() {
  return backing_store_file_name;
}

Other Java examples (source code examples)

Here is a short list of links related to this Java perfMemory_bsd.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.